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In order to study nonlinear ordinary differential equations with superposition principles,
related to the exceptional simple Lie group G,, the complex and real forms of its Lie algebra
are examined and their maximal subalgebras are summarized. In particular the parabolic
subalgebras of the noncompact real form g5 “(R) are determined. Explicit matrix realizations
of the fundamental representation D(1,0) are used and studied in connection with invariant
subspaces in a seven-dimensional (complex or real) vector space. The results are collected in
three tables of specific interest for the study of nonlinear differential equations, which will be

developed in Paper II of this series.
I. INTRODUCTION

A series of recent publications has been devoted to the
problem of identifying and classifying all systems of first-
order nonlinear ordinary differential equations with super-
position formulas.!~® The equations under study have the
form

yE= 3 Z,(OnH(y), p=1..n (L.

k=1
and in this context a superposition formula is a mapping F:
Crim+ D" (or R"™+D_,R") expressing the general so-
lution y(#) of (1.1) in terms of m particular solutions y; ()
and 7 significant constants C;:

y(@) =Fy,(£)s....¥.. (£),Cs....C, ). (1.2)

The problem of characterizing nonlinear ordinary differen-
tial equations with superposition formulas goes back to Lie.”

- We shall not review the known results here, nor the motiva-
tion for our interest in these equations and the explicit super-
position formulas,

Let us just mention that a system of ODE’s with a super-
position formula can be associated with every Lie group-Lie
subgroup pair GO G,. To obtain the equations, one must
realize the homogeneous space G /G, explicitly and intro-
duce convenient coordinates on this space. It has been shown
that cases of particular interest are obtained when G is a
simple Lie group and G, one of its maximal subgroups.*

Attention has so far been focused on the case when Gisa
classical complex or real Lie group. Use was made of the
defining matrix representations of the corresponding simple
classical Lie algebras and Lie groups. The homogeneous
spaces G /G, were constructed as Grassmannians, or in some
other form.!-%

The purpose of this article is to start the analysis of the
Cartan exceptional Lie groups®® G,, F,, E,, E,, and E; in the
context of nonlinear superposition formulas. More specifi-
cally, we concentrate on the simplest case, namely the com-

*) Chargé de recherches, F.N.R.S., Belgium.
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plex and real forms of the exceptional Lie group G,.

It should be emphasized that the group G, is of consider-
able interest in physics, quite independently of the applica-
tion mentioned above. The real compact form G $(R) made
its appearance in elementary particle physics in the early
1960’s,'° as a possible candidate for the symmetry group of
strong interaction physics and more particularly for hadron
spectroscopy [it contains the all-important SU(3) group as
one of its maximal subgroups].

Quantum theories based on octonionic quark fields were
proposed in the 1970’s'“'? and the exceptional group
G $(R) was once again examined: this time as the automor-
phism group'® of the octonions. Other applications include
non-Abelian gauge theories where G, occurs as one of the
groups that can accommodate three-quark color singlets'
and to many-body problems in nuclear and atomic phys-
ics’® ! [here G,(R) figures, e.g., in the group reduction
chain U(7) D0O(7) DG,2OSU(3)]. More recently, possible
global symmetries of extended supergravities'® have also
lead to the use of exceptional Lie groups, in particular G, and
its fundamental representation. An interesting application
of G, occurs in the study of a Toda lattice with unequal
masses. '’

The present article is devoted to group theoretical preli-
minaries, that should be of use in any physical application of
the group G,. It contains some known results and some, to
our knowledge, new ones, on the subgroup structure and
realizations of the complex group G,(C), the real compact
form G $(R), and the real noncompact form G Y°(R). The
sequel (Paper II) will make use of these results to obtain
explicitly the nonlinear ODE’s with superposition formulas,
associated to the various forms of G, (see also Ref. 20).

Section II contains some general results on the group G,
and its complex Lie algebra g,(C). The two real forms of g,
and some of their properties are discussed in Sec. III. The
parabolic subalgebras®® of the noncompact real form
& C(R) are obtained using a method employed by Corn-
well,?? dealing with the Iwasawa?? and Langlands®* decom-
positions. Finally, Sec. IV is devoted to explicit realizations
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of the fundamental matrix representation D(1,0) of g, (both
complex and real). All maximal subalgebras are found and
the reducible ones are identified as algebras of matrices leav-
ing different types of subspaces of C” or R’ invariant. The
main results are presented in three tables, to be further used
in Paper II of this series. Throughout the article, we make
use of the Chevalley basis.>>*®

Il. THE LIE GROUP G(C) AND ITS LIE ALGEBRA g,(C)

The exceptional Lie algebra g, (C)>**’ is one of the three
existing simple rank 2 complex Lie algebras. Its order is 14,
its root space is of dimension 2 and hence it has two null and
12 nonzero roots. Its root diagram has the well-known form
of a “star of David.”?5?® The fundamental irreducible repre-
sentations of g,(C), namely D(1,0) and D(0,1), are repre-
sentations of complex dimension 7 and 14, the latter one
being the adjoint or regular representation.

We shall call a, and a, the two fundamental simple
roots satisfying

(a,a,) = 6n,

(apay) =2n, (@) = — 3n,

2.1)

where the normalization factor neR>° can be chosen in
some convenient way. The set A , of positive roots is given
by

A+ = (al,az,al + a2,a1 + 2a2,a, + 3a2,2a1 + 3a2)
(2.2a)

and the set of all roots is
A=A u(—A,). (2.2b)

Throughout this article we shall make use of a particu-
larly convenient basis for g,, namely the Chevalley ba-
sis.>*?62° This is an integral basis, in the sense that all struc-
ture constants are integers. It is hence highly advantageous
for numerical calculations (on computers or otherwise, see,
e.g., Ref. 30), for studies involving discrete subgroups or
elements of finite order,*! and also for generalizations to infi-
nite-dimensional Lie algebras of the Kac—-Moody type®>**
(see Refs. 34 and 35).

A Chevalley basis exists for every semisimple Lie alge-
bra L over an algebraically closed field of characteristic
zero.?® Denoting the root system A and the roots a;, we can

{heq, j=1,...0, a;€l}.
The commutation relations are
(i) [hh;] =0, 0<i, j<i
(i) [hie.] = 2(a@)/ (a;a;)e,,
(iil) [eye_,] =h,;

. + (r+ e, p,
(lV) [eayeﬂ] == {0 lfa +B¢+Aﬂi

(2.3a)

I<il, ael;
ifa + PeA,

(2.3b)

where @ and B are linearly independent roots and
B —ra,..8—ap+a,..B + qa is the a-string through 8
[i.e., all members of the string belong to A, but
B— (r+1)aandB + (¢ + 1)a donot]. The signs in (iv)
must be chosen in a consistent manner.

Returning to g,(C), we have the basis

{hal ’hapeial ’eﬂ:az ’e:t (a, +a;)?
(2.4)

e + (a; + 2a3) »€ + (a, + 3a;) ,€ + 2a, + 3a,) }y

with the commutation relations (2.3), or more specifically

(a8)  __
[hal’hal] =0’ [hﬂ’eﬂl =2 (aa) eﬂ=‘Aaﬂeﬁ’
[ease—a] =thar [€arts] =Nugla.ss

afeA, h,eH. (2.5)

Here H is the Cartan subalgebra and the values of N, in
agreement with (2.3), are given in Table I. For
(a,B) = (a;,a;) (the fundamental roots) A is the Cartan
matrix, for g,(C) equal to

2 -1
4= ( -3 2) '
The signs in Table I are chosen in such a manner that an

automorphism of the g, root diagram extends in a simple
manner?® to an automorphism of the group G,(K), where K
is a perfect field of characteristic 3.

The Cartan-Weyl basis used in much of the litera-
ture®?23¢ differs from the Chevalley basis only by a change
of normalization. Thus, let us denote the basis used, e.g., by
Cornwell as?

{hal ’haz’Xﬂ: a, ’X:t az’Xi'. (a, + ay)?

(2.6)

write the Chevalley basis as X3 o+ 200 X & (@ 4+ 300 X & 2, + 3 T+ 2.7
TABLE L. Values of N,z for g,(C) in the Chevalley basis.

Nys a a a+a, o +2a a+3a, 20,43, —a,—a, —(a,+a) ~(a,+2a,) —(a;+3a;) — (2a,+3a,)
a, 0 1 0 0 1 0 * 0 -1 0 0 -1

a, -1 0 =2 3 0 0 o * 3 2 -1 0

a +a 0 2 0 3 0 o -1 3 * -2 0 -1

a, + 2a, 0 -3 -3 0 0 0 0 2 -2 * 1 1

a, + 3a, -1 0 0 0 0 0 0 -1 0 1 * 1

2a, + 3a, 0 0 0 0 0 0 -1 © —1 1 1 .

- a, * 0 1 0 0 1 0 -1 0 0 -1 0

—a, 0 * -3 -2 1 0 1 0 2 -3 0 0

— (@, +ay) 1 -3 * 2 0 1 0 -2 0 -3 0 ]

— (a, + 2a,) 0 -2 2 * -1 -1 o 3 3 0 0 0

— (@, + 3a,) 0o 1 0 -1 * -1 1 0 0 0 0 0

— (2a, + 3a,) 1 0 1 -1 -1 * 0 0 0 0 0 0
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We then have

By =4ha, ho =2hey Xio=Coe,o, (2.8)
with

Co, = —Co,t30, =Con, 430, = (148,

Co, = — Co, Vo, = Cay 120, = (1/128). 29

The group G,(C) is isomorphic to the group of orthogo-
nal transformations acting on a complex seven-dimensional
vector space and leaving a third-order antisymmetric tensor
T invariant.?”?° Explicitly we can realize the D(1,0) repre-
sentation of the group G,(C) by the matrices geC’*” satisfy-
ing

8uv8ac = Opes (2.10)

8o Tbcd = Taefgecgfd’ (2 11 )

where the nonzero components of the completely antisym-
metric tensor T can be characterized by the values

T127 = T154 = T163 = T235 = T264 = T374 = T576 =1

(2.12)

The invariance of the tensor 7 is equivalent to the invar-
iance of a “vector product” in seven dimensions®’%:

g(yXz) = gy Xgz, (2.13)
where (in a specific representation) we have

x2), = C"" z"”) + C“*’ z"“)
a-—2 za—2 a—1 za—l

a zﬂ
+C+‘ *‘), a=1,.7, (2.14)

a+3 2543

and all indices are defined mod 7. The tensor T = {T, }isa
fully antisymmetric cubic invariant,'* satisfying “alterna-
tivity” relations.® An explicit realization of T'can be given in
terms of octonions (Cayley algebra).'> We shall make exten-
sive use of this tensor in Paper II of this series, when deter-
mining the nonlinear differential equations associated with
G,.

All maximal subalgebras of the complex and real forms
of g, are determined in Sec. IV. In particular, g,(C) has five
mutually nonisomorphic maximal reductive subalgebras. In
addition to the compact real form g5 (R) and the noncom-
pact one g°(R) we have a class of simple sl(3,C) subalge-
bras, represented in the Chevalley basis by

{ha- ’haz’e +a, € + (@, + 3a,) € + (2a, + 3ay) } (215)

A fourth class of simple Lie subalgebras is represented by the
s1(2,C) algebra:

{hy, + hosen, +€ape_a +e_a}. (2.16)

Finally a class of semisimple maximal subalgebras is repre-
sented by the s1(2,C) @ s1(2,C) subalgebra

{ha. ’ea, € _ a, } & {ha, + 2;12 ’ea, + 2a, € _ (a, + 2a,) } (2 17)

The remaining maximal subalgebras of g,(C) are maxi-
mal parabolic subalgebras, i.¢., they contain the Borel subal-
gebra (the maximal solvable subalgebra). For g,(C) the
Borel subalgebra is of dimension 8 and is unique up to conju-
gacy (for any complex simple Lie algebra). It can be chosen
to be

2219 J. Math. Phys., Vol. 27, No. 8, September 1986

B= {ha, ’ha, ’ea. ’ea, ’eal + a, ’ea, + 2a, ’ea, + 3a, ’eZa, + 3a, }
: (2.18)
The algebra g,(C) contains two mutually nonisomorphic
classes of maximal parabolic subalgebras, the so-called stan-
dard parabolic subalgebras,?>?° given, e.g., by
P, (C) ={hy ho € 1 0 1€a, €+ ayr

ea, + 2a, ’ea, + 3a, 7e2a, + 3a2} (2 19)
and
Paz (C) = {hal ’haz ’eal € Ta, ’ea| +a;?
ea. + 2a, ’ea. + 3a, e2a. + 3a, }
(2.20)
Notice that we have
B~P, (C)nP, (C). (221)

lll. REAL FORMS OF g, AND SOME OF THEIR BASIC
PROPERTIES

Let us first consider an arbitrary complex simple Lie
algebra L(C) with Chevalley basis (2.3). To this Lie alge-
bra, we can always associate its compact real form L° (R)
with basis?64041

Lo(R) ={ih,, €, =€, —€_,, N, =ile; +e_,),
(3.1)

The noncompact real forms L V€ (R) are then obtained from
L° (R) through chief involutive automorphisms,>” defined
with respect to the Cartan subalgebra H of the complexifica-
tion L(C) of LNC (R).

The Cartan decomposition for a noncompact real form
LN (R) takes the form

LNS(R) =K+P, (3.2)

where K is a maximal compact subalgebra of L (unique up to
conjugacy) satisfying

j=1,.,,acA }.

K = {aeL |Za = a}. (3.3)
The subspace P satisfies
P={acL|Za= —a}. (3.4)

For the present purposes we can restrict ourselves to chief
inner automorphisms*”?! and we have

Z = exp(adh), heH. (3.5)

This automorphism is diagonal with respect to the canonical
basis (3.1) of L° (R). The basis elements ihaj (j=1..D
correspond to the eigenvalue + 1; €, and 5, correspond to
the eigenvalue exp{a(h)} = + 1, where a(k) = B(h,h,)
[B(x,p) is the Killing form of L(C) ]. We hence obtain

K ={ih, €., i=1,..](@|expa(h) =1)},

P={ie,, — in, [alexpa(h) = — 1)}. (3.6)

In the case of the exceptional Lie algebra g, there exist
two nonisomorphic real forms,*”-*® the compact form gS(R)
with the character — 14 and the noncompact one g)'°(R)
with the character + 2. Correspondingly, two nonequiva-
lent chief inner automorphisms exist in this case. The first is
given by the choice
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expa,(h) =expa,(h) =1, 3.7)
i.e., Z is the identity and we obtain g$(R) itself:
gg(R) ~ {iha. ’iha, €a,9Na,€a,sMNa, €a, + a;Na, +a,?

ea, + 2a, ’”a. + 2a, ’ea, + 3a, ’na, + 3a, ’€2a, + 3a,*

Maa, + 30, )+ (3.8)
The second choice of automorphism is given by
expa,(h) =1, expa,(h)= —1, (3.9)

and provides us with a basis for the noncompact form
&2 C(R). In (3.2) we have, in this case,

g °(R) ={K.,P}, (3.10a)
K = {ihal ,ihaz ,Eal ’77“1 ,€al + 2a, ’na, +2a, }, (3. IOb)
P= {ieaz’ - iﬂaz ,ifal +a? iﬂdn +a; ’ieal + 3a,?

— M, 4 30,€2a, + 32,0 — Maa, + 30,3+ (3.10¢)

An important concept for a noncompact Lie algebra is
that of the Iwasawa®® decomposition:

L=K+A4+N, (3.11)

where K is a maximal compact subalgebra, 4 is a maximal
Abelian subalgebra of P, with dim 4 = m</, and N is a nil-
potent subalgebra of L. Cornwell has given a direct prescrip-
tion?? for calculating the Iwasawa decomposition and has
applied it to the pseudo-orthogonal Lie algebras so(3,1),
so(4,1),s0(3,2), and s0(4,2). We applied Cornwell’s meth-
od to g5°(R). Dropping all details, we simply give the re-
sults. If we choose the maximal compact subalgebra K of
€ °(R) in the form (3.10b) and use the basics (3.10), we
find

A = {ie,, i€ss 4 3a,) (3.12)
and
N= {fal + iea, +3a,9€a, +2a, — ¥€a, +a,Ma, — iﬂau + 3a,?
Na, + 20, T May 4 ey
Mg, +iha, — Mg, 30, +i(2h,, + b )}
(3.13)
Furthermore
Pm ={44+N} (3.14)

is a “minimal parabolic subalgebra” of g> “(R); it is a maxi-
mal solvable subalgebra*? and its complexification is the
Borel subalgebra of g,(C). Following Cornwell’s prescrip-
tion, we could use the Iwasawa decomposition to obtain the
two “standard parabolic subalgebras” of g} (R). Again, we
only present the results and moreover, we shall use a differ-
ent basis and choose a different (equivalent) realization of
the maximal compact subalgebra XK.

Indeed, consider the Chevalley basis (2.4) of g,(C),
however, consider it over the field of real numbers R, rather
than over C. In this case (2.4) immediately provides a basic
for gY°(R). The maximal compact subalgebra is given as

K={ea. _e—~a,’e¢zz _e—az’ea,+a, —e—-a.—a,’ea,+2¢zz
'—e—a,—Za,’ea,+3a, _e——a,—Ba,’
€24, + 3a, —e—za.-sa,}9 (3.15)

the Abelian algebra A4 of (3.11) is
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A={h, h,}
and the nilpotent algebra N is

(3.16)

N= {ea. €a,1€a, + a,€a, + 2a,€a, + 3a,°€2a, + 3a, 1 Gan

The two nonisomorphic “standard parabolic subalgebras”

(that are also maximal parabolic subalgebras) are

Pa, (R) = {ha. 9ha, € _ a, ’ea, !ea, ’ea, + a, ’ea. + 2a, ’ea, + 3a,?
€20, + 30,3+ (3.18)

and

Pa, (R) = {ha, ,ha, € _ a,1€q, €a,€a, + a,€a, + 2a,'€a, + 3a,’

€20, + 30,1 (3.19)
As in the complex case we have
P, =P, (R)nP,, (R), (3.20)

where P, is the “‘minimal parabolic subalgebra.”

Notice that the complexification of (3.18), (3.19), and
(3.20) are (2.19), (2.20), and (2.18), respectively.

All maximal subalgebras of g,(C), g5(R), and gY°(R)
are derived in the following section.

IV. THE MATRIX REPRESENTATION D(1,0) AND THE
MAXIMAL SUBALGEBRAS OF g,

The fundamental representation D(1,0) of g, is of di-
mension 7. This is the lowest-dimensional faithful represen-
tation of g, and as such, it is particularly convenient for visu-
alizing subalgebras of g,(C) and its two real forms.

For g,(C) this representation can be viewed as a restric-
tion of the defining representation of 0(7,C) (the 21-dimen-
sional classical simple Lie algebra B,).?”*° For gS(R) and
8> C(R) the representation D(1,0) is a restriction of the de-
fining representation of the real algebra o(7), or 0(4,3), re-

spectively.

A. Matrix realizations of the complex and real forms of
92

Cartan®’ has proposed a specific realization of the alge-
bra g,(C) when this algebra acts on a seven-dimensional
vector space F; characterized by coordinates x;, z, y;
(i=12,3):

V7= {x12%32.010203).
The infinitesimal operators are given as vector fields

(4.1)

a d 1 ad a
Xi=—x— 4y +_( - —)
ax ey, ax, o,
(no sum over ),
a2 a
Xg= —2z2—
0 axl +yl 9z
1 a d
T2 6’”‘( "y ay,)
ad aJ 1 ad aJ
Xi =2z— + i o i -
o &, y % + - > €y (.V, ax, ) axj)
Xy = —xj—i +n2 Grp. (4.2)
ox; y;
Note that we have
Beckers, Hussin, and Winternitz 2220



X+ X+ X53=0,

so that (4.2) only represents 14 operators.
The commutation relations of the g,(C) Lie algebra in
this basis are

[Xii’XiO] =§Xm [Xkao] = —’!Xko (i?ék):
[Xiirxo.'] = “;Xon [Xii9XOk] =§X0k (i9ék),
[Xijo] = 2€.ka0k, [XOI,XOj] = — ZeiijkO’
[Xo."Xjk] =6in0k’ [Xik’on] =5ij.n’
[Xo:Xo ] =3Xy, [Xy:Xim ] =0, X, — 8, Xy

We shall eliminate one of three generators X; [see
(4.3)] and use the following basis:

{Xl =X — X Ko = —3Xy,, X:n,Xoan}’
i#j, i,j=123. (4.5)

Such a basis is related in a simple way to the Chevalley basis
(2.4) of Sec. II. Indeed, we have

Xl = hala X2 =ha19

(4.3)

(4.4)

Xpo=¢€_o, Xo= —€_(a,+an> X30= —€a, 420,
X01=eﬂz’ X02= — €4, 4+a, X03= —€_(a,+2a,)°
X12=ea|1 Xyn= —€_ (20,430 X51 =€, 1 30,5
Xpn=e_oy Xn= —€4 130, Xi3=€_ (a3
(4.6)

It is easy to pass from the realization (4.2) of the g,(C)
generators as differential operators to a seven-dimensional
matrix representation. We shall need several different ma-
trix realizations for different applications. The algebra
8,(C) will be viewed as a subalgebra of o(7,C). A matrix
Meo(7,C) satisfies

KM+M'™K=0, K=K7, detK #0, (4.7)

where the superscript T denotes transposition and X is a
fixed symmetric nonsingular matrix. We can pass from a
realization corresponding to a given metric tensor K to a
different realization with metric K’ by putting

K=SK'S, M=S"M'S. 4.8)
One convenient choice is due to Cartan?’:
0 0 L2
KC=( o 1 o0 ) (4.9)
/2 0 0

where I, is the n-dimensional identity matrix. Then we have
A 2b o

M.=|dT o —bT|,
D -2 —AT
A,CDeC**3, CT+C=0,

DT4+ D=0, bdeC*! (4.10a)

For M . to lie in the g,(C) subalgebra of 0(7,C) we must
impose Tr 4 = 0 and relate Cand D tod and b, respectively:

a, — 2a, a; a3
A={a,; —a;+a, axn),
d31 as; a,

2221 J. Math. Phys., Vol. 27, No. 9, September 1986

C= ags 0 —ay |,
— Ay aoi 0
0 a3 —ayp
D=| —a, 0 apl,
A —ay 0
Q10 ao;
b=1la,l|, d= aoz) . (4.10b)
as o3

The matrix of the form M . representing the generator X,,,
(u,vy=0,1,2,3) or X, (a = 1,2) of (4.5) is obtained by put-
ting the correspondinga,, = 1 (ora; = 1) in (4.10), and all
other entries a,,.,, = 0,4, =0.

Note that in this realization the orthogonal group
O(7,C) leaves the quadratic form

Q=X"KX=22+ (x,y)
invariant, where

XT=(xzy),

In terms of the more usual diagonal metric, I,, we have

(4.11)

x,yeC3?, zeC.

Ko =STLS, M=SM.S"", (4.12)
with
L2 0 LN
S= 0 1 0 1. (4.13)
—il,/2 0 il/2
Explicitly, we have M + M7 = 0 and hence
R m
M=|-m"™ 0 n7}],
—-VT —n U
RUVeC**}, RT4+R=0,
UT4+U=0, mneC¥*!, (4.14)
where

2R=(A—-AT+C+D),
2V=i(A+AT—C+ D),

2U=A4—-AT—-C-D),
m=b-—d, n=i(b+d).

(4.15)

In this realization the completely antisymmetric tensor

T of (2.11) has the components (2.12) and in Lie algebraic
terms the invariance condition (2.11) translates into

MabTbcd = [Ta!M]cd = Tachfd —MuTned' (4.]6)

Two further realizations will be needed below. For the
first we put

KC =S'TI4,3S” 14,3 = ( 14 ),

A 4.17)
1,72 0 I,2
S'= 0 1 0
—-1,/2 0 I,/2
and obtain
Beckers, Hussin, and Winternitz 2221



R m iV

M=|-m" 0 ],
VT in U
RT+R=0, UT+U=0, (4.18)
with R, U, ¥, m, and n as in (4.15).
Finally, let J, be the antidiagonal matrix
J=16,5_,, ab=1,.,7} (4.19)
Wehave ;=S "TK .S " with
_ |
a, — a0 a3
—ap —a;+a az
ap a2 a,—2a,
M"=8S"""M.S"=| —v2a, v2a,, v2a,,
—as a3 0
—a,, 0 —as
L 0 a3 a3y

B. The maximal subalgebras of g.(C)

The maximal subalgebras of a semisimple Lie algebra
can be embedded reducibly or irreducibly in a given finite-
dimensional representation.** The reducibly embedded ones
leave some vector subspace invariant, the irreducibly em-
bedded ones do not. Irreducibly embedded subalgebras are
always reductive (semisimple, or the direct sum of a semi-
simple Lie algebra with an Abelian one.** The semisimple
subalgebras of the simple complex Lie algebras were classi-
fied by Dynkin,* those of the real simple Lie algebras by
Cornwell.**

The algebra g, (C) has three irreducibly embedded sub-
algebras (up to conjugacy), all of them simple. They are as
follows.

(1) g5 (R), the maximal compact subalgebra of g,(C).
It is best obtained in the realization (4.14) by restricting all
entries in R, U, ¥, and m and n to be real. We then have

g5 (R) ~g,(C)no(7), (4.22)
where both g,(C) and o(7) are realized using the metric
K = I7o

The identification (3.8) of g5 (R) in Sec. III in terms of
the Chevalley basis is equivalent to that given by (4.22) [or

(4.14) with real entries], but does not coincide with this
realization. Indeed, the choice (3.8) corresponds to

gL (R) ~g,(C)rsu(7), (4.23)
where g,(C) is taken in the realization (4.10) [with metric
(4.9)] and su(7) is realized by matrices XeC’>” satisfying

I

IX+Xx'T=0, T= 2 (4.24)
1
(the superscript 1 denotes Hermitian conjugation).

(2) g¢(R), the noncompact real form of g;. This subal-
gebra can be easily obtained in the realization (4.18), corre-
sponding to the metric I, , of (4.17), by requiring that R, m,
and U be real and ¥ and n be pure imaginary. We then have
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0 0 v2 0 0 0 O
0 v2 0 0 0 0 O
0 0 0 0 0 o0 V2
$'=fo 0 0o 1 0 0 O (4.20)
0 0 0 0 vZ 0 o
0O 0 0 0 0 vZ O
v2 0 0 0 0 0 O
- J
and
-
—Via, — 4 —ay 0
viay, Qo3 0 a3
via,, 0 — Qo3 a3
0 —Via,, —V2a,, V2ag (4.21)
~V2a,, —a,+2a, —day — Gy
—Viay, —ayp a,—a; a0
va,, — 4o 4o a; J
(
£ °(R) ~g,(C)n0O(4,3), (4.25)
where both g,(C) and O(4,3) are realized using the metric
I,5.

The realization (3.10) of Sec. III is equivalent to this
one, though it does not coincide with it. The choice (3.10)
corresponds to the intersection

&C(R) ~g,(C)nsu(4,3), (4.26)
where g,(C) is realized using the metric K = K ¢ of (4.9)
and su(4,3) is realized by the matrices XeC’>", satisfying

Ix+x+I=0,

1

el
t

(4.27)

-1

(3) The algebra sl(2,C), already given in (2.16) is real-
ized, e.g., by the matrices

X2 + X0 X + X 10X, + X, }
in the realization (4.9) and (4.10).

All other maximal subalgebras of g,(C) are embedded
reducibly in the representation D(1,0).As such, they must
leave a vector subspace of C’ invariant. The metric X pro-
vides us with an invariant vector product x”Ky in C’. A
vector xC’ can thus be either nonisotropic [x7 Kx#0, we
denote such a vector space ( + )], or isotropic [x”Kx =0,
we denote such a space (0) ]. A subspace can be character-
ized by its dimension and by the number n,, of isotropic vec-
tors in an orthogonal basis (0<n,<3). If a degenerate space
(ng»1) is left invariant by some group G, then its isotropic
subspace (of dimension n,) is itself invariant. If a subspace V'
is invariant under G, then its orthogonal complement F*
(with respect to the invariant metric) is also invariant.

(4.28)
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In order to find all reducibly embedded maximal subal-
gebras of g,(C), we must hence find the subalgebras leaving
invariant spaces of the type (+), (+ +), (+ + +),
(0), (00), and (000). Let us consider the individual cases.

(1) ( + ). Consider the realization (4.9). With no loss
of generality, we can choose the vectors space ( + ) in the
form :

vTI={(000x000)}.
Imposing
MC V~ I/,

we obtain b =d =0 in (4.10), which implies C=D=0.
We obtain the algebra s1(3,C) realized as

(4.29)

A 0 0
{x}=10 0 0 , AeC¥3, Trd4=0. (4.30)
0 0 —4T7
]
0 z; —2z z;
—2Z 0 z Z Vs
z, —z 0 z3
XY=\ -2, -2z, -z 0 )
0 0 O
0 0 0
0 0 O
We see that in this case we have
s1(2,C) ®sl(2,C) ~g,(C)n[0(4,C) #0(3,C)]. (4.34)

This algebra is conjugate to (2.17) (but does not coincide
with it).

The remaining invariant subspaces to be considered are
completely isotropic. For the classical groups invariance of
an isotropic subspace leads to parabolic subgroups (and
their Lie algebras*®). We shall see that for g,(C) this is not
always the case. .

(4) The space (0). We use the realization (4.21) with
K = J, (4.19). Wechoose the invariant subspace in the form

LT=(000000x). (4.35)
Requiring M L7 ~LT implies
Uy =013 =083 =08 =08;0=0 (4.36)

and we obtain the maximal parabolic subalgebra P, (C) of
(2.19). .

Notice that the nine-dimensional algebra P, (C) can
be interpreted as the restriction of the 16-dimensional simili-
tude algebra*’ sim(5,C) to g,(C):

P, (C) ~sim(5,C)ng.(C), (4.37)
where sim(5,C) is one of the maximal parabolic subalgebras
of 0(7,C) [the group sim(5,C) is the group of Euclidian
transformations of C3, extended by dilations].

(5) The space (00). We again use the realization (4.21)
and require that the subspace

LT=(00000xy) (4.38)
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— )2
-

This actually coincides with the subalgebra (2.15). We have
s1(3,C) ~0(6,C)ng,(C).

(2) ( + + ). In this case, we use the realization (4.14)
with (K = I,). With no loss of generality we choose the in-
variant subspace to be

Vi=(x00y000). (4.31)

Putting MV C ¥V we find a four-dimensional gl (2,C) algebra.
This algebra is contained in a s1(3,C) algebra conjugate to
(4.30) and is hence not maximal.

(3) (+ + + ). We again use the realization (4.14)
and choose the invariant subspace in the form

VI=(0000xyz). (4.32)

Requiring that the space (4.32) be left invariant by a subal-
gebra of matrices of the form (4.14) leads to the subalgebra
s1(2,C) &s1(2,0), realized as

—J3 Y2 N

i 2R 0 (4.33)
0 — 2y, 2,
2y3 0 - 2y1
-2, 2y, 0
r
be left invariant. In (4.21), we then have
y3 =03 =0813=0y =0y =0 (4.39)

‘and we obtain the maximal parabolic subalgebra P, (C) of

(2.20). This nine-dimensional algebra [not isomorphic to
P, (C)] can be interpreted as the restriction of the 14-di-
mensional “optical” subalgebra*’ opt(5,C) of o(7,C) to
8:(C):

P, (C) ~opt(5,C)ng,(C). (4.40)

(6) The space (000). We use the realization (4.10) and
choose

LI=(0000xyz). (441)

The condition ML,_CL; implies b =0, C=0. This
would provide us with a new 15-dimensional maximal para-
bolic subalgebras of o(7,C). Restricting to g,(C), we find
that C =0 implies d =0 and b=0 implies D=0 [see
(4.10)]. We do not obtain a new parabolic subalgebra of
&,(C) but simply reobtain the maximal reductive subalgebra
s1(3,0).

Thus, we find that g,(C) has precisely seven classes of
maximal subalgebras, summarized in Table II.

C. The maximal subalgebras of g5(R)

All maximal subalgebras of g5 (R) (and of any compact
Lie algebra) are reductive. We shall use the D(1,0) repre-
sentation, in which gT(R) is viewed as a subalgebra of 0(7)
and choose the metric to be given by K = I,. Thus we have
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TABLE I1. The complex Lie algebra g,(C) and its maximal subalgebras.

Complex (d¢)

or real (dg) Invariant subspace

Algebra dimension Basis and matrix realization and metric used
2(C) d; =14 (2.4) and (4.10), (4.14), (4.18)

or (4.21) with M, eC
g (R) dy =14 (3.8) and (4.14) with M, eR
&€(R) dy =14 (3.10) and (4.10), (4.18), or (4.21)

with M, eR
s1(2,C) dc=3 (2.16) and (4.28)
sl(3,C) de = (2.15) and (4.30) VI={000x000}, K=K
s1(2,C) ®s1(2,C) dc = (2.17) and (4.33) Vi={0000xyz}, K=1,
P, (C) de = (2.19) and (4.21) with(4.36) LT={000000x}, K=J,
P, (C) de =9 (2.20) and (4.21) with (4.39) LT={00000xy}, K=/,

the matrices M of (4.14) with all entries real. In other words
we have
(b—d)eR?, (4—A7),(C+ D)eR**,
ib+d)eR?, i(A+A47), i(C — D)eR>*.
The only subalgebra of g5 (R) irreducibly embedded in this
representation is su(2). A basis for this “irreducible” su(2)
algebra is given by

(4.42)

i(hg, + hg,)
0 0 0 0 —1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
R o o0 0 o0 o0 o]’
0 0 0 0 0 0 0
0 0 —1 0 0 0 0
Ea.+€'12
0 1 0 -2 0 0 0
—1 0 -1 0 0 0 0
0 1 0 0 0 0 0
=] 2 0 0 0 0 0 o |,
0 0 0 0 0 1 0
0 0 0 0 —1 0 1
0 0 0 0 0 —1 0
Nay, + N, (4.43)
0 0 0 0 0 —1 0
0 0 0 0 -1 0 —1
0 0 0 0 0 1 0
=1 o 0 0 0 -2 0 0
0 1 0 2 0 0 0
1 0 —1 0 0 0 0
0 1 0 0 0 0 0

The reducibly embedded maximal subalgebras are ob-
tained by requiring that either a one-dimensional or three-
dimensional vector space be left invariant (a two-dimension-
al space leads to a nonmaximal subalgebra). Since the metric
is positive definite, all vectors have positive length.
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A one-dimensional vector space can be chosentobe VT
=(000x000). Its invariance implies m =n=0 in
(4.14) and we obtain the algebra su(3) realized as

(A—A47)/2 0 i(4+47/2
M = 0 0 0 ,
—i(A+47/2 0 (A—-4T72
A—ATeR, i(A+A4AT)eR. (4.44)
We have in this realization
su(3) ~gS(R)NO(6). (4.45)

In terms of the canonical basis (3.8) we have
su(3) ~{ihy, ih, €0, M, €2, + 30,0
(4.46)

77:1. + 3a, ’€2a. + 3a, ’772a. + 3a, }

Finally, a three-dimensional invariant subspace can be
chosen to be ¥, of (4.32). Its invariance leads to an
su(2) @ su(2) subalgebra of the form (4.33) (with real en-
tries). We have

su(2) esu(2) ~gS(R)n[o(4) ®0(3)]. (4.47)

Equivalently, the su(2) @ su(2) subalgebra in the canonical
basis can be identified as

{iha, ’ea, ’ﬂa, } ® {i(ha, "'-2'ha2 )!eal + 2a, ’ﬂa, + 2a, } (448)

The results on the maximal subalgebras of g5 (R) are sum-
marized in Table III.

D. The maximal subalgebras of g¥(R)

Similarly as g5 (R) the noncompact real form g“(R)
has just one maximal subalgebra that is irreducibly embed-
ded in the seven-dimensional fundamental representation.
In this case, the subalgebra is su(1,1). To visualize it, let us
take the “antidiagonal” realization of 0(4,3), i.e., the metric
(4.9) and the realization (4.10) with all entries real. The
algebra su(1,1) is given by

ha. 4-ha2 =Xl +X21 ea, _+_ea2 =X12 +XOI’

e__a‘ +e_61 =X21+Xlo, (4.49)
i.e., its basis coincides with the basis (4.28) for s1(2,C), this
time considered over the field of real numbers.

Let us now turn to the reducible subalgebras. The metric

is indefinite, so a vector space is characterized by its dimen-
sion and signature, i.e., the number of mutually orthogonal
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TABLE III. The compact Lie algebra g¥(R) and its maximal subalgebras.

Real Invariant subspace
Algebra dimension Basis and matrix realization (metric I;)
gS(R) ~g,(C)NO(T) 14 (3.8) and (4.14) with M, eR
su(2) ~s1(2,C)rgf (R) 3 i(hy, + b, )i€q + €4, M0, + 7o,
and (4.43)
su(3) ~gS(R)no(6) 8 (4.46) and (4.44) Vi={000x000}
su(2) esu(2) 6 (4.48) and (4.33) with VIi={0000xyz}
~g5(R)nfo(4) @0(3)] Yoz R

basis vectors of positive ( -+ ), or negative ( — ), or zero
(0)length.Let us now run through all possibilities.

We start by considering nondegenerate invariant sub-
spaces and use the diagonal realization (4.18), with all en-

Ay eR, Trd=0, (4.50)

which is readily identified as sl(3,R). It coincides with
(2.15), viewed over R. We have

tries real and the metric (4.17). sl(3,R) ~gYC(R)NO(3,3). (4.51)
(1) (+). We choose this vector space to be V7, .
=(000x000) and obtain m; =n, =0, i.e., (2) (). We choose this vector space as
A—ATV2 0 —(4+4D/2 V1 =(000000x). (4.52)
M= 0 0 0 , Requiring MV_ C V_ we obtain a su(2,1) subalgebra,
—(Ad+4D/2 0 A—-AN/2 realized by the 0(4,2) matrices:
}
0 2(c3 ~ ¢gp) - 2¢, 2c, — N, —n, O
2(cy—¢3) 0 2c, 2c, —n, n, 0
2c, —2¢, 0 2(co+¢c3) —2n, —2n O
M= ~ 2¢, —2c, —2(co+¢3) 0 2n, 2n, O (4.53)
—n, —n, —2n, 2n, 0 —4c, O
—n, ny —2n, 2n, 4c, 0 0
0 0 0 0 0 0 0
Ll

(the ¢; and n; correspond to compact and noncompact gen-
erators, respectively). We have in this case

su(2,1) ~gY¥¢(R)nN0O(4,2). (4.54)
Equivalently, we could realize
su(2,1) ~gNS(R)nsu(4,2). (4.55)

In the canonical basis (3.10) for gY(R) one realization of
(4.55) is

sn(291 ) -~ {ihal ’ihaz 7€al v”’a, !ieal + 3a,?

iﬂa, + 3a, ’ifza, + 3a, ’i772a, + 3a, } (456)

3)(+ +), (= =), or (+ — ). Similarly as in the
case of g, (C) two-dimensional nondegenerate invariant sub-
spaces do not lead to maximal subalgebras.

(4) (— — — ). Wechoose the space in the form

VT _ _ =(0000xyz). 4.57)
The invariance of ¥” _ _ implies # =0, V=0 in (4.18)
and we are left with the maximal compact subalgebra
su(2) @su(2) of g2°(R). In this case we have

su(2) @su(2) ~gY“(R)no(4) @ o(3). (4.58)

The matrix realization is (4.33) (with y;,z;€R) and in terms
of the canonical basis this is conjugate to (3.10b).
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(5) (+ + — ). We choose the space in the form

vVl . _=(00xy002) (4.59)
and obtain
su(1,1) esu(l,l)~g,”°(R)no(2,2) ®0(2,1). (4.60)

In the canonical basis (3.10) we can identify this algebra,
e.g., as

su(1,1) esu(l,1)
~Aihg, e q, 10,3 @ (M2, 4 30, €20, + 30,1201, + 30, }-
(4.61)
(6) (+ — — ). Wechoose

VT __ =(000xyz0). (4.62)

The invariance of this subspace leads to an 0(2,1) subalge-
bra, contained in sl(3,R) and hence not maximal.

(7) (+ + +). The invariance of such a subspace
leads to an 0(3,1) subalgebra that is not maximal.

The remaining subspaces to be considered are degener-
ate, i.e. their bases contain at least one isotropic vector. In
order to lead to a maximal subalgebra such a space must be
completely isotropic. We shall consider these subspaces in"
the metric J, (4.19) and hence use the realization (4.21)
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TABLE 1V. The noncompact real Lie algebra gy(R) and its maximal subalgebras.

Real Invariant subspace
Algebra dimension Basis and matrix realization and metric used
£ C(R) ~g,(C)no(4,3) 14 (2.4) over R, or (3.10);(4.10)
~2,(C)rsu(4,3) (4.18) or (4.21) over R
su(1,1) ~sl(2,C)ngY(R) 3 (4.49)
sl(3,R) ~g3(R)no(3,3) 8 (2.15) over R and (4.50) v, =(000x000), K=1I,;,
su(2,1) ~gy(R)no(4.2) 8 (4.56) and (4.53) VT =(000000x), K=1,,
su(2) @su(2) 6 (3.10b) and (4.33) over R VY __ =(0000xy2z), K=1,
~8 (R)n[o(4) ®0(3)]
su(1,1) @su(l,1) 6 {ih,, ie,, jin, } + {i(2h,, + 3h,), VT ,_=(00xy00z), K=1I,
~2(R)N[0(2,2) ®0(2,1)] €30, 1 30, M2et, 4 30, 1
P, (R) ~gy“(R)rsim(3,2) 9 (3.18) and (4.21) with (4.36) over R LT=(000000x), K=/,
P, (R)~gy°(R)ropt(3,2) 9 (3.19) and (4.21) with (4.39) over R LI=(00000xy), K=/,

with all entries real. The three possible invariant subspaces
are (0), (00), and (000) and we choose them as in (4.35),
(4.38), and (4.41), respectively. The resulting maximal
parabolic subalgebras are exactly the same as in the case of
£,(C), however viewed over the field of real numbers R. To
be more specific, we have the following.

(8) The space (0) is left invariant by P, (R), i.e,
(2.19) viewed over the R. We have

P, (R) ~gy°(R)rsim(3,2), (4.63)

where sim(3,2) is the corresponding maximal parabolic sub-
algebra of 0(4,3). We recall that Sim(p,q) is the group of
linear transformations of the Minkowski space M(p,q) leav-
ing the metric ds*=dx} + - +dx} —dxl ,— -
—dx2,, invariant up to a constant scale factor:
(ds')? = ¢* ds?, AcR (see Ref. 47).

(9) The space (00) is left invariant by P, (R), ie.,
(2.20) over R. We have

P, (R) ~gy(R)nopt(3,2). (4.64)

We recall that Opt(p,q) is a subgroup of the group of confor-
mal transformations of the Minkowski space M(p,q), leav-
ing a lightlike vector space x — y, (x — y)? = 0, invariant.*’

(10) The space (000), as in the complex case, does not
lead to a new maximal subalgebra.

All relevant information on the subalgebras of g5 (R)
is summarized in Table IV. We see that results for parabolic
subalgebras are greatly simplified if the appropriate basis is
chosen, namely one in which the metric tensor is J; of
(4.19). The Iwasawa decomposition (3.11)—(3.13) was per-
formed for the su(4,3) metric (4.27) and 0(4,3) metric K ¢
(4.9). The subalgebra conjugate to P, (R) would be ob-
tained in that realization by requiring that the invariant iso-
tropic vector space be spanned by
LT = (0,1, —i,0,0,1, — i). The corresponding maximal
solvable algebra in this case is given by (3.12) and (3.13).

This completes the classification of the maximal subal-
gebras of g,(C), g5(R), and g5 “(R). The results are sum-
marized in Tables II, I1I, and IV.
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Eulerian parametrization of Wigner’s little groups and gauge transformations
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A set of rotations and Lorentz boosts is presented for studying the three-parameter little groups of
the Poincaré group. This set constitutes a Lorentz generalization of the Euler angles for the
description of classical rigid bodies. The concept of Lorentz-generalized Euler rotations is then
extended to the parametrization of the E(2)-like little group and the O(2,1)-like little group for
massless and imaginary-mass particles, respectively. It is shown that the E(2)-like little group for
massless particles is a limiting case of the O(3)-like or O(2,1)-like little group. A detailed analysis
is carried out for the two-component SL(2,¢) spinors. It is shown that the gauge degrees of
freedom associated with the translationlike transformation of the E(2)-like little group can be
traced to the SL(2,¢) spins that fail to align themselves to their respective momenta in the limit of

large momentum and/or vanishing mass.

I. INTRODUCTION

The Euler angles constitute a convenient parametriza-
tion of the three-dimensional rotation group. The Euler
kinematics consists of two rotations around the z axis with
one rotation around the y axis between them. The first ques-
tion we would like to address in this paper is what happens if
we add a Lorentz boost along the z direction to this tradition-
al procedure. Since the rotation around the z axis is not af-
fected by the boost along the same axis, we are asking what is
the Lorentz-generalized form of the rotation around the y
axis.

Since the publication of Wigner’s fundamental paper on
the Poincaré group in 1939,' a number of mathematical
techniques have been developed to deal with the three-pa-
rameter little groups that leave a given four-momentum in-
variant. Our second question is why we do not yet have a
standard set of transformations for Wigner’s little groups.

In this paper, we combine the first and second questions.
One of Wigner’s little groups is locally isomorphic to O(3).
Furthermore, the Euler angles constitute the natural lan-
guage for spinning tops in classical mechanics, while
Wigner’s little groups describe the internal space-time sym-
metries of relativistic particles, including spins. It is thus
quite natural for us to look for a possible Eulerian parametri-
zation of the three-parameter little groups.

As far as massive particles are concerned, the traditional
approach to this problem is to go to the Lorentz frame in
which the particle is at rest, and then perform rotations
there.! Then, its four-momentum is not affected, but the di-
rection of its spin becomes changed. This operation, how-
ever, is not possible for massless or imaginary-mass parti-
cles.

In order to construct a Lorentz kinematics that includes
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both massive and massless particles, we observe that the
transformation that changes a given four-momentum can be
carried out in many different ways. However, as Wigner ob-
served in 1957, the resulting spin orientation depends on the
way in which the transformation is performed and on the
mass of the particle.” For instance, when a particle with posi-
tive helicity is rotated, the helicity remains unchanged. As
far as the momentum is concerned, we can achieve the same
purpose by performing a simple boost. However, this boost
does not leave the helicity invariant. Furthermore, the
change in the direction of spin depends on the mass.

Indeed, the difference between the rotation and boost
was studied for massless photons by Kupersztych,* who ob-
served that this difference amounts to a gauge transforma-
tion. In this paper, we extend the kinematics of Kupersztych
to include massive and imaginary-mass particles. We shall
show that this extended kinematics constitutes the above-
mentioned Lorentz generalization of the Euler rotations.

We then study the extended Kupersztych kinematics
using the SL(2,¢) spinors. Among the four two-component
SL(2,c) spinors, two of them preserve the helicity under
boosts in the zero-mass limit, as was noted by Wigner in
1957. However, the remaining two do not preserve the heli-
city in the same limit. We show that these helicity nonpre-
serving spinors are responsible for gauge degrees of freedom
contained in the E(2)-like little group for photons.

In Sec. II, we work out the Kupersztych kinematics for
massive particles. It is pointed out that this new kinematics is
equivalent to the traditional O(3)-like kinematics in which
the particle is rotated in its rest frame. We show in Sec. 111
that the E(2)-like little group for massless particles is the
infinite-momentum/zero-mass limit of the O(3)-like little
group discussed in Sec. II. In Sec. IV, we discuss the continu-
ation of the transformation matrices for the O(3)-like little

© 1986 American Institute of Physics 2228
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FIG. 1. Lorentz-generalized Euler rotations. The traditional Euler parame-
trization consists of two rotations around the z axis with one rotation
around the y axis between them. If we add a Lorentz boost along the z axis,
the two rotations around the z axis are not affected. The rotation around the
y axis can be Lorentz-generalized in the following manner. If we boost the
system along the z direction, we are dealing with the system with a nonzero
four-momentum along the same direction. The four-momentum p can be
rotated around the y axis by angle 8. The same result can be achieved by
boost S ~'. However, these two transformations do not produce the same
effect on the spin. The most effective way of studying this difference is to
study the transformation SR, which leaves the initial four-momentum in-
variant.

group to the case of imaginary-mass particles.

In Sec. V, we study the transformation properties of the
four two-component spinors in the SL(2,c) regime. It is
shown that in the limit of infinite momentum and/or zero
mass, two of the SL(2,c) spinors preserve their respective
helicities, while the remaining two do not. We note, in Sec.
VI, that four-vectors can be constructed from the four two-
component SL(2,c) spinors. It is shown that the origin of the
gauge degrees of freedom for photons can be traced to the
spinors that refuse to align themselves to the momentum in
the infinite-momentum/zero-mass limit.

Il. KINEMATICS OF THE O(3)-LIKE LITTLE GROUP

The Euler rotation consists of a rotation around the y
axis preceded and followed by rotations around the z axis. If
the boost is made along the z axis, the rotations around the z
axis are not affected. In this section, we discuss a Lorentz
generalization of the rotation around the y axis and its rela-
tion to the O(3)-like little group for massive particles.

Let us start with a massive particle at rest whose four-
momentum is '

(0,0,0,m) . (n
We use the four-vector convention: x# = (x, y, 2, t). We can

boost the above four-momentum along the z direction with
velocity parameter a:

P=m(0,0,a/(1 —a®)"31/(1 —a?)'?). (2)

The four-by-four matrix which transforms the four-vector of
Eq. (1) to that of Eq. (2) is

1 0 0 0
0 1 0 0
A(a) - 0 o 1/(1_a2)1/2 a/(l_aZ)I/Z (3)

0 0 a/(1—a®"? 1/(1 —a*)'/?
Let us next rotate the four-vector of Eq. (2) using the
rotation matrix:

cos 8 0 sinf O
0 1 0 0
R(6) = —sin@ 0 cos® O B

0 0 0 1

This rotation does not alter the helicity of the particle.’

As is specified in Fig. 1, we can achieve the same result
on the four-momentum by applying a boost matrix. How-
ever, unlike the rotation of Eq. (4), this boost is not a heli-
city-preserving transformation.”? We can study the differ-
ence between these two transformations by taking the
product of the rotation and the inverse of the boost. This
inverse boost is illustrated in Fig. 1, and is represented by

1 + 2(sinh(A4 /2)cos(8/2)) O — (sinh(A /2))?sin @ — (sinh A)cos(8/2)
Se 0 1 0 5)
- — (sinh(A /2))?sin @ 0 1+ 2(sinh(4/2)sin(8/2))*  (sinhA)sin(6/2) |’
— (sinh A)cos(6 /2) 0 (sinh A)sin(8 /2) cosh A
where

A = 2[tanh~(a sin(6 /2))] .

(6)

This matrix depends on the rotation angle 8 and the velocity parameter @, and becomes an identity matrix when the particle is

at rest witha = 0.

Indeed, the rotation R (8) followed by the boost S(c,8) leaves the four-momentum p of Eq. (2) invariant:

P=D(a0)P,

where
D(a,0) =S(a,0)R(0) .

)

The multiplication of the two matrices is straightforward, and the result is
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1—(1=a®?2T 0 —u/T au/T
0 1 0 0
D(a,0) =
(@.6) /T 0 1+4+4#2T  aw?/2T (8)
au/T 0 —au?2T 14 au®/2T
¥
where convenient for studying the relation between the Euler an-

u= —2tan(6/2)) and T=1+ (1 —a?)(tan(6/2)).

This complicated expression leaves the four-momentum P of
Eq. (2) invariant. Indeed, if the particle is at rest with van-
ishing velocity parameter a, the above expression becomes a
rotation matrix. As the velocity parameter @ increases, this
D matrix performs a combination of rotation and boost, but
leaves the four-momentum invariant.

Let us approach this problem in the traditional frame-
work.! The above transformation is clearly an element of the
O(3)-like little group that leaves the four-momentum P in-
variant. Then we can boost the particle with its four-momen-
tum Pby 4 ! until the four-momentum becomes that of Eq.
(1), rotate it around the y axis, and then boost it by 4 until
the four-momentum becomes P of Eq. (2). It is appropriate
to call this rotation in the rest frame the Wigner rotation.*
The transformation of the O(3)-like little group constructed
in this manner should take the form

D(a,0) =A(a)W(6*)[4(a)]7", 9
where W is the Wigner rotation matrix
cos@* 0 sinfd* 0
0 1 0 0
W) =
6% —sind* 0 cosé* O (10)
0 0 0 1

We may call 8* the Wigner angle. The question then is
whether D of Eq. (9) is the same as D of Eq. (8). In order to
answer this question, we first take the trace of the expression
given in Eq. (9). The similarity transformation of Eq. (9)
assures us that the trace of Wbe equal to that of D. This leads
to

(11)

6% = cos— ( 1-d —az)(tan(0/2))2) .

1+ (1 —a®)(tan(8 /2))?
It is then a matter of matrix algebra to confirm that D of Eq.
(9) and that of Eq. (8) are identical.

We have plotted in Fig. 2 the Wigner rotation angle 6 *
as a function of the velocity parameter . Here 8 * becomes &
whena = 0, and remains approximately equal to 8 when a is
smaller than 0.4. Then 6 * vanishes when a—+1. Indeed, fora
given value of 6, it is possible to determine the value of 8 *
that is the rotation angle in the Lorentz frame in which the
particle is at rest.

The D matrix in the traditional form of Eq. (9) is well
known.! However, the fact that it can also be derived from
the closed-loop R(6) and S(«,8) suggests that it has a richer
content. For instance, the closed-loop kinematics does not
have to be unique. There is at least one other closed-loop
kinematics that leaves the four-momentum invariant.’ The
Kupersztych kinematics, which we are using in this paper, is
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gles and the parameters of the O(3)-like little group.

We have so far discussed the transformations in the x-z
plane. It is quite clear that the same analysis can be carried
out in the y-z plane or any other plane containing the z axis.
This means that we can perform rotations R,(¢#) and
R, (¢), respectively, before and after carrying out the trans-
formations in the x-z plane. Indeed, together with the veloc-
ity parameter «, the three parameters 6, ¢, and ¢ constitute
the Eulerian parametrization of the O(3)-like little group.

lil. E(2)-LIKE LITTLE GROUP FOR MASSLESS
PARTICLES

Let us study in this section the D matrix of Eq. (8) asthe
particle mass becomes vanishingly small, by taking the limit
of a—1. In this limit, the D matrix of Eq. (8) becomes

1 O —u u
0 1 0 0
= 12
D(u) u 0 1—u?/2 u*/2 (12)
u 0 —u¥/2 1+4+u?N2
9*
180°
I70°

150°

120°

90°

60°

30°

10°

0 02 04 06 08 1O a

FIG. 2. Wigner rotation angle versus lab-frame rotation angle. We have
plotted 8 * as a function of @ for various values of Susing Eq. (11). 6 = 6 *at
a = 0. * is nearly equal to 8 for moderate values of a, but it rapidly ap-
proaches 0 as a becomes 1.
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After losing the memory of how the zero-mass limit was
taken, it is impossible to transform this matrix into a rotation
matrix. There is no Lorentz frame in which the particle is at
rest. If we boost this expression along the z direction using
the boost matrix

1 0 0 0
0 1 0 0
B(p) = 0 0 1/(1—B)" B/(1—pBH2)
0 O B/(l_ﬂZ)l/Z 1/(1—ﬂ2)1/2
(13)
D remains form-invariant:
D'(u) =B(B)D(u)[B(B)]'=D(u'), (14)

where

w=11+B8)/1-p1"u.

The matrix of Eq. (12) is the case where the Kupersz-
tych kinematics is performed in the x-z plane. This kinema-

tics also can be performed in the y-z plane. Thus the most
general form for the D matrix is

1 0 —u u

0 1 —v v
D(u) = u v 1—@2+v»)2 W2 +v3)2?

u v — WP+ /2 14+ W +0v3)/2

(15)

The algebraic property of this expression has been discussed
extensively in the literature.'*~® If applied to the photon
four-potential, this matrix performs a gauge transforma-
tion.>” The reduction of the above matrix into the three-by-
three matrix representing a finite-dimensional representa-
tion of the two-dimensional Euclidean group has also been
discussed in the literature.®

Let us go back to Eq. (9). We have obtained the above
gauge transformation by boosting the rotation matrix W giv-
en in Eq. (10). This means that the Lorentz-boosted rota-
tion becomes a gauge transformation in the infinite-momen-
tum and/or zero-mass limit. This observation was made
earlier in terms of the group contraction of O(3) to E(2),%'°
which is a singular transformation. We are then led to the
question of how the method used in this section can be ana-
lytic, while the traditional method is singular.

The answer to this question is very simple. The group
contraction is a language of Lie groups.®!° The parameter
we use in this paper is not a parameter of the Lie group. If we
use 77 as the Lie-group parameter for boost along the z direc-
tion, it is related to @ by sinh 7 = a/(1 — @?)'/%. However,
this expression is singular at @ = + 1. Therefore, the con-
tinuation in & is not necessarily singular. We shall continue
the discussion of this limiting process in terms of the SL(2,¢)
spinors in Sec. VL.

IV. O(2,1)-LIKE LITTLE GROUP FOR IMAGINARY-MASS

PARTICLES

We are now interested in transformations that leave the
four-vector of the form

P=im(0,0,a/(a®>— 1)V31/(a* — H'?) (16)
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invariant, with a greater than 1. Although particles with
imaginary mass are not observed in the real world, the trans-
formation group that leaves the above four-momentum in-
variant is locally isomorphic to O(2,1) and plays a pivotal
role in studying noncompact groups and their applications
in physics. This group has been discussed extensively in the
literature.'!

We are interested here in the question of whether the D
matrix constructed in Secs. IT and III can be analytically
continued to a > 1. Indeed, we can perform the rotation and
boost of Fig. 1 to obtain the D matrix of the form given in Eq.
(8), if @ is smaller than @, where

a2 = [1 + (tan(6 /2))*1/(tan(6 /2))?. an

As a increases, some elements of the D matrix become singu-
lar when T vanishes or a = a,. Mathematically, this is a
simple pole that can be avoided either clockwise or counter-
clockwise. However, the physics of this continuation process
requires a more careful investigation.

One way to study the D transformation more effectively
is to boost the spacelike four-vector of Eq. (16) along the z
direction to a simpler vector

(0,0,im,0) , (18)

using the boost matrix of Eq. (13) with the boost parameter
B = 1/a. Consequently, the D matrix is a Lorentz-boosted
form of a simpler matrix F:

D=B(1/a)F(A)[B(1/a)]". (19)

Here F is a boost matrix along the x direction:

cosh A 0 0 sinhA
0 1 0 0
FO=t v o1 o ) (20)
sinhA O O coshA
where
2 1/2
tanh 4 — — 2@ =1 tan(6/2)
1+ (a®—1) (tan(8 /2))? o
2 2
cosh 4 = L (@ —1) (tan(6/2))

1— (a?—1) (tan(6/2))

If we add the rotational degree of freedom around the z axis,
the above result is perfectly consistent with Wigner’s origi-
nal observation that the little group for imaginary-mass par-
ticles is locally isomorphic to O(2,1).!

We have observed earlier that the D matrix of Eq. (8)
can be analytically continued from a =1 to 1 <@ <a,. At
a = a,, some of its elements are singular. If & > @, cosh 4 in
Egs. (20) and (21) become negative, and this is not accepta-
ble.

One way to deal with this problem is to take advantage
of the fact that the expression for tanh 4 in Eq. (21) is never
singular for real @ greater than 1. This is possible if we
change the signs of both sinh A and cosh A when we jump
from a < a, to a > . Indeed, the continuation is possible if
it is accompanied by the reflection of x and  coordinates.
After taking into account the reflection of the x and ¢ coordi-
nates, we can construct the D matrix by boosting F of Eq.
(20). The expression for the D matrix for a > a, becomes
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1-2/T 0 u/T —au/T
—w/T 0 142/[(a*—1)T) 2a/[(a* - 1)T] (22)
—au/T 0 —=2a/[(@*—1)T] 1-=2a%*(a*-1)T]
I
This expression cannot be used for the a—1 limit, butcanbe  corresponding to W of Eq. (10) is
used for the a— oo limit. In the limit a— 0, P of Eq. (16) cos(8*/2) —sin(0*/2)
becomes identical to Eq. (18), and the above expression be- W(o*) = ( sin(6*/2)  cos(6*/2) )’ (25)

comes an identity matrix. As for the question of whether D of
Eq. (22) is an analytic continuation of Eq. (8), the answer is
“no,” because the transition from Eq. (22) to Eq. (8) re-
quires the reflection of the x and ¢ axes.

V. PARTICLES WITH SPIN-}

The purpose of this section is to study the D kinematics
of spin-} particles within the framework of SL(2,c). Let us
study the Lie algebra of SL(2,c) (see Refs. 12 and 13):

[S,',Agj] = ie,ijk N [SI’K'J] = ieqk Kk ’
(KoK} = —teS

where S; and K, are the generators of rotations and boosts,
respectively. The above commutation relations are not in-
variant under the sign change in §;, but they remain invar-
iant under the sign change in K. For this reason, while the
generators of rotations are.S; = 10, the boost generators can
take two different signs K; = ( + ) (i/2)0;.

Let us start with a massive particle at rest, and the usual
normalized Pauli spinors y , and y _ for the spin in the posi-
tive and negative z directions, respectively. If we take into
account Lorentz boosts, there are four spinors. We shall use
the notation y . to which the boost generators K; = (i/2)0,
are applicable, and y . to which K; = — (i/2)0; are appli-
cable. There are therefore four independent SL(2,c) spin-
ors.'?!3 In the conventional four-component Dirac equa-
tion, only two of them are independent, because the Dirac
equation relates the dotted spinors to the undotted counter-
parts. However, the recent development in supersymmetric
theories, '* as well as some of more traditional approaches, '’
indicates that both physics and mathematics become richer
in the world where all four of SL(2,¢) spinors are indepen-
dent. In the Appendix, we examine the nature of the restric-
tion the Dirac equation imposes on the four SL(2,¢) spinors.

As Wigner did in 1957,? we start with a massive particle
whose spin is initially along the direction of the momentum.
The boost matrix, which brings the SL(2,¢) spinors from the
zero-momentum state to that of p, is

A (x )( d)
_(((1 +a)/(1Fa))* 0 )
B 0 (I1Fa)/(+a))’*)’
(24)
where the superscripts ( + ) and ( — ) are applicable to the
undotted and dotted spinors, respectively. In the Lorentz

frame in which the particle is at rest, there is only one rota-
tion applicable to both sets of spinors. The rotation matrix

(23)
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where the rotation angle @ * is given in Eq. (11).

Using the formula of Eq. (9), we can calculate the D
matrix for the SL(2,¢) spinors. The D matrix applicable to
the undotted spinors is

T
-~ (1 —a)u/2yT

(1+a)u/2yT

WWT ’
(26)

where Tand u are given in Eq. (8). The D matrix applicable
to the dotted spinors is

INT
— (1 +a)u/2{T

D(+)(a’0) — (

(1 —a)u/2yT
INT '
(27)
We can obtain D~ from D *’ by changing the sign of a.
Both D) and D~ become W of Eq. (25) whena = 0.

If the D transformation is applied to the y, and y .,
spinors,

Xe =D, /‘../i =D(_)i’d: ’ (28)
the angle between the momentum and the directions of the
spins represented by y_ and y_ is

0' =tan"'((1 — a)tan(6/2)), 29
which becomes zero as a—1. On the other hand, in the case
of y_ and y_, the angle becomes

8" =tan"'((1 4+ a)tan(8/2)).

D'(a,0) = (

(30)

a=0 Momentum a=|

X

»
¥
®

Xy

XZ

Boost

FIG. 3. Lorentz-boosted rotations of the four SL(2,¢) spinors, If the parti-
cle velocity is zero, all the spinors rotate like the Pauli spinors. As the parti-
cle speed approaches that of light, two of the spins line up with the momen-
tum, while the remaining two refuse to do so. Those spinors that line up are
gauge-invariant spinors. Those that do not are not gauge invariant, and they
form the origin of the gauge degrees of freedom for photon four-potentials.
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In the limit of @—1, this angle becomes @,, where
6, = tan~'(2(tan(6 /2))) . (31)

Indeed, the spins represented by y _ and y, refuse to align
themselves with the momentum. This result is illustrated in
Fig. 3.

There are D transformations for the a > 1 case. In the
special Lorentz frame in which the four-momentum takes
theform of Eq. (18), the D transformation becomes that of a

i |

(@®—1)"?(tan(0 /)N =T

D(j:)(ao):( :t((a:tl)/(a:Fl))l/z/ -T
T\t (@F /@t D)V =T (az—l)”z(tan(O/Z))/\/———T)

The above expression becomes an identity matrix when
a—» w0, as is expected from thie result of Sec. IV. The D matri-
ces of Eq. (33) are not analytic continuations of their coun-
terparts given in Eqgs. (26) and (27), because the continu-
ation procedure, which we adopted in Sec. IV and used in
this section, involves reflections in the x and ¢ coordinates.

VI. GAUGE TRANSFORMATIONS IN TERMS OF
ROTATIONS OF SPINORS

It is clear from the discussions of Secs. III-V that the
limit @—1 can be defined from both directions, namely from
a < 1and froma > 1. In the limit @—1, D’ and D~ of Eq.
(26) and Eq. (27) become

1 u 1 0)
+) — (=) — .
b '(o 1)’ b (—u 1

After going through the same procedure as that from Eq.
(12) to Eq. (15), we arrive at the gauge transformation ma-
trices®

D“’(u,v)=( . ] 0),
~u—gp 1

applicable to the SL.(2,¢) spinors, where the D ¢ * are appli-
cable to undotted and dotted spinors, respectively.

The SL(2,c) spinors are gauge invariant in the sense
that

(34)

(35)

DPuvyy,=x+,» Dup)y_=y_. (36)

On the other hand, the SL(2,c) spinors are gauge dependent
in the sense that

DN up)y_=y_ + (u—iy,,

DTN up)y, =y, —(u+iv)y_.
The gauge-invariant spinors of Eq. (36) appear as polarized
neutrinos in the real world. However, where do the above
gauge-dependent spinors stand in the physics of spin-§ parti-
cles? Are they really responsible for the gauge dependence of
electromagnetic four-potentials when we construct a four-
vector by taking a bilinear combination of spinors?

The relation between the SL(2,¢) spinors and the four-
vectors has been discussed for massive particles. However, it
is not yet known.whether the same holds true for the mass-
less case. The centralissue is again the gauge transformation.

37
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pure boost along the x axis:
(£307) — cosh(A /2) j;sinh(/l/2))
Frd) (j;sinh(/i /2)  cosh(A/72) /’ (32)

where A is given in Eq. (21).

For a < a,, we can continuetouse D+ and D~ given
in Eq. (26) and Eq. (27), respectively. However, for a > a,,
the D matrix is

(33)

|

The four-potentials are gauge dependent, while the spinors
allowed in the Dirac equation are gauge invariant. There-
fore, it is not possible to construct four-potentials from the
Dirac spinors.

On the other hand, there are gauge-dependent SL(2,c)
spinors, which are given in Eq. (37). They disappear from
the Dirac spinors because N_ vanishes in the a—1 limit.
However, these spinors can still play an important role if
they are multiplied by N, which neutralizes N_. Indeed,
we can construct unit vectors in the Minkowskian space by
taking the direct products of two SL(2,c) spinors

— X+ X+ = (1,i,0,0), XX-= (1, —i0,0),

X+x_=(0,0,1,1), XX+ ='(0’011,—1)° )
These unit vectors in one Lorentz frame are not the unit
vectors in other frames. For instance, if we boost a massive
particle initially at rest along the z direction, [y, ) and
|¥_x—) remain invariant. However, |y, y_) and [y_y..)
acquire the constant factors [(1+a)/(1 —a)]"? and
[(1 —a)/(1 + a)]""? respectively. We can therefore drop
|y —x +) when we go through the renormalization process of
replacing the coefficient [ (1 + a)/(1 — a)]"/?by 1 for par-
ticles moving with the speed of light.

The D(u,v) matrix for the above spinor combinations
should take the form

D(u,w) =D (uw)D 7 (up), (39)
where D *) and D~ are applicable to the first and second
spinors of Eq. (38), respectively. Then

D(up)(— |X+,%+>) = |X+/1.’+) + (e + iv)|X+,:(—) ’

Dun)y_y_)=ly_x_)+ @—)ly,y_), (40)

D(uv) |y x-) = lx+x-)-

The first two equations of the above expression correspond
to the gauge transformations on the photon polarization vec-
tors. The third equation describes the effect of the D trans-
formation on the four-momentum, confirming the fact that
D(u,v) is an element of the little group. The above operation
is identical to that of the four-by-four D matrix of Eq. (15)
on photon polarization vectors.

(38)

Vii. CONCLUDING REMARKS
We studied in this paper Wigner’s little groups by con-
structing a Lorentz kinematics that leaves the four-momen-
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. I
Massive Massless
Slow between Fast
Energy 2 Einstein's
E= 5 E=p
Momentum m E=vMm24+p2
Spin, Gauge S3 Wigner’s S3
Helicity S S, I Little Group lGouge Trans.

FIG. 4. Significance of the concept of Wigner’s little groups. The beauty of
Einstein’s special relativity is that the energy-momentum relation for mas-
sive and slow particles and that for massless particles can be unified.
Wigner’s concept of the little groups unifies the internal space-time symme-
tries of massive and massless particles.

tum of a particle invariant. This kinematics consists of one
rotation followed by one boost. Although the net transfor-
mation leaves the four-momentum invariant, the particle
spin does not remain unchanged. The departure from the
original spin orientation is studied in detail.

For a massive particle, this departure can be interpreted
as a rotation in the Lorentz frame in which the particle is at
rest. For massless particles with spin-1, the net result is a
gauge transformation. For a spin-} particle, there are four
independent spinors as the Dirac equation indicates. As the
particle mass approaches zero, the spin orientations of two of
the spinors remain invariant. However, the remaining two
spinors do not. It is shown that this noninvariance is the
cause of the gauge degrees of freedom massless particles with
spin-1.

In 1957,> Wigner considered the possibility of unifying
the internal space-time symmetries of massive and massless
particles by noting the difference between rotations and
boosts. Wigner considered the scheme of obtaining the inter-
nal symmetry by taking the massless limit of the internal
space-time symmetry groups for massive particles. In the
present paper, we have added the gauge degrees of freedom
and spinors that refuse to align themselves to the momentum
in the massless limit. The result of the present paper can be
summarized in Fig. 4. While Einstein’s special relativity uni-
fies the energy-momentum relations for massive and mass-
less particles, Wigner’s little group unifies the internal space-
time symmetries of massive and massless particles.

ACKNOWLEDGMENTS

We are grateful to Professor Eugene P. Wigner for a
very illuminating discussion on his 1957 paper? on transfor-
mations that preserve helicity and those that do not. We
would like to thank Dr. Avi I. Hauser for explaining to us the
content of his paper on possible imaginary-mass neutrinos.'*

APPENDIX: SL(2,c) SPINORS IN THE DIRAC SPINORS

We pointed out in Sec. V that the four-component Dirac
equation puts a restriction on the SL(2,c) spinors. Let us see
how this restriction manifests itself in the limit procedure of
a—1. In the Weyl representation of the Dirac equation, the
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rotation and boost generators take the form

S_(;o,. 0) X ((z'/zm 0 ) Al
N0 /)7 7T L o _ma) AP

These generators accommodate both signs of the boost gen-
erators for the SL(2,c) spinors. In this representation, ¥ is
diagonal, and its eigenvalue determines the sign of the boost
generators.

In the Weyl representation, the D matrix should take the
form

(+) ( u,v ) 0 )

0 D)/’
applicable to the Dirac spinors, which, for the particle mov-
ing along the z direction with four-momentum p, are

Ny +N_y_
U( )=( N ) V( )=( : ) (A3)
P +N_x. P Nox_

where the + and — signs in the above expression specify
positive and negative energy states, respectively. Here NV
and N_ are the normalization constants, and

N, =((1+a)/(1Fa). (Ad)

As the momentum/mass becomes very large, N_/N
becomeés very small. From Egs. (36) and (37), we can see
that the large components are gauge invariant while the
small components are gauge dependent. The gauge-depen-
dent component of the Dirac spinor disappears in the a—1
limit; the Dirac equation becomes a pair of the Weyl equa-
tions. If we renormalize the Dirac spinors of Eq. (A3) by
dividing them by ¥, they become

X+ 0

Ulp) = » V(p) = )

0 -
For ys = + 1, respectively. The gauge-dependent spinors
disappear in the large-momentum/zero-mass limit. This is
precisely why we do not talk about gauge transformations on
neutrinos in the two-component neutrino theory.

The important point is that we can obtain the above
decoupled form of spinors immediately from the most gen-
eral form of spinors by imposing the gauge invariance. This
means that the requirement of gauge invariance is equivalent
to s = 1, as was suspected in Ref. 8.

D(up) = (D (A2)
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Generating relations for reducing matrices. ll. Corepresentations
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The auxiliary group approach developed in Paper 1 [R. Dirl, P. Kasperkovitz, M. I. Aroyo, J. N.
Kotzev, and M. Angelova-Tjurkedjieva, J. Math. Phys. 27, 37 (1986) ] is generalized for the case
of corepresentations of antiunitary groups. It allows us to reduce the multiplicity problem and to
derive consistent generating relations for the elements of the reducing matrices for coreps. Two
examples are worked out to illustrate the general scheme.

1. INTRODUCTION

In our recent paper' hereafter referred to as I (see also
Refs. 2 and 3), we discussed the group-theoretical aspects of
one of the standard problems in the theory of representations
(reps) and its applications in physics: the determination of a
reducing matrix S (see Refs. 4-7), which transforms a re-
ducible unitary matrix rep R of a group G'into a direct sum of
irreducible reps (irreps) T'*,

STR(g)S = @ (efXT*(8)), g<G.

Here e} is an identity matrix whose dimension equals the
multiplicity of I'* in R, i.e., dim ef = m, . According to its
definition the columns of S are labeled by the triple index
(k,m,a), where k is the label of theirrep T'*, m ( = 1,...,m;.)
is the multiplicity index, and @ = 1,...,n, = dim I'* is the
row index of I'*. The square reducing matrix S can be split
into rectangular submatrices S*™ consisting of ng
( = dim R) rows and n, columns that satisfy

R(g)S*k™ =S5*"T*(g), geG.

For fixed T'* the set of blocks S*™, m = 1,...,m,, may be
considered as the basis of a linear space of dimension m,,.
This space becomes a unitary one if a scalar product is de-
fined. To arrive at a unitary matrix S we assume

(S*m8*m"y = trace(S*™IS k")
= nk(sm’m, .

One basic problem in calculating reducing matrices is
related to their nonuniqueness. This comes from the fact that
every matrix S is unique only up to (i) left multiplication by
unitary matrices belonging to the commuting algebra of the
reducible representation R, and (ii) right multiplication by
unitary matrices M belonging to the commuting algebra of
the reduced representation @, (efXI*). Because of
Schur’s lemma these matrices have to be of the form

M=o M=o (L*XI".
k k

Here I* is an identity matrix with dim 7 * = dim I'’* and L *
is an arbitrary unitary matrix whose matrix elements are
labeled by the multiplicity index, m = 1,...,m, . The matrix
L* belongs to the commuting algebra of the rep (eR X I'*).
Usually this arbitrariness inherent to the determination
of S is utilized to construct a reducing matrix whose ele-
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ments satisfy certain symmetry relations (e.g., symmetry
under complex conjugation, permutations, associations of
reps by Kronecker multiplication of a given I'* with one-
dimensional irreps '/ of G, etc.). However, in most of the
existing approaches to the multiplicity problem these addi-
tional symmetry requirements on the reducing matrix are
applied separately and independently. Consequently the
multiplicity problem remains partially unsolved in many
cases where the combination of all operators would lead to a
complete solution.

To gain a maximum of symmetry and generating rela-
tions in a systematic way we introduce an auxiliary group
QREP_This group consists of bijective mappings of the set of
all unitary matrix representations of G onto itself. Three dif-
ferent types of mapping are considered: (i) associations of
representations, i.e., multiplication of representations with
one-dimensional ones; (ii) automorphisms of representa-
tions, i.e., mappings of representations induced by automor-
phisms of the group G; and (iii) complex conjugation of
representations. These operations are combined to form the
auxiliary group Q®F? . For a given rep R we find a subgroup
Q of QREP that leaves R invariant up to a similarity transfor-
mation and a subgroup @* of Q leaving I'* (which occurs in
the reduced R ) invariant up to unitary equivalence. Further-
more we define operator groups O that are associated with
Q* and act only on the multiplicity index m of $*™:

TS "= 3 Apm(S*™, ¢eQ% T(g)eQ*.

m =1

The space spanned by the blocks S*™, m = 1,...,m,,
turns out to be a carrier space for a corepresentation (corep)
A of the auxiliary group Q *if at least one of the operations of
Q" contains the complex conjugation. In all such cases 0%
contains antiunitary operators and the subspaces invariant
under 0 are carrier spaces for coreps that are in general
reducible. (The definition and the basic properties of coreps
are discussed in Sec. II A. For further details see Refs. 4 and
7-10.) Therefore the resolution of the multiplicity problem
is related to the reduction of the corep A into irreducible
constituents: if A decomposes into inequivalent irreducible
coreps the multiplicity problem is resolved, but if A contains
an irreducible corep at least twice the mul’aphclty problem is
solved only in part.
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The next step of our approach consists of defining
“partner blocks” %™ associated to the blocks $*™ by gen-
erating relations of the form

Skm=U(g)s* ™.

Here we assumed that I'*" = ¢'T"* £ T'*, where the operation
q' is a coset representative of Q with respect to Q *and U(q')
the corresponding similarity transformation of R.

Like other approaches our procedure is based on the
transfer of the transformation properties of the involved reps
on the reducing matrices. However, our scheme is more sys-
tematic, as the various operations are closed into a group,
and their combined application is often more effective than
considering them separately. Our approach helps (i) to re-
duce (sometimes even to solve completely) the problems
related to the multiplicity of I'* in R; and (ii) to determine
generating relations for the sub-blocks § %™ of the reducing
matrix S, which are consistent in that the effect of any se-
quence of the above-mentioned operations is defined and cal-
culable. The details, the corresponding references, and three
examples are given in L.

The determination of reducing matrices is the main
mathematical problem in many physical applications of
group theory and in particular in the well-known Wigner—
Racah algebra or the method of the irreducible tensor sets
(see, e.g., Refs. 4-6). This powerful technique of modern
quantum mechanics is based on the theory of linear reps of
groups of unitary operators. However, already in the 1930’s
Wigner had shown that in the physics of systems with mag-
netic symmetry the transformations containing the antiuni-
tary time reversal operator play an important part. The cor-
responding antiunitary groups and their corepresentations
(coreps) determine the transformation properties of the
wave functions and operators. These specific properties also
allow us to predict, for instance, degeneracies of energy lev-
els and selection rules that can differ from those following
from ordinary representation theory. A

It is well known that the main theorems of the rep the-
ory are essentially changed in the construction of the corep
theory.”"'* In the last decade this has led to intensive work
on the development of the Wigner-Racah algebra for sys-
tems with magnetic symmetry on the base of the theory of
the Wigner coreps.'®"”

In this paper it is shown that the auxiliary group ap-
proach initially introduced for linear reps in I can readily be
generalized to coreps. The peculiar properties of the antiuni-
tary groups lead to a number of new symmetry properties for
the elements of the reducing matrix S.

The paper is organized as follows: In Sec. II we give the
scheme of the generalized auxiliary group approach for the
corep case. The generating relations and uniqueness proper-
ties of the reducing matrix for coreps are discussed in Sec.
III. Two examples of the application of the method for an-
tiunitary groups for coreps are given in Sec. IV.

il. AUXILIARY GROUP APPROACH TO COREPS
A. Preliminary

For a better understanding of the peculiarities of the
auxiliary group approach for coreps it is useful to start the
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discussion with a brief review of the main principles of the
corep theory (a more detailed presentation can be found in
Refs. 4 and 7-10).

Consider a Hilbert space and a group G(H) of unitary/
antiunitary operators acting on its elements. Here H is the
subgroup of unitary operators of index 2. If g, is an arbitrary
but fixed antiunitary element of G(H), then one has the co-
set decomposition

G(H) =H + Ha, . 2.1
If we choose an orthonormal bases of the Hilbert space then
the action of an operator geG(H) onto this basis is given by
an unitary matrix D(g). Because of the multiplication law of
the unitary/antiunitary elements of G(H) the correspond-
ing matrices have to satisfy the following composition law
(“comultiplication”):

D(g,)D(g;)® =D(g,8,) ,
where

2.2)

D(g,)® = [D(gz), ii? & unita}ry:
D(g,)*, iff g, antiunitary.
(The definition (2.3) is identical to
M, iff g unitary,

M= {M *, iff ¢ antiunitary
[Eq. (2.21) in I]. Nevertheless we will use both of them in
order to distinguish better the origin of the complex conjuga-
tion in the expression of the type (1.3) or (2.21) of I.) Ac-
cording to Wigner* the set

D =1{D(g)|geG(H)}, (24)

endowed with a multiplication law (2.2), is called a corepre-
sentation of G(H), or “corep” for short.*’

If we change the basis by a unitary transformation ¥, we
get an equivalent corep D, which is related to D by

D) =V'D'(g)V®, geG(H). (2.5)
If the corep D is irreducible it will be denoted by D* in the
following. Each irreducible corep (coirrep) D* of G(H) is
uniquely determined by the irreps I'* of the unitary sub-
group H. According to the restriction of D *|H three types of
coirreps have to be distinguished:

typel: D*| H~T*,

typelI.: D¥\H~T*e@T*,

type IIl: D* H ~T*oT*,
 where I*(g) =T* (a5 'gay)*.

(2.3)

(2.6)

These three types of coirreps are analogous to real, sym-
plectic, and complex reps, respectively.

Of particular importance is also the generalization of
the Schur lemma.”!*!6 Every matrix M*, which commutes
with all matrices D* (g), geG(H), of a coirrep D* (in accor-
dance with the comultiplication rule),

M*D*(g) =D*()M*®, geG(H), (2.7)
is in general not a multiple of the identity matrix. The corre-
sponding commutator algebra is a division algebra over R
and it is isomorphic to the real numbers R, the quaternions
Q, and the complex numbers C for the coreps of type I, II,
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and III, respectively.'*>'*!517 This peculiarity of the general-
ized Schur lemma is central for the application of the corep
theory.

This brief report on the corep theory will be sufficient
for the generalization of the auxiliary group approach.

Following closely the general scheme developed in I, we
will now discuss its modification for the corep case of antiun-
itary groups.

B. The auxiliary group Q°° for coreps

The set of all bijective mappings of the coreps D of G(H)
onto itself, generated by the operations “association,” “auto-
morphism,” and “complex conjugation,” form the auxiliary

group Q “© with the structure’

Q= ASS& (AUT®CON),
where & means semidirect product.

Similar to the case of reps the association of a given
corep D with the Kronecker product D/ X D s defined by™**

(a;D)(g) =D/(g) XD(g), geG(H), dimD/=1.

2.9)
The corresponding operators form an Abelian subgroup
ASS of Q€°.

The corep generalization of the subgroup CON, gener-
ated by the opérator ¢ of complex conjugation
CON = (c)==C,, is also trivial,
D(g)*,
D(g), ¢g=c*=e,

(2.8)

¢, =c,

(e,D)(g) =D(g)" = { geG(H) .

(2.10)

The differences between QREP and Q<° are mainly
manifested in the determination of the subgroup
AUTCQ°, consisting of bijective mappings of the coreps
of G(H), generated by its automorphisms 8: G(H)—G(H):

(b,D)(g) =D (B '(g)), geG(H). (2.11)

There are two specific features that should be empha-
sized. First, the automorphism group Aut G of a given ab-
stract group G is the set of all bijective mappings of G onto G
that preserve the multiplication law. For the case of an an-
tiunitary group G(H) we define its automorphism group
Aut G(H) as the set of mappings that preserve the multipli-
cation law and leave the unitary subgroup H invariant. That
is, if G~G(H), then

Aut G(H)
= {B|BeAut G, G~G(H), B(H) =H}CAutG.

(2.12)

Second, for ordinary reps all inner automorphisms of G do
not permute the classes of conjugated elements and therefore
are considered as trivial transformations in Aut C QR®P [see
the comments before Eq. (2.2) in I]. For coreps the same
statement is only valid for the inner automorphisms of the
unitary subgroup H<\G(H). Hence in AUT it is necessary to
include also those inner automorphism of G(H) that are
outer in respect to H]G(H). They can lead to additional
symmetry relations and give more information about the
structure of S. The action of the general element
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Q = (a;,b;,¢,)€Q © on the coreps is determined as in Eq.
(2.5)of I:

(gD)(g) = (a;(bi (¢,D)))(8) =D/ (XD B (&) .
(2.13)

This is in accordance with the semidirect multiplication
rules

gq=(a';b'c’)(abc) = (a'a®;b'bc'c) , (2.14)
where
a’ = (b'cab’c’y '=b'(cac’ b, (2.15)

Obviously if ca = ac [ which is the case in all gray groups and
black and white groups with a,€Z (G(H))] and if ba = ab
[e.g., if there is only one nontrivial one-dimensional coirrep
in G(H)], then the automorphism (2.15) is trivial and the
semidirect product in (2.14) and (2.8) becomes a direct pro-
duct (see Sec. III B).

C. The groups Q and Q" for coreps

Let R(g), geG(H), be a reducible corep that is decom-
posed into irreducible components D* by a unitary transfor-
mation of the type (1.5),

S*R(g)S‘g’=f(e£><D"(g)), geG(H) . (2.16)

Here the coirrep D* appears m, = (R /D*) times in identi-
cal form, i.e., e} is an identity matrix with dim eX = m, .

The groups Q, O and the corresponding Q-equivalent
classes [k] are determined as in I, just by substituting “rep”
with “corep” and QRFP with Q°:

0 =1{q|gR~R, qgeQ°°}CcQ°, (2.17)
Q*={ql¢D*~D* qeQCQ°°}CQ, (2.18)
[k]={qD*|qeQ} = {¢{* D*¢{¥ D*..}. (2.19)

Here the elements g{* are suitable coset representatives of
Q" in Q. For convenience we adopt the following conven-
tion:

D 1 — qik) D k’

for D'e[k]. (2.20)

D. The groups @ and @ for coreps

If geQ, there exists a set of unitary matrices U(g), which
relate the equivalent coreps ¢R and R in accordance with Eq.
(2.5),

(qR)(g) = U@)'R(U(q)®, ¢eQ. (2.21)

The appearance of U(q)® = U(q)* for g = antiunitary,
does not change anything in the rest of Sec. IID in L. In
particular, applying the comultiplication rule, Eq. (2.20) of
I, we determine the group Q, generated by the matrices U(gq)
for a reducible corep R:

0= (U(@), q¢eQ. (2.22)
Analogously we define, for geQ*,
(¢D*)(8) =U ) D* (@)U )®, ¢eQ*,  (223)
0 =(UM4g)), ¢eQ*. (2.24)
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Hl. THE OPERATOR GROUP @* AND THE
TRANSFORMATION PROPERTIES OF THE REDUCING
MATRIX

Following the procedure developed in I we now define
the operator group @ and investigate the transformation
properties of the reducing matrix S. For coreps there are
some essential peculiarities, which should be discussed in
detail.

The reducing matrix S was defined as a unitary matrix,
which reduced a corep R into a block-diagonal form (2.16).
For our further discussion it will be more convenient to split
the reducing matrix S into rectangular blocks S* consisting
of all the columns of S, which belong to the coirrep D*,

(S*)IR(g)S*® = (eRXD*(g)), geG(H) . (3.1)
Acting with the operators geQ* CQ on both sides of
(3.1), we get
(@S*)'(gR) (g) (¢gS")®
=(efX(gD*)(g)), geG(H), qeQ*. (3.2)
From the equivalence of the coreps gR~R [(2.21)]
and gD *~D* [(2.23)] follows the relation
(qS")'fU(g)*R(g) U(q)(g)(qS")(g)
= (XU ) D @)U () ®). (3.3)

Using (3.1) and the properties of the direct product of ma-
trices, Eq. (3.3) can be transformed into the form

{(S*)'U(q) (gS*)eR X U*(q)) HeR X D*(g))
= (ERXD (N (S)'U(g) (gS )R X Uk()H}®,
(34)

where the reducible coreps of both sides of (3.4) are identi-
cal (not only equivalent).
The matrix in the curly brackets in Eq. (3.4),

Mk=M*q) = (S*)*U(q)(gS*) ]
X(eRUM)*, ¢eQ*, (3.5)

is a unitary matrix with dim M * = m, dim D*, and it com-
mutes with the reducible corep (ex X D *). Due to the gener-
alized Schur lemma for reducible coreps (see, for example,
Ref. 14) the matrices M* form a commutator algebra of the
corep (eR X D*). The structure of this algebra is uniquely
determined by the Wigner type of the coirrep D*.

As is shown in Ref. 14, the matrices M* can be factor-
ized into a direct product of two submatrices,

M*(q) =L*(q)xI* qeQ*, (3.6)

if the coirreps are in the Wigner canonical form. Here I* is
an identity matrix with dim 7* = dim I'¥, where I'* is the
corresponding unitary subgroup irrep (2.6). The matrix
L%, is an unitary matrix whose dimension equals

= (R |T¥), the multiplicity of I'* in the restriction R lHi

Z11 Zy3 Zym,
L= | 22 Fame , where z,, =
Zpkt Zmk2 t Zmmg
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Obviously the matrices L* (g) belong to an algebra a(L* ),
which is isomorphic to the commutator algebra a(M* ) of
the reducible corep (ef XD*), i.e., a(L*)~a(M*). We
shall identify a(L *) with a(M*).

For coirreps D* in the Wigner canonical form it is more
convenient to split the row and column indices of D* (g) into
pairs of indices, aa, where @ = 1,...,dim I'* and @ = 1,2 dis-
tinguishes the submatrices I'* in D * for coirreps of type II
and type II1, and @ = 1 for type I [see Eq. (2.6)].

In this notation the matrix elements of M* (¢) are of the
form

Mk(q)m'ﬁ’a’,mﬁa = L k(q)m'ﬁ’,mﬁaa'a’ quk . (37)
Combining Eq. (3.5) with Eq. (3.6) we get
U(q)(gS*) (eR X Ut )T =S*(L*(q) XI*¥). (3.8)

From this equation and Eq. (3.7) it is seen that the blocks S*
can be divided intop, sub-blocks S ¥™, each of them contain-
ing the columns S%™, a = 1,...,dim I'*. These blocks, en-
dowed with a scalar product

(SEmSE™) = trace(SE™) 1 S ™ = dim I*8,,,,. 64

(3.9)

form a unitary space. Taking into account (3.8) we can de-
fine the operators T(¢) acting in this space:

(TOS*)7 =U@Y 957 U@

=3 SE" LX) mamas 9€Q%. (3.10)
Here U*(g),; is the corresponding submatrix of U* (g).

It can be shown that the set of operators 7°(g) defined by
(3.10), U(9)€Q, and U*(g)eQ*, form an operator group
0. The operator T(g)<Q* is unitary/antiunitary iff geQ* is
unitary/antiunitary. The corresponding set of matrices
L* (g) forms a corep of the group 0.

The further discussion concerns mainly the following
two properties of the set of matrices L* (¢): (i) they belong
to the commutator algebra of the corep (efxXD*) of the
group G(H) [here we identify a(L* ) witha(M* ) 1; and (ii)
they form a corep L* of the operator group 0%, Eq. (3.10).

First, we determine the structure of matrices L* (¢) as
elements of the commutator algebra for the three different
types of coreps D*.

For D* of type I we have dim D * = dim I'* and

LMD mzmz =L YD) mOza11 » (3.11)

where L “' is an orthogonal matrix with dim L* = m x We
should note that for the case of ordinary reps the commuting
matrix L is of a similar type but in general it will be unitary
instead of orthogonal.

For D* of type II and type III, the matrices are of the
form

s Xi;0;€6 (3.12)

Aroyo et al. 2239



X11 0 X12
xt 0o - 0

X1m, 0

x‘
Lfan — Yy
0 . 0 x*

L ]
0 x o

myl

We can say something more about the L “m matrix. It is
obvious that it can be reduced into a block-diagonal form

. (I; "‘Z’kmg , (3.14)
where the blocks refer to the barred indices @'a and
X1 X Ximy
1 ! X1 Xz Xam, ,
Xl Xma " Xmm,
dim L' = My, (3.15a)
LHm? . (f kwlys (3.15b)
L m(g ) m@ma
=L k"“l(q)m.mcsa,a,” +L k""z(q)m'mlsa'a,zz . (3.16)

The second aspect concerning the L* (¢) matrices is re-
lated to the fact that the matrices L* (¢), geQ*, form a corep
L* of §*. For the type I coirreps D* the p, = m, linearly
independent blocks S *™ = S%™, endowed with the scalar
product (2.9), span a carrier space of dimension m, of the

corep L ki of 0 k,

(T(q)S*)" = 2 L), .S* . (3.17)

As we have already pointed out this result resembles very
much the results for the case of ordinary reps’ with the ex-
ception that for the case of coreps L " = L **,

For the type II coreps D*

(T@S*F = 3 L™ @z S5 (3.18)
where Lt is of the type (3.12). The difference between
(3.18) and (3.17) [or the analogous relation for reps, Eq.
(1.4) in I] is obvious. For the type I coreps D* the matrix
L " realizes a mixing of the basis functions S "™ labeled by
the different multiplicity indices m (m being the multiplicity
label of D* in R). For the type II coreps D* the pair of sets

S'"and §5" are grouped together into a double set
Sk =Sk m=1,.,m,, @=1,2}

and the matrix L “" intermixes all the functions belonging to
S In other words, the functions from a double set span a

carrier space of dimension p, = 2m, of a corep of 0 .
For D* of type III the relation (3.8) splits into two
relations, because of (3.16),

(T@SH7 =T L (@ pom ST, (3.19a)
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» X;;€C.

(3.13)

(T(@SF =3 L") SE™,

L"m,z(q)m’m _=Lklml (%, . (3.19b)

Thus, the sets S',‘"l and S'z““ span carrier spaces for two
coreps of Q% L' and L*"™? where dim L "™
=dim L = m,,. The matrices L “"°, = 1,2, are relat-
ed by (3.15b). If the complex conjugation is a symmetry
operation for the coreps L ™', L “m? then L *m! [ *m?,
In order to take more advantage of the fact that the
L* (g) matrices form a corep of 0" we need the concept of
“G-equivalent” bases'® (G = @* in our case). It is always
possible to choose the basis of a carrier space so that the
matrices coincide identically with those of a “standard set of
coreps” (which means a set of corep matrices chosen and
fixed in a definite way). If there exist several possibilities to
choose such a basis these bases are called “G-equivalent.”
Considering the fact that the reducing matrix blocks
S %™ are the basis functions for a corep L * of 0 ¥, it is natural
to determine this basis in such a way that L* is reduced to a
block-diagonal form. In addition every irreducible constitu-
ent L® is required to occur in standard form

L*(g) = o (e¥XL*(g)), qeQ*. (3.20)

Accordingly, the blocks §%™ of §* form a Q*-equivalent
basis.

To what extent does this reduction solve, eliminate, or
reduce the arbitrariness of S*? We should note that even if
we fix the corep matrices L (¢) the corresponding basis is
not uniquely determined. Due to the Schur lemma the basis
is only fixed up to a unitary matrix M" belonging to the
commuting algebra a(L*) of the corresponding irreducible
corep L’ . These matrices depend on the type of the corep and
are of the following form:

typel: M*= +1°; (3.21a)
. 5 x y s
typell: M°= ’ ot xr xI*,
xyeC, x>+ p)*=1; (3.21b)
s x 0 s
type III: =10 x* XI® xeC, |x|=1.
(3.21c)

Obviously for the special case L = L * the basis S %™ is de-
termined up to a sign, up to three real parameters, and up to
one real parameter for corep types I, II, and III, respectively.
This “inherent arbitrariness” in fact determines the highest
level of uniqueness that can be achieved by means of the
auxiliary operator method. We should note that for the case
of ordinary reps the inherent arbitrariness is only of the
phase factor type.
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The procedure of solving the arbitrariness problem can
be extended by including additional operations, e.g., permu-
tations if R is a direct product corep.? However, this will not
affect the inherent arbitrariness. One possibility to overcome
the “Schur lemma barrier” (2.21) is to adopt some sensible
conventions. For instance, this can be done by standardiza-
tion of phases, based on the Racah lemma as discussed in
details in Ref. 15.

_ Ifagiven D* occurs only once in the reduction of R, i.e.,
m = m, = 1, it is necessary to determine the corresponding
block S %! by standard methods (e.g., the projection meth-
od).

If m; > 1 then the auxiliary group can be used as in I to
reduce the multiplicity problem. If it is not completely re-
solved by this approach the remaining arbitrariness of the
blocks can be eliminated by further convention, e.g., by
means of the Schmidt orthonormalization procedure.

To exploit the auxiliary groups Q° to the utmost de-
gree one has to generate the blocks S™, le[k], from the
already known blocks S ¥™. This can be done using the gen-
erating relation

Sy =U(q") (g S3™) ,

“ which is identical to Eq. (2.42) in 1.
The following two examples illustrate the scheme pro-
posed here.

(3.22)

IV. EXAMPLES
A. An eight-dimensional corep of the gray double point
groupC?t =0

As a first example we consider a reducing matrix for a
corep of the antiunitary gray double point group
G(H) =C?®0 (see, e.g, Ref. 7). The unitary subgroup
H = C?¥ is isomorphic to Cg~(C}, =E, E*=E ). We de-
fine the group

AUT~Aut(Cy;® C,)=D,, 4.1

where we have taken into account that AUT C, = C, and
the cyclic group C; has only outer automorphisms.

From the character table of C ¥ ® © (Table I) it is seen
that the only nontrivial one-dimensional coirrep is D 2. In
accordance with

aD(g) = D(g) XD*(g) (4.2)

and the corep multiplication table (Table II) we find that
the operator @ generates the group

TABLE II Corep multiplication table of C$ @ ©. .

kl
K 1 2 3 5 8
1 1 2 3 5 8
2 2 1 3 8 5
3 3 3 12422 5+8 548
] 5 8 5+8 1243 2243
8 8 5 548 2243 1243

We note that the semidirect product in (2.8) is reduced to a
direct product, because (i) D %is areal corep, soac = ca; and
(ii) D? is the only nontrivial one-dimensional corep of C ¥
®06,i.e.,bD?=D?and ab = ba.

The action of the generators of Q “° on the classes of the
equivalence coreps is shown in the gk table (Table III).

To illustrate our scheme we calculate the matrix S for
the reducible eight-dimensional corep R =D3*XD8xD?
~2D' 4+ 2D? 4 2D 3 Using the gk tablethegroup Qiseasi-
ly determined as

Q=0C=(a,b,byc) . (4.5)
The Q-classes are therefore

(11={Dp.,D?}, (4.6a)
[31 ={D3}, (4.6b)
[51={D°D%}. (4.6c)

The corresponding @* groups and coset representatives are
the following:

Q'=(b,b)c)~D,80, ¢V =e, ¢V =a, (4.7a)

0%=Q%°~D,, 20, (4.7b)

Q3= (b,c)=C,80, ¢ =e, ¢ =a, ¢ =b,.
(4.7¢)

The matrices R(g) of the generators g, = C,, and g, = G of
G(H) are

R(C,,) =diag(1,5,i, ~1,—1,—i,— 1),
R(0) =skew diag(l,— 1,— 1,1,1,— 1, — 1,1).

(4.8a)
(4.8b)
These matrices are obtained as Kronecker products of the
corresponding matrices D* (g) taken from’

D3(C,,) = diag(i, — i), D?3(8) = skew diag(1,1),

8 — dinof — X% _ 4
ASS = (@)~C, . (43) D 7(Ca) = diag( o 0, (4.92)
The group Q° has the following structure: ;: exp(im/4 )l’ b (0)f=hskew diag( —L1). (4.9)

co _ iy e nonzero elements of the matrices U(g) for the genera-
0 =C8(D,8C;) = (abybye) . (44) tors of the group Q~Q° are then
TABLE 1. Character table of C$ ® ©. TABLE III. gk-table of C* 2 ©.
D* r+ Type E ¢ C: ci @ D*
gD* D! D? D? D3 D®

D! rt I 1 1 1

D? 2 I 1 -1 1 -1 1t aD* D? D! D? D8 D’

D? 41 I 2 -2 0 bD* D' D? D? D b®

D3 | I 11 2 vZi 0 vi o b,D* D! D? D? D? D’

D? r‘+r’ 111 2 —V2 0 —vZ o cD* D! D? D? D3 D3
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Ua): (1,5)=(2,6) = — (3,7) =(48) =(5,1)

= —(62)= —(7,3) =(8,4) =1, (4.10a)
U(b)) = U(b,) = U(c)

= skew diag(1, — 1, — 1,1,1, — 1, — 1,1) . (4.10b)

This set of matrices satisfies the relations
(U@ =(Ue)’ =E, (4.11a)
Ua)U(c) = U(c)U(a) , (4.11b)

and forms the group Q~C, ® ©.

The next step in our procedure is the determination of
the groups 0 * = {U(q) |geQ *} for the coreps D* occurring
in the decomposition of R.

Using the matrices D* given in (4.9) and Eqgs. (2.23),
we get the following matrices U* (g).

For the corep D' of class [1], as dimD'!=1, we can
choose

Ul(qg) =1, forallgeQ', hence Q'~C,. (4.12a)
For the corep D * of the class [3],
U3a) =U3(c) =U3(b,) =U?(by)
- ‘0
1
Now we are in the position to determine the general
form of blocks of S. From the theory of coreps, especially the

Schur lemma for reducible coreps, it follows that the reduc-
ing matrix block S ', which satisfies

R(C4Z)SI=S1D1(C4Z), (413a)
R(OHS"=S'DY (), (4.13b)

is determined up to two-dimensional orthogonal transfor-

mation.
Using (4.8) and (4.13) we obtain, for S},

(l)‘, hence Q3~C,. (4.12b)

a-+ib
0
Sl

, where a,beR . (4.14)

o O O O

0
a—ib

The action of the operators T(g), g = b,b,, ceQ ', is given by
the following relations:

T(h)S'= ub)ps'uip)t=s", (4.15a)
T(b,)S'=U(b,)S' U (b)T=S", (4.15b)
TS =UE)S"UNc)t=S". (4.15¢)

So Q '~C, ® ©, and the character table of this group is given
in Table IV. Obviously the multiplicity problem is solved
because if the reducing matrix blocks S*' and S are fixed
by

St a=1, b=0, (4.16a)
S a=0, b=1, (4.16b)
they turn out to be basis functions for the two inequivalent
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TABLE IV. Character table of C, 8 O.

D B Type E G, © c,0
D! r! 1 1 1 1 1
D? r? I 1 -1 1 -1

one-dimensionalcoirrepsL ' = D 'and L 2 = D *. Thisisseen
from the corresponding L '(g) matrices

L'(e) = diag(1,1), (4.17a)
L'(b) = diag(1, — 1), (4.17b)
L(c) = diag(1,1) . 4.17¢)

As thecorep D?of G(H) = C ¥ ® O belongs to the same
class [Eq. (4.6a) ] we can use Egs. (3.22) and (4.7a) and the
matrix U(g$") = U(a), Eq. (4.10a), to find the block §>™.

The general form of S ™ can be obtained from the defin-
ing relations

R(C,)S®=58°D*(C,,), (4.18a)
R(6)S* =8°D*9), (4.18b)
where R(g) and D ?(g) are given by (4.8) and (4.9), respec-
tively. Since D ? is a type I1I coirrep it follows from the Schur

lemma that $*™ is determined up to two complex param-
eters (3.13). For the general form of the blocks § ™ we get

0 0

a, +1ib, 0

a, + ib, 0

§3m = 8 8 , where a,,b,eR .
0 —a, +ib,
0 —a, + ib,
0 0
(4.19)

The action of the operators T(a), T(b), T(c) on the $*™
blocks (3.10) shows that @ *~D, ® ©. The character table of
this group is given in Table V. If we choose the blocks §*'
and $*? in the form

S a,=a,=1, b,=b,=0, (4.20a)
§% g =a,=0, b= —b=1, (4.20b)
TABLE V. Character table of D, @ ©.
DF r* Type E C,, C; Ccy 0
D T 1 1 1 1 1
D? 2 I 1 -1 T i
D> s 1 1 1 -1 - 1
D* r I 1 1 -1 1
Aroyo et al. 2242



theset S}, = {S},5 17} spans a carrier space for the reduc-
ible corep of @, Eq. (3.19a), given by the matricesL*' (¢):

1o .|1 ol
B,y — (Y =
L (e)“o 1" Lr@=ly _4l°

So §3! is transforming according to the identity coirrep,
while §37 is a basis function of one of the nontrivial one-
dimensional coirreps [e.g., D*if T(a)«>C,,, T(b)C}] .

In this way we succeed in solving completely the multi-

1 0 1 0 (4.21) plicity problem for the reducing matrix for
L3"(b)=l0 —ll , L"‘(c)=‘0 1K R =D3*xD®xD? The final form of S reads
]
kma | 111 121 211 221 311 312 321 322
V172 172 0 0 0 0 0 0
0 0 0 0 V172 0 172 0
0 0 0 0 Ji72 0 —if1/2 0
S= 0 0 72 Wiz 0 0 0 0
0 0 V2 —i12 0 0 0 0
0 0 0 0 0 —\1/2 0 172
0 0 0 0 0 —J12 0 —i1/2
V172 =172 0 0 0 0 0 0 (4.22)

B. The matrix of Clebsch~Gordan coefficients of D4 D4

of the black and white double point group O*(T™*)

Next we discuss the antiunitary black and white double
point group O *(7*) and a reducing matrix for the Kron-
ecker product D * X D *, composed of Clebsch-Gordan coeffi-
cients. In the notations of Bradley and Crackneii’

O*(T*)=T*+6C,T*, (4.23)
where the asterisk indicates that we are dealing with the
double groups.

As a set of generators for O *(T*) we choose for the
unitary subgroup T'*<l0 *(T'*) the generators (C,,)* =E
and (C3{)? =E and add the fixed antiunitary coset repre-
sentative a, = 0C,, . Because of the abstract isomorphism
O*(T*)~0* (where 8C,, T~C,,T), the defining rela-
tions and the group multiplication table of O *(T'*) are the
same as for the double octahedral group O*.

The table of corep characters is determined by the irrep
table of the unitary subgroup 7 * since all the coreps are of
the type I (see Table VI). For convenience we also give the
corep multiplication table of O * (T *) (Table VII). It is seen
from Table VI, that there exist three one-dimensional coreps
of O *(T*), viz. D *,D?.D?> They belong to one class of asso-
ciated coreps {D!,D%D?3} (see Ref. 15),i.e., (D*¥)*=D"

TABLE VI. Character table of O *(T*). Here = exp(in/3).

D rk Type E SZ: (o Cy agla

C2z HCZa
D! r! I 1 1 1 1 1
D? I  { 1 1 @? o* 1
D3 r 1 1 1 o* w? 1
D* r 1 3 -1 0 0 1
D3 rs I 2 0 1 1 v2
Ds re I 2 0 w? w? —v2
D7 r’ 1 2 0 @? ot —v2
2243 J. Math, Phys., Vol. 27, No. 9, September 1986
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and (D*)?=D*', k #£k' = 2,3. In accordance with the de-
finition (1.9) the group ASS is generated by association with
D3, and the corresponding operator a determines the group

ASS = (a)~C,. (4.24)
The action of the operator ccCON=C, is obvious from Ta-
ble VL.

The determination of the group AUT is facilitated by
the fact that the element E belongs to the center of O *(T'*),
ie, Aut O*~Aut O~O0. So the only automorphism of
O *(T*) that is outer for the unitary subgroup T *, is of sec-

ond order, and can be realized by a conjugation with
6C,,cO*(T*) is

B(C,)=C,, B(C3H)=C3, B(6C,,) =6C,, .

(4.25)
Consequently
AUT = (b)~C,. (4.26)
Hence we obtain the full group
QP =C;&(C,2C}) = (abc)~Dy(D;) .  (4.27)

From the definitions of geQ “° and Table VI and Table
VII we construct the gk table of O *(T*) (see Table VIII).

The present example deals with the construction of the
reducing matrix S, which carries out the transformation of
the reducible corep R = D * X D * into a direct sum of its irre-
ducible constituents:

STR(g)S® = (D'eD*aD*eD*)(g) . (4.28)

Since the corep R is a Kronecker product the elements of the
reducing matrix § are the familiar Clebsch—-Gordan coeffi-
cients.
From the gk table it follows that
Q = Q o= (a»brc>2D6(-D3) .

We can easily construct the Q-classes

(4.29)
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TABLE VII. Corep multiplication table of O *(T*).

1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 3 1 4 6 7 5
3 3 1 2 4 7 5 6
4 4 4 4 1+2+3+4+4 5+6+7 5+6+7 5+6+4+7
5 5 6 7 54647 1+4 2+4 3+4
6 6 7 5 546+7 2+4 3+4 1+4
7 7 5 6 5+6+7 3+4 1+4 244

[11={D'D?D"},

(41 ={D*},

[51={D°D%D"}.
The corresponding Q “-groups and coset representatives are

0!'=(a,c)~C,206,

@ = gP=a, g =a;
Q=0
Q3= (bec)~C,20,

) _ (5) — 5) 2
g7 =e ¢y =4a, g3y =a .

(4.30)

(4.31)

ThematricesR(g) = D*(g) X D *(g) for the generators
C,,,C ;1 ,6C,, are obtained by using the following standard
corep matrices’ of D*:

D*C,)=| 0 -1 0f,

D{CH)=|0 (4.32)

D*(6C,,) = |1
0 0

For the unitary matrices U(g), ¢ =a,b,ceQ [Eq.
(2.21)], we obtain

U(a) = diag(w,00,0%0* 0% —1,—1,— 1),

(4.33a)
U(c) =diag(1,1,— 1,1,1,— 1, — 1, - 1L,1) . (4.33b)
1, ij=15,24,36,42,51,63,78,87,95,

v, = {0, otherwise .

(4.33c)

TABLE VIIIL The gk table of O*(T*).

D*
qD* D! D? D3 D* D3 D¢ D’
a’D*
a D*

p* Dp* D! p* Dp¢ D' D
Dp* D! p* Dp* D’ D? DS
b D* D! D3 D? D* D* D’ D¢
cD* D! p* Dp* p* D5 D' D¢
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To determine the Q group we have to consider the fol-
lowing generating relations satisfied by the U(g) matrices:

(U(@))* = (UB) =(U(c)} =E,
Ub)U(c) =U(c)U(b),
U(a)U(c) = U(e) (U(a)),
U(a)U(b) = Ub)U(a)) .
(434) we find that

(4.34)

_ From the relations
O~C&(C,8C}).

The determination of U'(g) is trivial because
dimD'=1: o
U@ =1, g=bceQ!, hence 0'~C,XO. (4.35)

Because of 0 = Q°°, we need U*(gq) for geQ“° . Tak-
ing into account the corep matrices of D* [Eq. (4.32)], we
obtain the following U *(q) matrices:

o 0 0
U¥a)=1(0 o* 0 |,
0 O -1
01 0
Usb)y=11 0 0f, (4.36)
0 0 1
1 0 0
Uc)=1(0 1 0
0 0 -1

The above matrices U*(q), geQ*, satisfy the same defining
relations (4.34), as the matrices U(q) of 0, whence 04~0.
Now we are ready for the determination of blocks § “™
of S. The use of the relations of the type (2.1) for the genera-
tors of O *(T*) suffices to obtain the general form of S''.

R(@)S'® =S5'D(g), g=Cp,C:i0C, . (437)

This block is determined up to one real parameter since D ! is
atype I corep. The block S ! is a column matrix with nonzero
elements d,, = d5; = — dy, = d. To obtain a unitary S we

putd = \1/3. Now S ?and S * are obtained from the relations
(3.22), (4.31), and (4.33a),

S2=U(a»)S', (4.38a)
S3=Ua)S’. (4.38b)

Proceeding in the same way as before we get the follow-
ing general form of S ™
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0 0 0
0 0 -z
o =z* 0
o 0o -z
S*"=10 0 0 |, z=a+ib, zeC. (4.39)
z 0 0
0 =z 0
2 0 0
0 0 0

In accordance with the consequences of the Schur lemma for
coreps, $*™ is determined up to two real parameters.

The action of the operators T(g) on the S*™ blocks is
given by Eq. (3.10), where U(q), U*(q), are taken from
(4.33) and (4.36):

T(b)S*=S*,

T(c)S*= —S*,
(T(abe))’S*=S*,

T(b)T(c) = T(c)T(b),
T(abc)T(b) = T(b)(T(abe)) .

From these generating relations we conclude that the group
Q*isisomorphic to Dg(D;). [ We obtain an antiunitary oper-
ator T'(abc) of sixth order thdt can be considered as the
colored rotation 8C,, . Its square is a unitary operator corre-
$ponding to C;,. The unitary operator 7(b) corresponds to
C; in this scheme T'(c) = C,,0C,,.] The characters of
D¢(D,) are given in Table IX (see Ref. 13). _

To obtain the explicit form of the corep matrices of 04
we have to make a choice for the parameters of S ™, i.e., we
have to choose a basis defining the corep of D¢(D;). The
simplest choice of §*' and $*? is determined by the follow-
ing values of the parameters a,b:

(4.40)

S4,1.
S4.2.

a=1, b=0,
a=0, b=1.

(4.41)

This gives rise to the following corep matrices
L*(q) =D?3(q) of Ds(D;):

TABLE IX. Character table of Dg(D5).

D r* Type E C,, C; 6C,
D! r! I 1 1 1 1
D? r? I 1 —1 1
D3 r I - 0 0
-1 =312
L4(a)= i ‘/_ ,
V372 -}
1 0’
4b) = 4.42
LA(b) ‘0 1l ( )
-1 0
4 —_
L (C)‘I 0o 1l°

It is evident from (4.42) that this choice of the parameters a
and b results in a Clebsch-Gordan coefficient matrix S *™,
which is “self-consistent” only under complex conjugation
and automorphism. That is, only complex conjugation and
automorphism lead to symmetry operations for the
Clebsch-Gordan coefficients of the “simple phase factor”
type.® Here this phase factor reduces to a mere sign.

That it is not possible to obtain “simple phase factor”
symmetries of the Clebsch—Gordan coefficients for all the
three operations simultaneously follows from the irreduci-
bility of the corep D ? = L *(q). One may ask whether it is
possible to diagonalize L *(a) by a suitable choice of the § ™
matrix. But since D* + D* is a type I corep, all the L *(g)
matrices should be (real) orthogonal according to (3.10).
But the diagonalization of L *(a) transforms it into a com-
plex matrix that does not belong to the commutator algebra
ofthecorepD * + D *of O * (T *). Therefore, itis not possible
to find a S *-matrix, which is “self-consistent”” under associ-
ation. It should be noted that in the case of unitary irreps of
T* it is possible to diagonalize the associations because the
corresponding commutator algebra is complex (see example
AinI).

For the choice (4.41) of the parameters we obtain the
following S matrix:

J
k 1 2 3 4 4 4 4 4 4
S m 1 1 1 1 1 2 2 2
a 1 1 1 1 2 3 1 2 3
k'a k’a"
41 41 173 1/30* 1/3w 0 0 0 0 0 0
41 42 0 0 0 0 0 172 0 0 —if1/2
41 43 0 0 0 0 1/2 0 0 —i172 0
42 41 0 0 0 0 0 —J172 0 0 172
42 42 1/3 1730 1/30* 0 0 0 0 0 0
42 43 0 0 0 Vi/2 0 0 V172 0 0
43 41 0 0 0 - 0 vi/2 0 0 172 0
43 42 0 0 0 Ji72 0 0 —i1/2 0 0
43 43 V173 173 Vi/3 0 0 0 0 0 0
(4.43)
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The matrix elements (4.43) coincide with the Clebsch—
Gordan coefficients for coreps reducing the direct product
D*xD*of O*(T*) as given in the full set of tables for the
cubic groups.'?

An additional restriction of the form of S ™ blocks fol-
lows from the requirement that L *(¢) should form a “stan-
dard” corep of 0 * [see Eq. (3.20) ]. It is irreducible and is of
the first type, so the matrix S * is determined up to its “inher-
ent arbitrariness,” i.e., a sign [see Eq. (3.21a)].

If we want “the standard form” of L*(q) = D3(q) of
D¢(D,) following"?

Ly@=| "} V372
V372 —}
0 1 (4.44)
4 —
L*(b) = 1 ol’
0 —1
4 —
L) = 1 ol

then we must take the blocks S *™ with parameters
S*:a=\I, b=+1,
S*% a=\1, b= —\1.
The new S*™ blocks are related to (4.41) by the an
orthogonal transformation. However, it is seen from (4.4)

that they have not the symmetry of the “simple phase factor”
type under automorphism and complex conjugation.
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The analysis over o-commutative algebras (generalized supercommutative algebras), that is,
differentiation and integration for functions defined on superspace over a o-commutative

algebra, is studied.

I. INTRODUCTION

In the last ten years or so, the supersymmetric quantum
field theory has been studied extensively,' and recently, at-
tempts to give a mathematical foundation are very active,’
where Grassmann algebras (supercommutative algebras)
play an essential role. Supercommutativity is a generaliza-
tion of commutativity but not the most general one. The
generalized supercommutative algebras of Scheunert,’?
which we call o-commutative algebras, are considered to be
the most general. In our previous paper,* we developed the
theory of matrices whose entries are elements of a o-commu-
tative algebra and studied Lie groups consisting of those ma-
trices. These Lie groups are considered to be transformation
groups of superspaces over o-commutative algebras. Several
authors studied the theory of infinitesimals of the Lie
groups, that is, o-Lie algebras (representation theory,’ co-
homology theory®).

In the present paper, we study analysis over g-commu-
tative algebras, that is, differentiation and integration of
functions defined on a superspace over a o-commutative al-
gebra. Since the o-commutative algebras include para-Bose
and para-Fermi number systems as well as Grassmann alge-
bras, our theory will provide a foundation to the study of
commutation relations that appear in quantum field theor-
ies,” and will also help us towards deeper understanding of
supersymmetry.

In the supersymmetric case, parameters of superspace
are taken from a Grassmann algebra, but in our general case
they are taken from the tensor product of the crossed prod-
uct on the group of even grades and the generalized Grass-
mann algebra over odd generators. We define G "-functions
(r-times continuously differentiable functions) along the
method of Rogers.® If r is greater than the nilpotency of
superspace, then G ’-functions have standard forms called
the standard expansions. Though the derivatives with re-
spect to odd variables are not uniquely determined, we can
choose the canonical one using the standard expansion. For
a G '-function £, the integration is defined as follows; first
pick up the top f; ..., (x) from the standard expansion

X PE ) = £, (O £,

"<q
and integrate it on the body b(X) of the superspace X. The
main theorem of this paper is a consistency theorem
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(Theorem 7.4), which states that under a change of vari-
ables the (super) Jacobian appears to adjust values of inte-
grals. Recently, Rogers® formulated integration with respect
to even variables as the contour integration in the supersym-
metric case. In our general case, the same formulation is also
possible, but it is practical and essential that integration with
respect to even variables is taken to be the integration on the
body as usual.'®

This paper is organized as follows: In Sec. I1, we define
supernumbers, superspaces, and functions on superspaces
(superfields). In Sec. III, we define the derivatives and the
higher derivatives of superfields, and prove the analog of
Taylor’s expansion theorem (Proposition 3.8). In Sec. IV,
we investigate functions defined on the body. To such func-
tions correspond a set of ordinary functions. Using this cor-
respondence, we define integration and prove its consistency
under a change of variables on the body (Proposition 4.6).
In Sec. V, we define the Jacobian matrix as usual, and the
Jacobian to be the superdeterminant of the Jacobian matrix.
The inverse mapping theorem (Theorem 5.4) is proved. In
Sec. VI, we give the standard expansion for G "-functions
(not only G ~-functions), where the concept of excessively
C -functions is introduced. In Sec. VII, consistency of inte-
gration (Theorem 7.4) is proved in an elementary way, by
decomposing the general form of change of variables into
elementary ones. We give some remarks in the final section.

. SUPERNUMBERS AND SUPERSPACES

In this section we prepare the basic notions, super-
number, and superspace on which we develop the (super)
calculus.

First, we summarize some notions and notations intro-
duced in the previous paper* that will be used in this paper.

Let G be a finite Abelian group and F be the real or the
complex number field. We call a mapping o: G X G—F asign
of G if it satisfies

(i) ola + By) = o(a,y)a( B,y),

(il) o(a, Byo( Ba) =1,
for any a, B,7€G, and the pair (G,o) is called a signed group.
By (ii) we see o(a,a) = + 1 for any a€G. The.event part
{aeG |o(a,a) = 1} andtheodd part {aeG |o(a,@) = — 1}
of G are denoted by G, and G, respectively. Since 0| is an
even sign, there is a factor system ¢: G, X G,—F — {0} asso-
ciated with 0| , that is, § satisfies
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(i) ¢(a, B +V)$(By) =p(a.B)d(a+B7),

(i) #(0,0) =1,

(iii) ¢(a, B)/9( Bia) = o(a, B),
for a, B,yeG,. We can choose ¢ so that |¢(a,B)| =1
(Proposition 2.7 of Ref. 4). Let C = & ., C, be the crossed
product of F and G, defined by means of ¢, that is, C,

= F-u, is the one-dimensional vector space over F with gen-
erator u,, of grade a and the multiplication in C is defined by
u, -ug =¢(a,Bu, , 4.
Then C is a o-commutative algebra over F by (iii) above.
A finite set I is called a G-set if it is linearly ordered and 4
grade g(i)eG is assigned to every element iel. Let L be an
odd G-set, that is, each element / of L has an odd grade,
and let ¥ be the G-graded vector space over F with basis
{v;|leL}, where the grade of v, is g(/). Let B be the o-Grass-
mann algebraover V defined by B = T(V) /K, where K isthe
ideal of the tensor algebra 7(V) over V generated by the
elements v;v; — o(g(i),g( /) )v;v; (i, jeL). Let M be a subset
of L. M is a G-set in a natural way. The ordered product
1,50, is written as v,,. Then B is a G-graded o-commuta-
tive algebra with a linear basis {v,;)JMCL} over F. Let
A = C® B be the graded tensor product of C and B over F,
then 4 is a finite-diménsional o-commutative algebra. In the
rest of the paper we fix the algebra 4 of which elements are

called supernumbers.
Any element a of A is expressed uniquely as

A= Gyl By, 2.1
a,M
where a,, ,,€F and a ranges over the elements of G, and M

the subsets of L. The norm ||a|| of the element a is defined by

llall = };{ 1@z pe -
a,.

Then A is a Banach algebra over F.

The Grassmann-Banach algebra B, | of Rogers® is ob-
tained as a special case of our algebras, when G =Z, and
a(a, B) = ( — 1)%,for a, PeZ,. In this case G, = {0} and
the factor system ¢ is trivial and so Cis equal to the base field
F. On the other hand, B is the Grassmann algebra generated
by |L | elements. Thus 4 = C® B = B is nothing but the
algebra B, .

The para-Bose and para-Fermi number system of Oh-
nuki and Kamefuchi’ is also obtained if we put
G =12, - &Z, and define o appropriately.

Returning to the general case, 4 is a G-graded algebra
whose homogeneous component A4, of grade aeG is the set
of elements

a= aﬁ'Mup =] UM’
B+8M)=a
where
g(M) = g{g(l).

Here we introduce another gradation on 4. An element aeA4
given as (2.1) is called s-homogeneous of s-grade M if a, \s.
=0, for all M'# M. Identifying C with Ce 1 and B with
1® B, C and B are considered to be subalgebras of 4. Here C
is nothing but the homogeneous component of A of s-grade
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. Moreover, F is a subalgebra of C by identifying Fu, with
F.
Definition 2.1: For acA given as (2.1), we define

ba)= Y a,pu,®1, s(a)=

aeG, aeGy, M #D
We call b(a) the body of a and s(a) the soul of a. Moreover
for a subset S of 4, we set b(S) = {b(a)|aeS} and s(S)
= {s(a)|aeS}.

Note that the body b(a) is invertible if it is nonzero and
homogeneous, while the soul s(a) is nilpotent. Of course,
any element is uniquely decomposed as a sum of its body and
its soul. The body of an odd element is zero, but the converse
is not true; an even element may have a nonzero soul.

Proposition 2.2: Let A’ be a F-submodule of A generated
by some elements of the form u, ® v,, withaeG,and MCL.
Then the left annihilator and the right annihilator of 4 * coin-
cide; they are denoted by Ann(A4’), where Ann(A4') is a
graded submodule of A4 with respect to s-gradation.

Proof:Leta =u, @vy €4 andlethb=2,,. ;Cpr ®Up,
where c,,.€C. Suppose ba = 0. Then

(ZCM- @ vM.)(ua ®Up)
&
=Y o(g(M')a)cy uy @y 0y =0.
£

It follows that c,,. = 0, for M’ such that M 'nM = 2.
This implies ab = 0 and

Ao plly @Vpy

Ann(aq) = Covy..
MM %D
Since 4 ' is generated by such a’s, our assertion follows.
Definition 2.3: Let A’ be as in Proposition 2.2. Define

Sav(4") =Y Couv,,
M

where M ranges over all the M C L such that v,,4 ‘' #0. Then
we have

A=S8av(4')e Ann(4’).

For a,,...,.a,€G, P,, .., denotes the projection from 4 to
Sav(s(Aal ) e S(Aa,, )). Moreover for a G-set M = {i,,...,i,, },
Pyi) - g, 18 abbreviated to Py,.

Definition 2.4: Let I ={1,..,pp + 1,..,p + q} be a G-
set such that g(/) are even for i=1,..,p and odd for
i=p+1,.,p+q Let X =4, = @4, be the direct sum
of 4, ,, (i€l). The X is a Banach space by the product topol-
ogy induced from A4 and is called superspace over A.

In the usual supersymmetric case, X is the superspace
B, of Rogers.®

Definition 2.5: Let I and J be G-sets. Let X = A, and
Y = A, be superspaces. A mapping T: X—Y is an A-linear
mapping, if there is a (J XI)-matrix M = (M) such that

T(x)jz ZM{X'., ]GJ’
el

for x = (x')eX. We say T is associated with M. If M is in-
vertible, then so is 7" and the inverse mapping 7 ~! is asso-
ciated with the inverse matrix M —'. Clearly, an A-linear
mapping is F-linear. [The definition of a (J X I)-matrix is
given in Ref. 4.]

Y. Kobayashi and S. Nagamachi 2248



Definition 2.6: For a point x = (x'|i€l) in a superspace
X, b(x) = (b(x")|iel ) and s(x) = (s(x")|iel ) are called the
body and the soul of x, respectively. Let U be a (connected
open) domain of X. Here b(U) = {b(x)|xeU} is called the
body of U. Then b(U) is contained in the even part

Up = {(x,....x 2,0,...,0) | (x',....x Px P+ 1 . x # T 9)eU}of U.

Let x = (x',....x7,0,...,0) be in b(X). Then x' = %',
for some %‘eF. The mapping ~ which sends x to the point
X = (x',...,% ?) is a homeomorphism of b(X) onto the (real
or complex) p-dimensional space F*. For a domain V of
b(X), V = {%|xe¥F?} is a domain of F*. We sometimes write
the odd coordinates x # */ as £/ and express a point of X as
(x,€) = (x',..x P,£",....£ 9) in order to distinguish between
the even and the odd coordinates.

Let U be a domain of X. Here 4 U denotes the set of
functions (superfields) on U which take their valuesin 4. A
function fed Y is said to be homogeneous of grade acG, if
f(x)ed,, for all xeU. Thus A Vis naturally a o-commutative
G-graded algebra over F.

For a domain ¥ of b(X), A ¥ also denotes the set of 4-
valued functions defined on V. A function fed ¥ is written
uniquely as

flx) = Zfa,M (x)u, ®v,,, x€V, (2.2)
a,M

where a€Gy,, MCL, and £, (x)€F. The functions ];,M,
which are defined by

Fort (B) =fore (%), xeV,
are F-valued functions on the domain V.

lil. DIFFERENTIAL CALCULUS

In this section we study differential calculus on the su-
perspaces in the sense of Sec. I1. Through this and the subse-
quent sections we assume that the base field F is the real
number field R.

Let I = {1,..., p + ¢} be a G-set with p even and g odd
elements, and let X = A, be the superspace. Let Ube a (con-
nected open) domain of X.

Definition 3.1: (Compare Rogers.®) Let ie and a point
xo,€U be fixed. A function fe4 Yis called right differentiable
at x,, with respect to x’, if there is a constant ze4 such that

S(x8 4o X6 I X5 + pxit x5+ )
=f(xo) +ay +o(|ly|]) (as y—0), (3.1
for
Yed,
with

(X0 yeesXb ™ Lxh + yxit L x B+ )el.

The constant a is called the right differential coefficient of f at
x, with respect to x’.

The function fis right differentiable on U with respect to
x' if there is a function f’ in 4 Y such that f’(x) is a right
differential coefficient of fat any x in U. Though /', which is
called a right derivative of £, is not uniquely determined in
general, it is unique modulo Ann(4,,, ). We use the symbol
S, or simply f;, to denote one of them.
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Remark 3.2: If il is an even index and if fe4 U is right
differentiable at x, with respect to x’, then the right-differen-
tial'coefficient is (absolutely) unique and is equal to

i—1

.1 ; i i n
ll_l'flo‘g [f(x(l)’---,xo Xo + 51‘3(,') Xot la---rxo)

—flxo) Jgy ™Y (3.2)

where eR.

Definition 3.3: A function fed Y is r-times right differen-
tiable on U with respect to x* '....x”, if there is an (r — 1)th
derivativef,; .., _, withrespectto x*,....x" =, which is right
differentiable on U with respect to x"; a derivative of

Proposition 3.4: The difference of two derivatives of f
with respect to x“,...,x" belongs to Ann(IT;_ ,4,,,).

Proof* Let h and g be derivatives of f with respect to x/,
then k = h — geAnn(4,,, ). Hence

limi [k(xY...xi = x/ 4+ 8pixi*, . x?+9) —k(x)]
50 6

=k (x)y’

is also in Ann(4,, ), where 5€R. Because y” is arbitrary in
Agjys ki (x) belongs to Ann(d,,A4,;)- Since A,
— 8y is equal to k;, modulo Ann(4,, ), A¢;, —g;, be-
longs to Ann (4, nAgip )
Repeating this argument we can show the assertion for
higher-order derivatives.
By definition it is clear that an (r — s)th derivative

Definition 3.5: A continuous function fin 4 Y is called
G%n U The function f is said to be G” on U if there is a

The set of G -functions on Uis denoted by G'(U). Itisa
o-commutative algebra over R in a natural way (cf. Proposi-
tion 3.10). In a usual way we can prove the following propo-
sition.

Proposition 3.6: Let fbein 4 Y. Then fis G" on U if and
only if

.
fE+n =) +'3 by +o(bl)  (asy—0),

i=1

for some G~ !- functions A;, where x, x + yeU. This A, (x)
is a right derivative of f with respect to x’.

Let Jbe a G-set and f = { /| jeJ} be a set of functions f/
€G "(U) such that the grade of /7 is g( j). Then finduces a

"-mapping f= ( f/): U-Y =4, by

f[(x) =(fi(x)), xel.

Preposition 3.7: Let y = ( y’) be a G '-mapping from U
to a domain ¥ in 4,. Then for f&G '(¥), the composition
S(y(x)) of fand y belongs to G ' (U) and the equality
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S (x) = Zf(j) (y(x))-p% (x) mod Ann(4,;,)
’ (33)
holds on U.
Proof: By definition
yid, T x4 X XL x P )

=yj(x) +y i (X) 'xl + o(llx’l ”)’
and by Proposition 3.6

Sy +3)=A» +j§f(j)(y) v +o(|iD-

Hence

Syl x = X

=f(y(®) + X fin (30x)) - % (%) - %1 + o(flx1 |-
J

X2t 9))

This completes the proof.

Proposition 3.8 (Taylor’s expansion): Lety = ( y)es(X)
be the nilpotent of nilpotency , that is, y - y = 0 for any
r-tuple (iy,....0,), iy€l. Let feG'(U) and xeU. Suppose
x + GyeU for all 8 with 0 < 6<1, then

Sx+y)
r—1 .
=y — 1 Y fu,- iy (XY e Y (3.4)
n=0 ’l' (fppernsip)
Proof: LetacR and setg(a) = f(x + ay). Theng(a) isa

function defined on a neighborhood of 0 in R and takes its
values in 4. By the ordinary Taylor theorem,

r—ll

g)y=3% —

n=0 n

87 (0) +—-g”(),

where 0 < 8 < 1. Applying (3.3) repeatedly [note that (3.3)
is an exact equality when / is even], we have

z f'(l ‘)(x) y’l ses i"

.....

g(n)(o)

Since g (8) =0, (3.4) follows.
Proposition 3.9: For feG*(U), we have

Sup =0@(1D8(N) Sy mod Annld,, A4y )-
Proof: Set

glab) = fix',.x'~

weoX? xS by x it

where, a, beR. Then the equations g, , (0,0)

and g, ,(0,0)
ga,b (0’0) = gb,a (O,O)! -f(ij) (x)
in Ann(A4, ., Ag(j )-

Proposition 3.10: Let f, geG ' (U) and 4 be homogeneous
of grade a. Then fgeG ' (U) and we have

(M), =olgld)a)f, -h+f-h; modAnn(4,,)

Proof: Straightforward from the definition.

Proposition 3.11: Let fbe a G'-function on U leta be a
point in X that is nilpotent of nilpotency r. Then
S,y (%) - @" - a" isa G "-function on U.

Proof: By Propositions 3.8 and 3.9 we have

l,xi+ ayi,xi+ 1,
XPHe),

- =fup Y
= f» (x)y’y’ hold by Proposition 3.7. Since
— o(g(i), 8(N) fu (x) lies
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Slx +ta) iy (X) c@t et gt

=2 Z ¢, -~~i,,f(.'n...

n i‘<...<i"

for any sufficiently small zin R” * 9, wherec; ..; are nonzero
real constants. Therefore every f; .., (x) - @" - a” can be
written as a linear combination over R of G "-functions f; (x)
=f(x +ta) with t€R’*? Consequently fi; ..., (x)
.@"a"isG on U.

Definition 3.12: For a subset S of X, we define
S = {x + a|xeS$, aes(X)} and call it the (soul) saturation''
of S. If S = S, then S is called saturated; S'is called s-connect-
ed ' if Sn {x} is connected for every xeS.

Proposition 3.13: Suppose a domain Ulis s-connected and
every point of s(U) has nilpotency r. Then any G "-function f
on U can be uniquely extended to a G *_function fon U.

Proof: Fory =x + acU with xeU and a € s(X), define

f(») =fx+a)

r—1 1 i

= T o2, S (@ a”

The s-connectedness of U assures that fis well defined. We
seef|, = f and feG’(U) by Proposition 3.11, and moreover
fis unique because of Propositions 3.4 and 3.8.

As the following example shows, the assumption that U
is s-connected cannot be removed in Proposition 3.13. The
example also explains the necessity of the condition that
x + Gyel for all 6 with 0 < 8<1 in Proposition 3.8.

Example 3.14: Let A be the Grassmann algebra generat-
ed by two elements v,, v, and X = R + Ro,v, be the super-
space over 4 with one even coordinate. Let

U = {x + yv,v,|x, yeR and y#0, for x<0},

then U is a domain of X which is not s-connected. Let #(x)
be a C ~-function on R such that ¢(x) = 1, for x>0 and

é(x) =0, for x< — 1. Define a function fon U by
S(x + yviv2)
1, if x<0 and y>0,
~ o0 + (dq;(:) )yvlvz, otherwise.

Then fis a G -function on U. However, since f=0 on
{x +ywwlx< — 1,y<0randf=1lon{x +yv,lx < — 1,
>0}, fcannot be extended to U = X as a continuous func-
tion, still less as a G *-function.

Left differentiability and left derivatives are defined
dually. It is clear that a function f'is left differentiable if and
only if it is right differentiable.

IV. FUNCTIONS ON THE BODY

In this section we study functions defined on the body.
Let X = A, be the superspace and V' be a domain of the body
b(X) of X. Since we treat only even variables here, we sup-
pose the G-set I is even, that is, I = I, = {1,..., p}.

Let fbe an A-valued function defined on V. The right
differentiability and the right differential coefficient of fare
defined by Eq. (3.1) in Definition 3.1 under the restriction
that ¢ =0, yeC,,, and (xg,....x57 " x6 +yxo* oxf )
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€V. Since the right differential coefficient of f at x; with re-
spect to x' is unique, as mentioned in Remark 3.2, we use the
notation df(dx’) ~'(x,) to denote it.

As we stated at the end of Sec. II, fed ¥ is a sum of £, ,,
aeG,, MC L, with which we associate R-valued functions
fa, M ON VCRe

Proposition 4.1: feA'" is right differentiable at x with
respect to x’ if and only if £, ,, is differentiable at % with
respect to X' for every acG, and MCL, and

iy —1 3f a,M
af(ax ) (X) aeG,ZIWCL 852’
For a positive integer n, [3(dx’) ~']" means 1 times ap-
plication of right differentiation with respect to x’. Let
N = {n;}, be a sequence of non-negative integers indexed
byl Set{N|=Z,n;,and N =1, (n,!). We use the abbre-
viation x" for the ordered product IT(x‘)™. The higher-order
derivative d'V!f(dx") ! of fis a successive application of
[3(ax?)—11", [(Ax?— )~ ']"1,.,[3(x") '] to fin
this order. Here fed ¥ is said to be C " if'it is 7-times continu-
ously right differentiable; C"(V) stands for the set of C'-
functions on V.
By Propositions 4.1 we have the following proposition.
Proposition 4.2: fed Vis C"if and only if every £, ,, is C".
Definition 4.3: Let J be a G-set and let ¥ be a domain in
b(X). Let f= (f/) be a C'-mapping from V to 4,. The
(J XI)-matrix
D(f/x)=(af(dx")7")
is called the Jacobian matrix for £, if Jis even and |I | = |/ |,
the determinant of D( f/x) is called the Jacobian for £, and is
denoted by A( f/x).
Hereafter we consider the case where Jiseven, |I | = |/ |
and each f/ is a C-valued C'-function, that is, f/(x)
Vi (X)u, ;. Then fis a mapping from ¥ to the body 5(Y) of
Y = A4,. By Proposition 4.1 we have

(%) (u, ®Up)tgs -

aff(ax")~! =%f—ju Ugs- (4.1)

%! g(j)

Let 7 (resp. J) be the G-set obtained from I (resp.J) by
redefining the grade of every element of / (resp. J) to be 0.
Let U, (resp. U,) be the (I XTI)- [resp.( J XJ)-] matrix
defined by (U;); = 8iu,y;, [resp. (U;) ) =8%u, ;]

Let D( f/%) and A( f/%) be the ordinary Jacobian ma-
trix and Jacobian for f, respectively. Then we have by (4.1)

D(f/x)=U,D(F/5) U\ (4.2)
Thus by Theorem 3.6 of Ref. 4 we have

A(f/x) =det(U,)A(f/%)det(U,) !

= A(f/%)det(U,)det(U;) ™.

This formula implies the following proposition.

Proposition 4.4: Under the same situation as above,
D( f/x) is invertible if and only if D( f /X) is invertible.
Moreover if I = J, then we have

A(f/x) = A(f/%).

Next we define integration on the body. 5
Definition 4.5: Let W be the subset of ¥ such that Wisa
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measurable subset of R . Let fed ¥ be integrable on W, that
is, all the f, ,, are integrable on W. We define

J S(x)dx = J A(xY,.x?)dx! - dx?
w w

=2 [J:]a,M (%',...% P)dx' - dX P](ua ®Up).
a,M w

The following proposition is a special case of Theorem
7.4 and will be used to prove it in Sec. VIIL.

Proposition 4.6: Let I be an even G-set and ¥ and W be
domains in 5(X), X = 4,. Let y = (') be a one to one C -
mapping from W onto ¥ such that A( y/x) is nonzero. Then

we have
JWf(y(x)) A(%) dx = Lf( »dy.

Proof: By definition 4.5 and Proposition 4.4 we have

[ rsen|a(2)

=g’l [waa,M(j(i))’A(%)‘dic](ua ®Uy). (4.3)

By the usual formula of change of coordinates, (4.3) is equal
to

dx

> U_Z,,Mmdﬁ](u., @vy) = ff(y)dy.
a,M 1 4 1 4

The following propositions hold.
Proposition 4.7: If feC ' (V) has a compact support then
we have

f {3f(3x") ~1(x)}dx = 0.
Vv

Proposition 4.8: Let f, heC ' (V) and suppose A is homo-
geneous of grade 5. If 4 has a compact support, then we have

J {f(x)3h(dx") " (x)}dx
vV
= —olg(i), ) f {33~ (x)h(x) }ax.
Vv

V.JACOBIAN AND INVERSE MAPPING THEOREM

In this section G-sets are not necessarily even. The even
(resp. odd) part of a G-set I is denoted by I, (resp. I,).

Definition 5.1: Let I and J be G-sets. Let X =4,,
Y =A,, and Ube a domain of X. Let f = ( f/| jeJ) bea G -
mapping from U to Y. The (J XI)-matrix

D(f/x) = (i (%))
is called the Jacobian matrix for f, where f7,, is a right deri-
vative of f defined in Definition 3.1. Note that it is unique up
to modulo Ann{4,,). When D( f/x) is square, that is,
|Io] = |Jo| and |I;| = |J,|, the superdeterminant of D( f/x)
is called the Jacobian for f and denoted by A( f/x). It is
unique up to modulo Ann(s(4)). Hence the invertibility of
D( f/x) does not depend on the choice of the derivatives
Sf%i - (See Definition 3.9 and Proposition 3.10 of Ref. 4.)

Proposition 5.2: Let I, J, and K be G-sets and let UC A,
and VCA,.Letf= ( f*) bea G '-mapping from V' to4, and
y = (»’) be a G '-mapping from U to ¥. Composing f and
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», fis considered to be a mapping from U to A,. Then
D(f/x)=D( f/y) - D(y/x),

where ~ means that the (k,/)-elements of the matrices are
equal modulo Ann(4,;, ). Thus if the matrices are square,

A(Sf/x) =A(f/y) - A(y/x) mod(s(4)).

Proof: It immediately follows from Proposition 3.7 and
Theorem 3.11 of Ref. 4.

Corollary 5.3: In the same situation as above, D( f/x) is
invertible if and only if both D( f/y) and D( y/x) are invert-
ible.

Theorem 5.4 (inverse mapping theorem): Let I and J be
G-setssuch that |I,| = |Jy|, |I;] = |J;|- Let X =4, Y =A4,,
and UCX. Let f = ( f/) be a G "-mapping from U to ¥ with
r>1.IfA( f/x) #0atx,eU, then there are an open neighbor-
hood ¥ of f(x,), a neighborhood W of x,, and a G "-mapping
h: V—>Wsuchthath (f(x)) =xandf(h( y)) =y,forallxeW
and yeV.

Proof: With the Jacobian matrix D = D( f/x) we associ-
atean invertible 4-linear mapping T from X to ¥ (Definition
2.5). Let T, denote the R-linear mapping 7T regarding X and
Y as vector spaces over R. Regarding f as a mapping from the
domain Uin the R-vector space X to Y, its ordinary Jacobian
matrix corresponds to Tg. Since (7)™ '= (T " !)g, the
usual inverse mapping theorem gives us a neighborhood ¥ of

f(x,), aneighborhood W of x,and amapping # from V to W
such that 4 (f(x)) = x and f(h( y)) =y, for xeW and yeV.
Since the ordinary Jacobian matrix of 4 corresponds to
(Te) Y= (T ~")g)and T ~'is associated with the inverse
D ~1of D, we have

h(y+2z)—h(p) =T'(x) +o(||z]) =D 'z +o(Jjz|).

It follows that 4 is a G '-mapping from ¥ to U of which (su-
per) Jacobian matrix is D ~*. Moreover, all the elements of
D ~! are rational functions of the derivatives of f and the
denominators of the rational functions have nonzero bodies
(see Corollary 3.8 of Ref. 4). They are clearly G"~ - func-
tions. Consequently, 4 is a G "-function as desired.

Proposition 5.5: Under the same condition as above, sup-
pose A( f/x)#0 and U and every point of s(U) has nilpo-
tency 7.

(1) If U is saturated, then so is f(U).

(2) If f(x) is one to one on U, then so is b ( f(x)) on
b(U). .
Proof: By the inverse mapping theorem, for any y,ef( U)
there are an s-connected open neighborhood ¥ of y, in ¥ and
a G -mapping h: V—Usuchthat f(A( y)) =y, forall yeV. By
Proposition 3.13, 4 can be extended to the saturation ¥, and
f(h(y)) =y holds on ¥ because f-h is G’. Therefore
V=£(h(7))CAU) and (1) follows.

Assume that b ( f(x,)) = b (f(x,)) for some x, and x, in
b(U). Then there are s-connected neighborhoods ¥, of y,
= f(x,) and G "-mappings 4, on ¥, to U such that #,(y,)
=x, and f( h;(y)) =y, for ye¥,; (i = 1,2). Thus h, can be
extended to ¥,nV,, both of which are the inverse of £, Since f
isonetoone, 2, = h,( = h) holds. Sinceb( y,) = b( y,) and
hisG",wehaveb (h( y,)) = b (h( y,)). Itfollowsthatx, = x,
and (2) is proved.
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VI. STANDARD EXPANSIONS

Let I be a G-set and X = A4,. Let U be a s-connected
domain of X. Let 7 be a fixed integer such that the soul of
every point of X' has nilpotency . Since every G "-function on
U is uniquely extended to the saturation U of U, we assume
U = U in this section.

Definition 6.1: Let fbe a function defined on b(U) and ¢
be a non-negative intéger. This fis called excessively C*or C{
if for every i,,...,i, €l with 0<n<r, Py ) ..oy f is n-times
right differentiable with respect to x*,...,x" and the deriva-
tive a n( Pg(i,) "'3“;-) f) (axil) -1 s (ax'") -1 iS C' (l'ecall De'
finition 2.3).

When n =0, P, ..., in the above definition is the
identity mapping and so a C{-functionis C".

Proposition 6.2: If fis C{ on b(U) with ¢>1, then
df(dx~)~1is C{~ ' on b(U) for i,el,,.

Proof: If fis C|,
ar [Pg(i,) x("..)f] (axi.) -1, (axi,.) —1
is C* for every i,,...,i,€l, with n<r. Hence
9" [Pg(i.> gy (Of(x°) ™ 1)] (@x") 7t (B2 7

= €9 [3"( Pyiiy - g/ (O%") 7 o (8x™) 1] (Ox*) !
is C*~fori,,...,i,€l, with n<r, where

e=1II; _, olg(iy) g (iy))-
This implies df(dx>) ~'is C{ .

Proposition 6.3: If f is a G "-function defined on the even
part U, of U, then the restriction f |, y, of f to b(U) is C|.
Conversely, any C| function on 5(U) can be extended
uniquely to a G -function on U,

Proof: Let feG’(U,) and i,,...,i,€l, be given. Set g(x)

= £, ..+, (x). By Proposition 3.11, g(x) - d" - a"isG"on

Uy, for any a = (a"), d’es(d,, ). Write

8(x) =3 gau(x)(u, ®0y), for xeb(U),
aM

where g, », (x)€R. Then

Potiy -5y 8(X)) = Y Zapr (%) (g @V, ),
aM’
where M’ ranges over all M'CL such that v,
+ S{dg;,y )+ 54, ,)70. For any such M’ take a, = (a}) so
thatv,,. - @§ - ag#0. Let {M "} be the family of subsets M ”
of L satisfying v,,. - @i} - a;7#0. Since

g8x) agah =3 gor (X)(tt, ®Vp.)ag - G}
a,M’

= z Eam- (X)(ua @ Upyw )ag' .o a&
a,M”

is C”on b(U), every g, - is C” by Proposition 4.1, and in
particular g, ,,- (x) is C’. Therefore

Pyiiyy g0y B(X)) = 0" [Py .. g1 f ] (OX") 71 o (ax™y~!

is C"and fis C{on b(U).
To show the converse, we shall prove more generally
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that if 4 is a C {-function on b(U), then the function fon U,
defined by

fo=3 % [8¥1(Pyh) (@x™) "B (0) Js(x)”,  x€Up,

is G*, where N = {n,} is a sequence of non-negative integers
indexed by I, and P, is the projection to
Sav[ T (s(44 ))"]. We proceed by induction on £. When
t=0, every [3"™(Pyh)(dx™)~'(b(x))]s(x)" is contin-
uous and so is f(x). Suppose > 0. Let

£i(x) = ETVIT [9WI{P,(0h(3x) ")}

X (3x™) ~H(b(x))]s(x)%,

for xeU,. Then we can see
SO x4 X L x P) — flx)

=f;(x)y' + o(y,
and we find that f(x) is right differentiable with respect to x’
on U, and its derivative f;;, (x) is equal to f; (x). Because
every dh(dx’) ~'is C!~ ! by Proposition 6.2, f; is G'~' by
induction hypothesis. Consequently we find fis G *.

The uniqueness of the extension follows from Proposi-
tion 3.8.

Example 6.4: Let X be the superspace given in Example
3.14. Then the soul of every point of X has nilpotency 2. Let

8(x) = go(x) + g, (x)v; + &(x)v; + g3(x)v,
be a function on b(X) = R, where g;(x) are real-valued
functions. Then g is C? if and only if g, is C* and g,, g,
and g, are C 2. In this case if we define

J(x) =g(b(x))+ g'(b(x))s(x), for xeX,

then f'is a G 2-function on X by Proposition 6.3.
Now let fbe a G "-function defined on the whole domain
U. By Proposition 3.8 we have

1
R =S 3, sl
XS(xi') s s(xi")g‘jl vos é‘j’",
for xeU, £eU,. By the proof of Proposition 6.3,
Pg(].) v 8B e 8Ly (f;_},,, o e ) is C7, and hence
Py giim ( fg n ) is C{on b(U). Itis extended unique-
ly to the G "-functionf, ..; on U, which is actually given by

Sy iy, (X)
1 « 1
=T 2

wa Py - gim [fgfm e i (6(x))]
Xs(xh) - s(x"),
for xeU,. Therefore we have

SE) = fyoy (R)ET e £,

Summarizing the previous argument, we have the fol-
lowing theorem.

Theorem 6.5: Let fbe a G- function on U, then it can be
uniquely expressed as follows:

2253 J. Math. Phys., Vol. 27, No. 9, September 1986

f(xvg) =§ fM(x)§M9 (x,§)€U9 (61)

where M ranges over all subsets of /; and

(1) fu (x) is a G"-function on U,

(ii) fir (x) belongs to Sav(IL, A4, ), for all xeb(U).

As we used in (6.1), £™ means &% -.£&” for
M= {j,..jn Y CI, with j, < - <j,...

Definition 6.6: The expression (6.1) in Theorem 6.5 is
called the standard expansion' of f(x,£). The function
J1, (x) that appeared in (6.1) is called the top of f(x,£). If
every fi, (x) in (6.1) belongs to the body 5(A4) for xeb(U),
S(x,£) is called proper.

As we stated before, derivatives with respect to odd vari-
ables are not unique, but here we can choose canonical ones.
Using the standard expansion of f, we have

SOE LT gl I+, £,
= kszM(x);”+ ﬁzM En Sy (X)EM—B(ET 4 97)

=f(x£) + 2 GMfM(x)gu_{j}ﬂj,
jeM

where €, =11, ,0(g(j).g(k)). This shows that
2 € Joa (X)€Y~ UV is a derivative of f with respect to £”.
We call it the derivative of f with respect to £/, which is
denoted by df(F€7) ~!, that is,

HOEN = 3 enfuxIEM— D,
MCT, jeM

(6.2)

Since the derivative of f with respect to even variable x' is
unique, we also use the notation df(dx’) ~! for it. It is clear
that
df(axh~! =;0(8(1'),3(M))3fu(3xi)—‘(x)§”- (6.3)

Since df(J€7) " is again a G'-function and (6.2) is its
standard expansion, the derivative of it can be defined. On
the other hand df(dx’) ~! may not be G ', but considering
(6.3) as if it is the standard expansion of df(dx") ~, we de-
fine its derivative in the same way as above. Inductively we
can define the higher-order derivative d ¥f(dx") ! of f fora
sequence N = {n,} of non-negative integers indexed by 1.

If f(x,€) =2y [ (X)EM and h(x,E) = Sy hp (x)EM
are the standard expansions of f and A, then Z,,( f, (x)
+ hy, (x))€ ™ is the standard expansion of £+ A. From this
fact it follows that the operation 3(dx‘) ! is additive.

The left derivative (dx°)~!fd of feG"(U) is defined
similarly. If fis homogeneous of grade a, we have

(0x)~f 3 = ola — g(i),g(i))If(x") . (6.4)

The following are elaborations of Propositions 3.9 and
3.10.
Proposition 6.7: We have

I (ax") = (Ix ) ™! = olg(i) ()3 Yf(Ix )~ (ax) 7.
Proof: Straightforward.
Proposition 6.8: Let f, h be proper G "-functions on U and

suppose h is homogeneous of grade a. Assume that
I, Ay ; #0. Then we have
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I(Sfh)(0x") ™" = olg(D),a)df(Ix) ™" - h + f- Fh(Ix") 7.
(6.5)

Proof: When 7 is even, (6.5) is true by Proposition 3.10.
Let i be odd. Since d(dx’) is additive, we may suppose
S(x,€) =a(x)éMand h(x,£) = b(x)E X forsome M, KC1,.
If ieMUK or some j( #i)eMnK, then the both sides of (6.5)
are zero. If ieMnK, then fh = 0 and the left-hand side is zero.
The right-hand side of (6.5) is equal to

olg(i),a)ea(x)EM~ Db(x)EX + e,a(x)EMb(x)E X1,
(6.6)

where
EM—ggM-Wgi K o pK—Tdgi
Here we have
€a(x)EMb(x)£ X~
= 6,6,0(g(i),a — g(i))a(x)EM~ Pp(x)e X~ 1Igi

= €,0(g(1), — g(D)olg(,a)a(x)E™~ Pb(x)E~.

Since / is odd, o{g (i), — g({)) = — 1 and (6.6) turns out to
be zero.

Finally assume MnK =@ and ieMUK. Since f and
h are proper and £M£X#£0 by assumption, fh
=olg(M),a —g(K))a(x)b(x)EMEX is the standard ex-
pansion of fh. Therefore, if ieK (the case when ieM is simi-
lar), then

A(fh)(dx') ! = eolg(M),a — g(K))a(x)b(x)EME X1,

(6.7)
where £ X = e£ X~ ¢ Since Jf(Ix’) ~! = 0and dh(x') !
=eb(x)EX~ 13, (6.7) is equal to the right-hand side of
(6.5).

Proper G “-functions on U form a o-commutative G-
graded algebra and Proposition 6.8 asserts that d(dx’) ~'isa
G-graded superderivation of this algebra.

Remark 6.9: The operation d(dx') ~! is not a derivation
on the algebra G © (U) of all G *-functions on U, even if 4 is
a Grassmann algebra. In fact, let 4 be the Grassmann alge-
bra generated by a single element v. Let f(x,£) =v and
h(x,£) =£. Then fh =0, but — If(IE) ~'h + foh(3E) ™!

= vs0.

Vil. BEREZIN INTEGRALS

The integer 7 is such that the soul of every point of X has
nilpotency r. Let UC X = A4, be a domain and let feG"(U).
We suppose U is equal to its saturation U, in particular U
contains its body &(U).

We say that f(x,£)€G "(U) has a compact support, if for
any &, the restriction of g (x) = f(x,£,) to the body b(U) has
a compact support. Here G/ (U) denotes the set of G "-func-
tions on U with compact support. Let f(x,£)

= 24, fur (x)& Mbe the standard expansion of /. Then f has a
compact support if and only if every f,, (x), xeb(U) has a
compact support. We call f singular if f,,(x) is in
Ann(Il; 4, ), for any xeb(U) and MC1,.

Definition 7.1: For feG . (U), the (Berezin) integral of f
on U is defined as
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ff(x,é’)dx dé = J1, (x)dx, 7.1
178

b(U)
where f; (x) is the top of /. We should note that the integra-
tion in the right-hand side of (7.1) is defined in Definition
45.

Lemma 7.2: Let Uand V' be domains in4,. Let z = (2)
bea G’* '-mapping from ¥ to4, andy = (y') bea G+ -
mapping from U to V. Then A(z/x) — A(z/y)A(y/x) isa
singular function in x, where the Jacobian is understood to
be made from the canonical derivatives.

The proof of this lemma which is an elaboration of Prop-
osition 5.2 is given in Ref. 14 and is omitted here. It is easily
seen that the product of a singular function and any function
is singular. Moreover, the integral of a singular function van-
ishes because its top is zero. Therefore we have the following
lemma by Lemma 7.2.

Lemma 7.3: In the same situation as in Lemma 7.2 sup-
pose p(U) = ¥V and z(V) = W a domain in 4;. Let fbe a
G- function on W with a compact support. Then we have

L fyoNa (325) dx = JU feyOnA (i) A (%) dx.

Theorem 7.4: Let I be a G-set and U be a saturated do-
mainin X = 4,. Lety = ( y*,7") beaG"* '-mapping of U to
X and suppose that y is one to one and A( y/x) #£00n U. Let
V=y(U) and feG. (V). Then we have

f FPxE) 1 (xE)A (%) dxdé = e[ f ymdyan,
U 1 4

(7.2)
where € = 1 or e = — 1 according to whether the Jacobian
of the C”*+ '-mapping b(y) from b(U) to b(X) is positive or

negative.

Proof: From (1) of Proposition 5.5, V is also saturated
and the right-hand side of (7.2) makes sense. Since the given
change of variables is decomposed into the following two
types, Lemma 7.3 assures that it suffices to prove the asser-
tion in each case separately:

(1) pr=y*x&) and '=¢/,
(2) y*=x* and 7' =9'(x,£).

The case (1) can be still broken up into the following sub-
cases:

(L1) y*=)*x) and n'=¢’,

(1.2) y' =x'+a(x)§%, y=x
for k #1 and 7' =¢/,
where k(#Q)CI,.

The case (1.1) can be reduced to the following two cases:
(1.1.1) y*=y*(x)eb(4), for xeb(U) and 7' = ¢,
(1.1.2) y' =x'+a(x) with a(x)2=0, y*=x*,

for k#1 and n'=¢£".

The case (2) can be reduced to the following two cases:

(2.1) y*=x* and 7'=Y al(x)&/,
# J
J
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(2.2) yr=x* ' =€ +ax)EX, 9'=¢E/
for [ #1, where KCI, and K #{1}.

Letf(y,n) = 2, fur (7)™ be the standard expansion of
/. In the case (1.1.1), y = y(x) is essentially the change of
variables only on the body (Proposition 4.6), and so we have
only to prove in other cases, where b(U) = b(F) ande =1
hold.

Case (1.1.2): We have A(y/x)=1+da(dx")"".
Since the top of f{y(x.£), 7(x,£))A(y/x) is equal to
P (f1,0(x,£))A(y/x)) on the body b(U), the following
equalities hold:

[ romermenena (L) dx g

=f Py [ f, 6! + a(x)x%,...x ?)
b0

X (1 4 da(dx")~'(x)))dx
=P, f {f1, (x) +3f;, (8x") " (x) - a(x)
b(U)

+ £, (x) - da(dx") "1 (x)
+ 3f; (3x") " (x) -a(x)da(dx") " (x)}dx. (7.3)
Since a(x)?=0, we have a(x)-da(dx")~'(x) =0 by
Proposition 3.10. Moreover by Proposition 4.7 we have
J @ fr, (Ix")~1(x) -a(x)
)
+ /1, (x) - Fa(dx") "' (x))dx

= af, (x)a(x))(dx')"'dx =0.

b(U)

Thus (7.3) is equal to
P, Ji, (x)dx

b(l)

= Ji, (x)dx = f J1, )dy.
(V)

b(U)
Case (1.2): We have

A(/x) =1+ olg(1),g(K))3a(dx") ' (x)EX.
Noting the grade of da(dx') ~(x)£ X is zero, we can calcu-
late as follows:

Lf (P66 (xE))A (%) dx dt

= L; {far (X) + Ffy (Fx") ~H(x) - a(x)EXIEM
X (1 + o(g(1),g(K))da(dx") 1 (x)£X)dx dE
=L{f,, (X)E" + Afe (3x") 7' (x) - a(x)§ RE K
+ og(1),g(K)) fz (x)ERda(dx") ~ ' (x)& X}dx dE
=Py, Lm {f1, (x) + € - Ifr(@x) "' (x) - a(x)

+ €, - 0(8(1),8(K)) fx (x)3a(dx") ~' (x) }dx, (7.4)
where K = I, — K and £ *£X = ¢,£ . By Proposition 3.10
we have
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A fr -a)(x")~!(x)
= 0og(1),g(1) — g(K))fx (dx") ~'(x) - a(x)
+ fx (x) - da(x") ~'(x),
= o(g(K),g(1))[dfg (8x") ' (x) - a(x)
+ 0lg(1),g(K)) fx (x)3a(dx") ~'(x) ].
Hence by Proposition 4.7 we see that (7.4) is equal to
Si, (x)dx = J J1, O)dy.
() V)

Case(2.1): Let M = (a}(x)), then A(y/x) = (det M) !
and 5" = (det M)& " from Definitions 3.3 and 3.9 of Ref. 4.
Hence

f FyEHnEHIA (l) dx d¢
v x
= J. Si, (x)n"(det M) ~'dx d&

- Lf,, (X)& "dx dE = Lf(y,n)dy dn.

Case (2.2): First suppose 1eK and let XK'= K — {1}.
Then we have

Ap/x) = [1+0(g(1).g(K))a(x)§*]~!

=1—o(g(1).g(K"))a(x)§"*
and the following equalities:

Lf(y(x,s‘),n(x,g) )A (%) dx dE

=fU[ngM(x)§M+ S (fu(0)E™

&
+fM(x)a(x>§"§“’)}
X [1—olg(1),g(KNa(x)£X 1dx d&
= L {fi, & + fr- (Da(x)E*EX

— og() &K ) fr ()X a(x)§ “Ydx dg, (7.5)
whereM' =M — {1},K =1, — K,andK' = I, — K '.Since
the grade of a(x)& ¥ is zero we have

EXa()EX =a()EXER = olg(K ") .g(1))a(x)E KEE,
and (7.5) becomes

futddx=[ £, ).
b(U) b(V)
Next suppose 1¢K. Then A(y/x) = 1 and

Lf( P (x.8)A (%) dx dE
= L [;Mfu Y+ 3 (fu (N
+ (x)a(x)é’Ké'M')}dx dE
= wa,, (x)dx = me,, (v)dy.
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The proof is complete.

Proposition 7.5: Let f and h be G”* '-functions and as-
sume that 42 has a compact support and a grade a. Then we
have

Jf(x) - h(dx") "' (x)dx dE
U

(7.6)

- a‘(g(i),a)f f(dx’) 1. h(x)dx dE.
U

Proof: When i is even, the equality

A(fR)Y(Ox) ' =f-Fh(Ox) " + olg(i),a)df (Ix) ' - h
(1.7)
holds. Since the top of fh has a compact support, the in-
tegral of the left-hand side of (7.7) is zero and (7.6) follows.
Next let i be odd. By the additivity of integration we may
suppose that f(x) = a(x)£ Mand h(x) = b(x)& X, If ieMnK
then the tops of the both integrands in (7.6) are zero. If
ieMnK then the right-hand side of (7.7) is zero by the proof
of Proposition 6.8, and (7.6) follows.

Viil. CONCLUDING REMARKS FOR FURTHER STUDIES

In the present paper we have developed differential and
integral calculus on generalized superspaces, which willbe a
basis for deeper analysis of superfields. Except for Sec. II, we
restrict the base field F to be the real field. An important and
pressing problem is to extend our theory to the complex case.

Let A be the algebra of supernumbers over R and let 4,

=A@ gC. No difficulty arises when we only extend the

range of a function fed Y to A, where U is a domain in the
real superspace X over 4. A function ged { is right differen-
tiable at x,eX with respect to x' if there is a constant aed
such that

8(Xg,Xp™ X + ¥XoT X 51 )
=g(x,) +ay +o(|y]D.
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The integral of g is also defined in the same manner as we did
in Secs. IV and VIL

To extend the domain U to a domain in complex super-
space is not quite trivial. We need to introduce a suitable
involution in the algebra of complex supernumbers. This
will be discussed as one of the main themes of our next paper.

In this paper integration is only defined for functions
with compact support. For further studies of superfields it is
important to consider integration for rapidly decreasing
functions. It will be also treated in another paper.'*

The consistency of integration proved in Sec. VII makes
it possible to define integration for differential forms on
(generalized) supermanifolds. We have a plan to write a
paper about supermanifolds and differential forms on them.
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It is demonstrated that the Liouville equation and the Cheng equation (describing a chemical
reaction) are free from movable critical manifolds and possess the Painlevé property. The
associated linearizing transformations and general solutions follow naturally from the Painlevé

analysis.

I. INTRODUCTION

In recent times, the Painlevé property for partial differ-
ential equations (PDE’s) has drawn much attention'~’ ei-
ther in the original sense of Ablowitz, Ramani, and Segur’ or
in the generalized form of Weiss, Tabor, and Carnevale.* In
the latter approach, a PDE is said to possess the Painlevé
property if its solution can be expressed as a single-valued
expansion about a noncharacteristic singular manifold*
@(x,t) =0. In the present note, we discuss the Painlevé
property and Bicklund transformations for the Liouville®
and Cheng® equations. Consequently, the linearizing trans-
formations and the general solutions are shown to follow
automatically.

il. THE LIOUVILLE EQUATION
First, we consider the Liouville equation®

u, —e'=0. (1)
Under the transformation

u=logV, (2)
(1) becomes

Vv, —V.V,—V3*=0. 3
We now look for solutions of (3) in the form

V=g° f‘,o v, o', @)

i=

where V; and @ are analytic functions of (x,#) in a neighbor-
hood of the singularity manifold ¢ (x,?) = 0, and a is a nega-
tive integer, to be determined. Inserting V= Vyp *in (3), by
leading-order analysis, we find that « = — 2 and

Vo=2¢.9.. (5)
Substituting (4) in (3) and equating the coefficient of @/~ ¢
to zero, we get

G+ (=2 Ve, =0, (6)
and so the resonance values are j = — 1, 2. The resonance
Jj= —1 corresponds to the arbitrariness of the manifold
@ =0. Atj =1, we find that

Vi= —2¢,. (7

Also, we observe that atj = 2 the resulting equation is satis-
fied identically and so ¥, is arbitrary. Thus (1) possesses the
Painlevé property.

By cutting off the series (4) at the constant level term
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(¥V; =0,j>3), we find the Bicklund transformation in the
form

V= 20.0./9%) — 2@./9) + V2, (8)
where both ¥ and V, satisfy (3) and
PV +Pi@ V2

+ (20,0 P — PiPu — P 2P V2

~ P PuxPxtt — Pt Pxx Pt — Px Pt Poexee =0, &)
PxP Vot — 2000 Vor — PrPuVax

=20, V2 — PPux Ve

+ (PuxPis + 2P Pe — 4P % + 20202 V2

- 3¢x¢t V% + 2¢xt¢xxtt - 2¢xxt¢xn =0, (10)
and
Pxte Vu + Poxt Vz: + 3¢xr V% — Px sz: — Prxue Vz =0
(11)
hold.

When we consider the vacuum solution* ¥, = 0, it easi-
ly can be shown that the admissible solution to (9)-(11) is
given by

Pxe = 0. (12)
Consequently by (2), (8) becomes
u=log(2,p./9%), (13)

where g satisfies the linearized wave equation (12). From
(12) and (13), we infer that the transformation (13) maps
the solution of the linearized wave equation to a solution of
the Liouville equation. Moreover, the general solution to
(12) is @(x,t) = g(x) + h(2), where g and 4 are arbitrary
functions of x and ¢, respectively, and so (13) becomes

u = log(2g.h,/(g + h)?), (14)
which is the known general solution of the Liouville equa-
tion'® (1).

A similar analysis can be performed for the Dodd-Bul-
lough (DB) equation u,, = ¢* — e ~ 2%, which can be rewrit-
tenasVV,, — V. ¥V, — V3 4+ 1 =0, using (2). The dominant
behavior is given by @ = — 2 and ¥V, = 2¢, ¢,. The reson-
ances are againj = — 1, 2 and we find that the DB equation
possesses the Painlevé property. However, we notice that it
does not admit the linearizing transformation in the sense
discussed earlier, due to the constant term on the left-hand
side.
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lil. A CHEMICAL REACTION EQUATION
Next, we consider the Cheng equation®
(15)

where a and b are constants, corresponding to the dynamics
of the photosensitive molecules when the light beam passes
through them. We expand

u, = —auv, v, =bu,

X

0 0

u= Y up'~, v=Y ye/~! (16)
j=0 i=0
and find from the leading-order analysis that
uy= (1/ab)p,, vo= (1/a)gp,. (17)

We further find that resonances occur in (16) atj = — 1, 1.
Substituting (16) in (15), and equating the coefficients of
(@ 7, @ ™) to zero, we obtain two equations, the first one
being

(@ /ab) + @ u, + (@, /b)v, =0, (18)
while the second equation is identically zero. This implies
that either the function u, or v, is arbitrary. Thus the system
(15) possesses the Painlevé property.

As in the previous example, we find the Biacklund trans-
formation in the form

u=(1/ab)(¢,/p) +u,, v=(1a)(g,/p)+v,

(19)
where (u,v) and (u,v,) satisfy (15) and
—1-(?-)"—'+cpxul+ﬁv,)=0, (20)
@ \ab b

which is identically satisfied because of (18). Now, consid-
ering the vacuum solutions #, = O and v, = 0, from (20), we
arrive at exactly the same linearized wave equation (12).
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This allows us to write the general traveling wave solutions
of (15) from (19) in the form

u=;(__hz_) vzi(__gx__)
ab \g(x) +h(t)/)’ a \gx)+ht)/)’
(21)

where g(x) and A(¢) are arbitrary functions discussed in
Sec. I1. Solution (21) is indeed the general solution derived
by Cheng® from his analysis for (15).

Here, we have constructed the linearizing transforma-
tions and solutions of (1) and (15) in a rather simple and
straightforward manner, from the Painlevé analysis.
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The cohomology problem of the overall local symmetry group of theories with external gravity,
including diffeomorphisms, local Lorentz, and gauge transformations, is studied, in order to
determine all possible anomalies. To this end the nontrivial cohomology classes of the coupled
system of two coboundary operators are classified in the abstract. Using this result and a technical
assumption the nontrivial cohomology classes of the coboundary operator associated with
diffeomorphisms are determined. These possible anomalies split in any dimension into two
distinct families. Both are calculated (the second only in four dimensions). Using known resuits
about gauge and local Lorentz anomalies, the possible anomalies of the overall local symmetry

group are determined.

I. INTRODUCTION

The recent rise of interest in anomalies has produced a
better knowledge of the geometrical and algebraic origins of
chiral anomalies' and has permitted us to assimilate the
known gravitational anomalies”™ partly to Lorentz gauge
anomalies® and partly to Weyl anomalies.®

Unfortunately we do not have yet a general argument
that suggests that these are the only possible anomalies.

In this paper we tackle the problem of finding all possi-
ble anomalies of the group of diffeomorphisms in a theory
including (external) gravity. We use cohomological (or
consistency) methods,”'? so that possible anomalies are
represented by nontrivial cohomology classes of the co-
boundary operator corresponding to general coordinate
transformations. This problem has been recently investigat-
ed also by Bandelloni."!

Before we turn to the results of this paper we must clear-
ly specify our program. For the sake of manageability the
differential space the coboundary operator acts upon has
been restricted in this paper to be the space F of local func-
tionals, which are integrated polynomials of the connec-
tions, gauge fields, matter fields, vielbeins, and inverse viel-
beins (see the exact definition at the beginning of Sec. IV).
This space includes all known actions and anomalies, while
it excludes Bardeen-Zumino-type actions.’

In this way we are able to solve completely the cohomo-
logy problem, i.e., to find all the nontrivial cohomology
classes in the space F. Of course we cannot exclude the exis-
tence of other nontrivial cohomology classes not contained
in F.

With the above limitation in mind, our results are speci-
fied by Theorem 4.1, which holds in any space-time dimen-
sion and gives the first family of nontrivial cohomology
classes, and by (5.40), i.e., the second family. The latter is
calculated in four dimensions.

These results are quite general since we include in our
analysis all fields appearing in a theory with gravity, i.e., the
vielbeins, inverse vielbeins, connections, gauge fields, and
matter fields; moreover, they are valid also in the presence of
torsion and for nonmetric connections. The only limitation
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concerns the fact that we have assumed the conventional
point of view of a field theory defined on a chart rather than
globally defined in some manifold, therefore we have not
worried about the objects we have used being globally de-
fined.

The previous results, however, must be considered as an
intermediate step in our program. Indeed, (1) we must ver-
ify whether we can eliminate the nontrivial cocycles we have
found by means of Bardeen—Zumino-type counterterms, as
is the case for Eq. (5.40) and for the first family above; and
(2) we must compare diffeomorphisms with other symme-
tries of the theory, since, by subtracting counterterms from
the quantum action, we may violate other symmetries.

In fact, in the present papers we do not limit ourselves to
studying the cohomology of diffeomorphisms. We study the
cohomology of the most general (local) symmetry group of
a given theory with (external) gauge and gravitational
fields. This is motivated by the trivial fact that the (one-
loop) Ward identities corresponding to symmetry transfor-
mations of the classical theory can be written as a unique
Ward identity

st =0,

where T is the vertex generating functional and X is the sum
of all functional operators generating the symmetry trans-
formations. Once the group parameters become FP ghosts
(see Sec. IT), endowed with the specific transformation laws
that express the associativity of the overall symmetry group
transformations, Z becomes nilpotent, and we can study the
relevant cohomology. This cohomology accounts for the re-
lations among cocycles generated by distinct Ward identi-
ties. For the purpose of studying this coupled cohomology
we have proved Theorem 3.1, which classifies the nontrivial
cohomology classes of the sum of two coboundary operators
in terms of the cocycles of each.

It turns out that our results on diffeomorphisms togeth-
er with well-known results about Lorentz and gauge anoma-
lies are sufficient to determine the nontrivial cohomology
classes of 2. From the latter we can extract all possible
anomalies of a gauge theory coupled to gravity in four di-
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mensions. They are simply the usual gauge anomalies and a
mixed U(1)-gravitational anomaly, which can take several
different forms (see the end of Sec. VII). In particular, the
cocycle given in Eq. (5.40), which is nontrivial in the space
F, is not an anomaly in four dimensions since it can be can-
celed by a Bardeen—Zumino counterterm.

The article is arranged as follows. Section II is devoted
to definitions, notations, and conventions. In Sec. III we
prove the above-mentioned classification theorem and ana-
lyze a few general consequences. In Sec. IV we determine the
first family of anomalies of the diffeomorphisms; Sec. V is
devoted to the second family. In Sec. VI we comment on the
results found in Secs. IV and V. Finally in Sec. VII we deter-
mine the cohomology of the overall symmetry group, includ-
ing diffeomorphisms and local Lorentz and gauge transfor-
mations.

1. NOTATIONS AND CONVENTIONS

For any local symmetry group S of a classical theory
with infinitesimal parameters eA* (x) (@ = 1,...,N) we shall
introduce a coboundary operator X in the following way.
Let us denote by ¢, —@, + 5@, (@A) the local infinitesi-
mal transformation on the generic field ¢, of the theory.
This transformation is operated by the functional operator

= )
3y = f Sso, 5, '

r

where the summation over  is understood. Let us consider
now the A%’s as anticommuting fields (FP ghosts) and en-
dow them with a transformation property:
A% (x)—A% (x) + 8gA° (x). Then we introduce the opera-
tor

é
2o = J 84 %(x)
UL 54 %(x)
There is a choice of §5A° (x) such that

52 0.

3. 2.1)

(2.2)

This is what we refer to as the coboundary operator corre-
sponding to the symmetry S. The choice of A%, which
renders X nilpotent, is dictated by the geometry of the
group S (see Ref. 9): the A% are to be assimilated to the
Maurer—Cartan form on S and the §54%’s express the
Maurer-Cartan equation. When we want to indicate expli-
citly the dependence of =5 on the ghost A*, we shall write =%
instead of =g.

The coboundary operator =g can be defined also when
the symmetry S is global. In that case the FP ghosts are
constant anticommuting parameters.

The invariance of the classical action 7 under the sym-
metry S'is

3 I=0. (2.3)
For the quantized theory it implies the Ward identity (WI)

3L =#dg + 0(#), (2.4)
where T is the vertex generating functional. For the pur-
poses of this paper it is enough to limit ourselves to one-loop

order and to the case of external ghosts. Here Ay is a local
functional of the fields and their derivatives; it is linear in A¢
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and of mass dimension equal to the space-time dimension »,
if dim A® is determined in such a way that dim =5 = 0.
Moreover, as a consequence of Egs. (2.2) and (2.4), Ag
satisfies the consistency condition

SoAs =0, (2.5)
i.e., Ag isacocycle of 3. In general, Ag is a sum of indepen-

dent cocycles A{”. If there exists a local functional C*? inde-
pendent of A* such that

AP =3,CD, (2.6)
A$’ can be adsorbed through a redefinition of T. If
AP #35C, (2.7)

for any local functional C, the symmetry is broken at the
quantum level.

In quantum field theories where all fields have canonical
dimensions >0, Ag and AY’, C*V, and C in Egs. (2.5),
(2.6), and (2.7) are integrals of local polynomials of the
fields and their derivatives. In theories containing fields with
vanishing canonical dimensions this fact is not as obvious.
Anyway, in this paper, we shall investigate only the cocycles
A§’ of the relevant coboundary operator X in the space of
P-functionals. For theories involving gravity, P-functionals
will be defined at the beginning of Sec. IV. Here A{’ is a
coboundary if it satisfies Eq. (2.6), where C*” is a local P-
functional independent of A% (local action). If Eq. (2.7)
holds for any local action C, A}’ is a nontrivial cooycle
(which we call an a-cocycle).

Itis among these a-cocycles that we must look for anom-
alies according to the program explained in the Introduc-
tion.

As anticipated by the terms we have used, Eqgs. (2.5)-
(2.7) set up a cohomological problem. Indeed a differential
space'?is defined by the couple formed by the vector space of
P-functionals and by the nilpotent operator X acting onjt."!

The problem consists of determining the cohomology
space, that is, the set of nontrivial cohomology classes, each
being identified by a-cocycles that differ from one another by
coboundaries. In this paper we shall be concerned with this
problem for the coboundary operators listed below, leaving

aside the question of whether there exists a renormalized T
that actually generates the a-cocycles. We shall comment on
this question in Sec. VI.

We are interested in the cohomology problem for the
Lie algebras of the group of diffeomorphisms D with param-
eters £’ (x), the group of local Lorentz transformations L on
the tangent space with parameters u%(x) and a generic
gauge group G with parameters A* (x). According to the
above recipe the parameters become anticommuting ghost
fields with transformation laws:

Sp€'=£73,€", (2.8)
Spup = — upug, (2.9)
SoAd = —Lf®APL, (2.10)

where the f°#7 are the structure constants of the gauge
group. The field transformation laws are the usual ones. We
only write down the transformation law for D relative to the
affine connection I'’, , for the sake of stating the sign conven-
tions
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6DF£nn =5Dr£nn +am angli (2-11)

where 8, denotes the transformation of T considered as a
covariant tensor. Then, according to Eq. (2.1), we define the
coboundary operators 25, Z;, and Z; and denote by Ap,
A, , and A the relative cocycles.

In theories that, classically, are simultaneously D-, L-,
and G-invariant, the relevant coboundary operator is not
each operator 3p,, 2, , or I separately, but the sum

2=3,+3, +3;. (2.12)
Thus X is nilpotent,
32=0, (2.13)

provided that the ghosts 2 and A are considered as scalar
fields (with weight 0) under D. The appropriate modifica-
tion of 2, is understood.

The cohomology of 2 is determined on the basis of the
cocycles of the various operators with the addition of impor-
tant restrictive conditions (see the next section).

For later use we introduce also the subgroups D, and
D, of D. Here D, is the group GL(4R) whose infinitesimal
parameters are obtained by specializing £™ (x) to £7(x)

= x'al", where a" are generic constants and D , is the sub-

group SL(4R) of D, whose infinitesimal parameters satisfy
the traceless condition a) = 0. We define correspondingly
two coboundary operators 3, and 3‘,'4 by promoting a" to
anticommuting (constant) ghosts with the transformation
law

I af =alal (2.14)
and the same law for 3, . Since a theory that is classically D-
invariant is also classically D, -invariant (D, -invariant), it
makes sense and proves useful to define a coupled cobound-
ary operator X, + 2, (2, + 3,), which is indeed nilpo-
tent provided that we postulate the following obvious cross-
transformation laws:

EAgm = xla7 angm + gna"m,
and the same for 3.

Spar=0,  (2.15)

lil. THE COUPLED COHOMOLOGY PROBLEM

While studying the cohomology of 2, and that of £
[Eq. (2.12)], we are faced with the problem of finding the a-
cocycles of a coboundary operator that is the sum of two
coboundary operators in terms of the cocycles of the latter.
Therefore, in this section, we solve this problem in general.

Let S and R be two symmetries and 3¢ and 2 be the
relative coboundary operators. Let us define the mixed co-
boundary operator g5 + 2z, (5 + 2z )2 = 0. The cocy-
clesof g 4+ 2 havetheform Ag + Ag, where Ag (Az)is
acocycle of X5 (2 ). Indeed the consistency condition

(25 +2R)(As +Ax) =0 3.1
implies, in particular, Z;Ag = 0and 2z Ax = 0. Given Ag,
a A satisfying Eq. (3.1), if it exists, is defined up to cocycles
Ag of Zp _satisfying the condition 2 A =0. We remark
that such A, ’s are cocycles of =5 + Sz . The only (up to
coboundaries) Az such that Ag + Az belongs to a definite
cohomology class of =5 + Z is called the R-partner of Ag.
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We shall say that an a cocycle of 2 ¢ is admissible if it has
an R-partner.

For the sake of conciseness, let us introduce the concept
of an S-symmetry-preserving a-cocycle of 2, briefly, an S-
a-cocycle of 2 . By this we mean a cocycle Ag of  that
satisfies the following condition:

SsAr =0 and Az #3.C,

forany Cs.t. 2;,C=0, (3.2)

S-a-cocycles and a-cocycles do not, in general, coincide.

Now we classify all the a-cocycles of 25 + 2, accord-
ing to the characteristics of the cocycles Ag.

Case (1). Ag is an a-cocycle of Zg: IsA5 =0,
Ag#32:C, VC.

(la) 25 Ag = 0. In this case Ag is an a-cocycle of

25 + 2z

(1b) 2 A5 #0. Among all these As we look for lin-
ear combinations A for which an R-partner A, exists.

If such a Ag exists then Ag + A, is an a-cocycle of

35 + 3k

Case (2). Ag isacoboundary of 35: Ay = 2 C. In this
case an R-partner A, certainly exists. However it may occur
that 3,C = Ag + Ag. It follows that (25 + 2 )Az =0.
Therefore Ay, is a cocycle of (25 + 2z ) and in particular
Sshg =0. _

(2a) Ag =0. Then Ag + A is a coboundary of
s+ 2r._ —
(2b) Ax#0 and AR #Z C, VC. Then both

Agr + Ag and A, are a-cocycles of 25 + X . They be-

long to the same cohomology class, for Ag + Ax

+AR—(ZS+2‘.R)C _ _
(2¢) Ag #0 and Ag =3xC for some C.
(2c1) Z;C=0. Then both Ag + A and Ay are
coboundaries of 25 + 3.
(2c2) =,C #0.Ag + Ag and Ag area-cocycl&s of
25 + =y belonging to the same cohomology class.

We summarize the results obtained as follows.

Theorem 3.1: The nontrivial cohomology classes of
3¢ + X, are uniquely determined (1) by the linear combi-
nations of a-cocycles of =g that admit an R-partner and by
the relative R-partners, and (2) by the S-g-cocycles of 3

(with vanishing S-partners).

The next corollary follows immediately.

Corollary 3.2: If T 5 does not have nontrivial cohomo-
logy classes, the only admissible a-cocycles of 2 are the S-
a-cocycles.

This corollary expresses, in general, the relation
between absence of anomalies in a given W1 and exactness of
the corresponding symmetry. Otherwise stated it says that
disregarding S-symmetry violating P-functionals and local
actions implies only the loss of coboundaries of =5 + 2.

Remark 3.3: In Theorem 3.1, we can reverse the role of
R and S. Then it is easy to realize that the nontrivial cohomo-
logy classes of 2 + 2 fall into three different groups: the
first is determined by the S-g-cocycles of £z (with vanishing
S-partners), the second by the R-a-cocycles of = (with van-
ishing R-partners) and the third by a-cocycles of =5 whose
R-partners are a-cocycles of 2.

Remark 3.4: Let us particularize the above results to the
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case when R is a subgroup of S. We denote by 4 % (x) the
restriction of the infinitesimal parameters A° (x) of S toR. It
is useful to consider R and S as independent groups. Thus
when promoting 4 and A to ghost fields we shall consider
them as independent. In the few cases we are interested in, in
the next sections, it turns out that if we set

SiAe =0, S =34, (3.3)

we can define the coupled coboundary operator 25 + 3.
Now, we can apply Theorem 3.1, but, in this case, we can get
more independent information. Indeed, if A¢ = fAaisaco-
cycle of 2, then A, = fA ais acocycle of 25 and

(Zs +3Zr) (As + Ag)
= (3 +2R)f(/1 +,1R)a=z§+‘kf(,1 +Ag)a=0.

Therefore both Ag and A; are admissible. This remark will
be used in the next section.

IV. THE COHOMOLOGY OF DIFFEOMORPHISMS: THE
FIRST FAMILY OF 3-COCYCLES

First of all we specify the vector space where the co-
boundary operator 2, operates. It is the vector space F of P-
functionals, that is, of integrated local polynomials of the
vielbeins, inverse vielbeins, connection, and all the other
fields involved and their derivatives, with canonical dimen-
sions equal to the space-time dimension 7 (dim £" = — 1).

Since £, FCF, the couple (3, ,F) is a differential space
in which the cohomology problem can be consistently de-
fined. We remark that F includes all the known actions used
in field theories and all known anomalies. However F does
not include Bardeen—Zumino-like actions [see Eqs. (6.3)
and (7.3)]. This feature implies that nontrivial cohomology
classes of 2, in F cannot be identified immediately with
anomalies, as explained in the Introduction. However, it has
the advantage that we can solve the cohomology problem
completely. This is what we want to show in this and the next

section,
A word of caution is in order (even though it is rather

obvious): with our procedure we miss possible nontrivial
cohomology classes not belonging to F.

Before proceeding we need another specification about
locality. On a general ground, we should start from the coho-
mology of 2, in the space of P-functionals containing also
powers of the coordinates x™ . However, as is shown in Ap-
pendix A, rigid translations do not have nontrivial cohomo-
logy classes. Due to Corollary 3.2, this allows us to study the
cohomology in the space of local P-functional F. Therefore,
from now on we shall refer to the local cohomology.

We shall proceed by analyzing first the cohomology of
3, and =, . This allows us, in general, to delimit the possible
form of the cocycles of £, and, in particular, to find a set of
a-cocycles of 2 5, that is present in any space-time dimension.

This is the content of the present section and the rel-
evant results are summarized in Theorem 4.1. The remain-
ing part of the analysis is restricted to four dimensions and is
carried out in Sec. V.

The cohomology of 2 , is analyzed in Appendix B. The
most general admissible form of a cocycle is
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4.1)

_ n Leely o mk -k
AA - Jam <Z z Ckl-“;c’ anll:.ls ’)’

where the '”a:,",f_ff};k' are local polynomials of the fields and

their derivatives of Dy weight w where the world indices not
appearing explicitly are understood to be saturated, and

=(d”x. The C fc"lk are numerical coefficients not contain-
ing constant tensors. Moreover, the summations over r and s
are finite. There exist many solutions of the consistency con-
ditions 2, A, = 0. They correspond to coboundaries of X ,
except for the case r =5 = 0.

In this case

2.0,"=x"ard,0,"+a,'s," —a,,' +wa,a,m,

where w is the D, -weight of a’ (not to be confused with the
D-weight).
The consistency condition is

A= ZAJ.a‘m"a,,’"

- J( - ampap”anm + (w - l)allamnanm) = 0’

which can only be satisfied if a]} = 67a. It is easy to see that if
w#1, A, isa coboundary, while forw = 1, it is an a-cocycle.

" Therefore the a-cocycles of 2, have the form

A, = a,’fa, (4.2)
where a is a scalar with w = 1 under D,

The first consequence is that 3, does not have a-cocy-
cles. Therefore, from Corollary 3.2, it follows that the a-
cocycles of 3, must be D, -preserving. Of course, the same
holds also for the a-cocycles of 2, and 3. Moreover, since
the operator analogous to X, in the tangent space does not
have a-cocycles either, we are entitled from now on to re-
strict our study to P-functionals in which both world and
tangent space indices are completely saturated. However the
cohomology of £, tells us much more, provided that we
remember that D, is to be considered as a subgroup of D.
Therefore the relevant g-cocycles are those admissible with
respect to the cohomology 2, + 2.

Now we want to relate these cocycles to the a-cocycles
of 2, in order to extract information about the latter. To this
end let us write the generic cocycle of X, as
Ap = fE™ (x)b,, (x). Then the condition =, A, =0 im-
plies

5 )
2,5, =xa,"d,0, +a,",.
As a consequence

3,b, =x'a,"4,b, +a,"b, +wa,D,, (4.3)

where w is the D, -weight of b,,. Now let us consider the
coupled cohomology X, + 2,. We apply Theorem (3.1)
with D, in the place of S and D in the place of R. Then we
have two sets of a-cocycles of £, + 2,.

(1) The first set is determined by the a-cocycles A, of
3, given by Eq. (3.2) that admit a D-partner. Let us look for
a D-partner A, = f£™b,, for each of these A, ’s:
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(24 +2)(at o+ [£7,)

= —afzpfa + (w— 1)a5f§”%m =0,

where Eqgs. (2.15) and (4.3) have been used. We remark
that Eq. (4.4) can be satisfied only whenw = 1. For, if w#1,
it implies that acting with 2, on fa (a has D, -weight 1),
one gets a P-functional with weight w3 1, which is impossi-
ble (see the beginning of the next section). Therefore w = 1
and

sza = 0‘

(2) The second set is determined by the D, -a-cocycles
of2,,

(4.4)

(4.5)

0=(2, + ED)J‘E"‘bm = (w— l)afj.é""bm, (4.6)

which can only be satisfied if w = 1.

Conclusion: The admissible a-cocycles of 2, have D, -
weight 1 and the admissible a-cocycles of £, must satisfy
Eq. (4.5).

Now, if f£™b,, is an a-cocycle of 2, it is an admissible
cocycle w.r.t. 2, + 2, due to Remark 3.4. This implies
that its D, -weight w is 1. On the other hand, fx’al,, is
certainly a cocycle of 2, (see Remark 3.4), i.e.,

3, fx’a,”'bm

= — |x'a,"a,,?, + (1 —w) | x'a,"a,,, = 0.

Sincew =1,

fx'a,mampbp =0. 4.7)
This equation can be satisfied only if

b, = —d,b+d, d, ", (4.8)

where b is not itself a derivative. Again, since @} fb must be an
admissible cocycle it must satisfy Eq. (4.5). This equation
implies, in particular, that b has D-weight 1. Thus we have
proven the following theorem.

Theorem 4.1: The most general a-cocycle of X, has the
form

A, = f (™ + 3, 3, £ ™22,

where b is a D-scalar density with D-weight 1 (and is not a
derivative), and b2: is a D ,-tensor with D, -weight 1 with
explicit form to be further determined. The b and 52> define
the first and second family of a-cocycles of 3 5,.

V. THE COHOMOLOGY OF DIFFEOMORPHISMS: THE
SECOND FAMILY OF a-COCYCLES

So far the analysis has been carried out without any di-
mensional restriction. However, in order to derive the ex-
plicit form of the a-cocycles of the second family, we must
find all the solutions of the consistency equation of the form
§8,, 3, £™boP. Although the method we are going to use
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can certainly be generalized to » dimensions, in this paper we
shall limit ourselves to four dimensions.

It is well known that a general connection splits into a
metric connection plus a nonmetricity tensor. However, in
order to find a very géneral solution (applicable also to
gauge theories) we forget in this section the relation between
metric and connection and treat them as uncorrelated fields.
We shall study the implications of this relation in the next
section. With this proviso the only possible a-cocycles we
find are specified by Eqgs. (5.10), (5.26), and (5.40). In the
next section we shall show that the cocycles of Egs. (5.10)
and (5.26) are coboundaries (in F), while Eq. (5.40) is not.
For the sake of simplicity we drop the cautionary adjective .
possible throughout this section.

First let us write b27: in such a form as to exhibit an
unambiguous separation between the covariant and the non-
covariant parts. To this end let us remark that any D, -tensor
with D, -weight w can be written as a polynomial of I'’s (T’
denotes T ) with D-covariant coefficient of D-weight w.
For example, whenever we come across a covariant deriva-
tive D,, applied to a D-tensor T with D-weight w, we intro-
duce the derivative D,, = D,, — wI". ;; D,, T is D-covariant
with D-weight w. In conclusion, in four dimensions, we can
write b2): as follows:

b=B,+TB,+ITB,+TTTB,

+ 0T B, + T 3T B, + 3ITB,, (5.1)

where all the indices are understood (for instance, JI'B;
means J; [y B;,”7;"*) and the B; (i = 1,..,,7) are covar-
iant D-tensors of D-weight 1. Since we wish to discriminate
between covariant and noncovariant parts, we split I" as fol-
lows: I" = I 4+ T, where I is the symmetric partof " and T

is the torsion tensor. Since T'is covariant we can absorbitina
redefinition of the coefficients B,. We suppose that this has
already been done and that I" appearing in Eq. (5.1) and in
the remaining part of this section is actually T".

Moreover, consider, for example, the term B;. If it is
antisymmetric in, say, s, and s, then using the definition of
the curvature, we can absorb this term into B, and B;. There-
fore, in order to avoid ambiguities (and without loss of gen-
erality), we assume B; to be completely symmetric in s,, s,,
and s;. The same remark applies to B, and B,.

As a second preliminary step, let us split 2, into two
functional operators:

3, =35+2, (5.2)

Here 35, when applied to a monomial of the fields and their
derivatives with given weight (and with saturated or unsatu-
rated world indices), transforms it as £ ,, would if the mono-
mial were a covariant tensor with the same indices and the
same weight. Then X, is defined by Eq. (5.2). In particular,
we have

/E\Drmln = am ané‘l’

S5, 3,'=0, (5.3)
SLOEm= —,EPB,E™, etc.

One can prove that
32 0. (5.4)
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In general, unlike 2, )3 p does not commute with the oper-
ation of differentiation, except in special cases. For instance,
it does commute with the exterior derivative d applied to
forms without external indices (see below).

It is also convenient to use the language of differential
forms. Let us denote by Q@/,P;,R },... j-forms whose compo-
nents are polynomials of the fields and their derivatives with
ghost number i. Then

5, 0i=3%,fol 2, [01-5,]0s

This shows that cocycles and a-cocycles of 2, are cocycles
and a-cocycles, respectively, of 25, and vice versa. Therefore
from now on we shall use only 2.

Let us return to the cocycles of the second family:

Ap = fap, angmbanZEfgi, gDAD =0.
This implies that there exists a three-form Q3 such that

$,0! =dg3, (5 7a)

where d represents the exterior derivative. Applying s p to
this equation and using Eq. (5.4), we get EDdQ3 =0. As
previously stated in this and the following cases,
3pd = dX,. Therefore using the local Poincaré lemma® we
can conclude that

(5.5)

(5.6)

$,03 =403, (5.7b)
for some Q3. Similarly

2,03 =dot, (5.7¢)

$,01 =dQ3, (5.7d)

£,0% =0, (5.7¢)
for suitable Q.

It is easier to solve Eqs. (5.7) with high ghost number
than those with low ghost number. Therefore whenever pos-
51b1e, we try to reduce our problem of finding the a-cocycles
of $ 2p of the type Q1 to the problem of finding the a-cocycles
of $ p of the type 03, Q3, etc. The method essentially con-
sists in looking for a complete and reasonably simple classifi-
cation of the solutions of Eq. (5.7a). As we shall see, a simple
classification is provided by the solutions of
2,,(Q4 —dP;) =0 and 2 (Q% —dP?) =0, which are
specified by Theorems 5.1 and 5.4 below. What is left out
from this classification can be determined easily through a
direct calculation. Both theorems are divided into a part I
and a part II. Although only the first parts are essential for
our final results, we prove part II for reasons that will be
clear shortly.

First selection: Let us consider the cocycles A, of Eq.
(5.6) that satisfy the equation

$5(Q4 —dP}) =0, (5.8)
for some three-form P}. Let us separate the possible P}’s
into two classes A and B, according to the following distinc-
tion: a polynomial or form is class A if it contains only 3¢ or
higher derivatives of £, while it is class B if it contains at least
one factor & or d¢.

Theorem 5.1:
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Part I! The cocycle Aj, of Eq. (5.6) is a coboundary if
and only if Q@ satisfies Eq. (5.8) for some class A P.

Part II: If Q} satisfies Eq. (5.8) for a class B P}, then
either it is one of the coboundaries of part I or it is an a-
cocycle having the form

Oné "IK, (5.9)
where X' is a noncovariant polynomial tensor. The only ex-
ample, up to coboundaries, is the following:

A = J-Tr(A)Tr(dI‘)Tr(dF). (5.10)

Here we have introduced the matrix notation'?

A for the 4 X4 matrix A}, =43,£",

T for the 4 X 4 matrix 1-form I'?, =T'7, dx’.

Proofofpart I If P} is class A, then the necessary condi-
tion is obvious since A, being a coboundary means

Qi =2,P% +dP},
for suitable P§ and P}. Then Eq. (5.8) is a consequence of
Eq. (5.4). That the condition is sufficient is proven in Ap-
pendix C.

Proof of part I1: In order to prove the second part of the
theorem (and for later use) it is convenient to introduce the
following notation: for any p-form w in an n-dimensional
space, whose components ;,..;, are polynomials of the field
and their derivatives, let us call dual polynominal tensors the
quantities

o o | iyl

o' "TTP=€""w ; (5.11)

Inmpy1vin?
where € is the constant completely antisymmetric tensor
(with weight 1). When a metric is defined, the &**+ '™ are

the components of the form dual to @,'* with all the indices
raised. To dw there corresponds a dual polynomial tensor

&lr"l,‘__p_ V= eh""n ai,, _pwin —p+1ln = a’.n—pa')il'"'n“p.
(5.12)

This correspondence is obviously one to one.
Using the dual tensors and remembering the form of Q §
[Eq. (5.6)1, we can rewrite Eq. (5.8) foraclass B P; as

$,00, 8, £8P — 3/ (£'C! +3,6 D)) =0,  (5.13)

where b2*: is given by Eq. (5.1) and Cand D have analogous
expressions. Due to the transformations (5.3), Eq. (5.13)
implies in particular

8,Cl = (5.14)
1t follows that
C{=¢9PC{”, (5.15)

with C” antisymmetric in / and p (this is nothing but the
Poincaré lemma applied to the dual tensors). Then
3 (E'Cl) =3, £'CP). (5.16)

Therefore C! can be absorbed into D [ and we can drop it in
Eq. (5.13). The latter implies, now, that either

8D =0 (5.17)

or
DM=6"K". (5.18)
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Arguing as above, we can absorb D ™ into b2 if Eq. (5.17)
is satisfied. If Eq. (5.18) holds, we have

8y, 3, ™S B — 3,3, 6"S K — 3,68, 3,K'=0.
(5.19)
That is,
$,9K'=0, ¥ =8B S (B'—K")=0,
(5.20)
which means that 8,K 'and B’ — K ' areinvariant and covar-

iant, respectively, with weight 1. Here B’ — K/ identifies a
coboundary (see part I), and B’ = K/, with 3,K ! invariant,
represents a distinct solution,

fa, 9,E"K = —ja,";'"a,K',

which is a coboundary (already found in part I) if K'is
covariant, since

fa, EN i & _zpfr"'K'

and is an a-cocycle if K ! is noncovariant.
Corollary 5.2: Q} is a coboundary if and only if the cor-
responding Q3 defined by (5.7a) satisfies the condition

(5.21)

0% =5,P} +dP?, (5.22)
for some class 4 P! and some P2. R
Equations (5.7a) and (5.8) implyd(Q% —2,P!)=0

foraclass A P}. The Poincaré lemma gives Eq. (5.22). Vice
versa, by applxmg the exterior differential to Eq. (5.22), one
getsdQ? = aVEDP3 = E,,Q4, dueto Eq. (5.7a). Then from
Theorem 5.1, Q] is a coboundary.

Another important limitation comes from the following
lemma.

Lemma 5.3: Q% defined by Eq. (5.7a) can be written in
a class A form, that is in a form bilinear either in d9¢ or in
8¢ and JJdE.

Let us consider the dual tensor Q2 of Q2. The general
form of Q2 is

02 = EE F, + £3E F, + £306 F; + £339§ F + £9999% F
+ £003IE F + JEIE Fy + IEGOE Fy + OEIIIE F,

+ 06FIAIE F, + AOEJIE F, + IOEAIIE F 5.
(5.23)
Here the indices have been dropped. For example, ££F,
stands for £'6 / F | . Now, as a consequence of Eqgs. (5.1),
(5.6), and (5.4),dQ?2, is class A.

Then, in particular, 3, F | 1, =0, which implies, through
the Poincaré lemma, that F| =3, F{", where F ,”" is anti-
symmetric in /,m:

O (EETF) =0, ((BEET+EQENFT).  (524)
Therefore F, can be absorbed into F,. We can do the same for
F,, i=1,.,10, and find that either they vanish (since
dF, =0, for i = 6,10, implies F; = 0 because they have di-
mension 0), or they can be absorbed into F,, and F,,.

Second selection: We repeat almost step by step the
above procedure for forms with a higher ghost number. Let
us consider the solutions of the equation

$,(Q2 —dP2) =0, (5.25)

2265 J. Math. Phys., Vol. 27, No. 9, September 1986

for some two-form P2, where Q2 is given by Eq. (5.7a) and
specified by Lemma 5.3.

Theorem 5.4:

Part I: Q% identifies a coboundary if and only if it satis-
fies Eq. (5.25) for a class A P2.

Part II: If Q? satisfies Eq. (5.25) for a class B P2, then
either it is one of the coboundaries of part I or the problem of
identifying Q% can be formally reduced to the cohomology
problem for diffeomorphisms in two dimensions. As a result
of this analysis we identify another nontrivial cohomology
class in four dimensions. As a representative we may choose

@ _ f Tr(A dT)Tr(dT). (5.26)

Proofofpart I: If Q% corresponds to a coboundary, then
Eq. (5.22) holds. Since Q3 is specified by Lemma 5.3 and
P} isclass A, then dP3 is class A, too. Arguing as in Lemma
5.3 we can prove that P2 is class A. Applying ED to Eq.
(5.22) we get Eq. (5. 25) and the necessary condition is
proven. The sufficiency proof is a simplified version of the
analogous proof in part I of Theorem 5.1.

Proof of part II: Arguing as in part II of Theorem 5.1 we
can write Eq. (5.25) in the form (a few details are given in
Appendix D)

$5(8,,9,,E "GP — 3,(3,£H E) =0, (5.27)

where G and H are class A polynomials. If 3,H P = 0, then
H can be absorbed into G; therefore it can only correspond to
a coboundary. If

HPr=§2HY, (5.28)
then

$,(8, 8, "GP — 3,8, £"H'") =0 (5.29)
and

S, d,H"=0. (5.30)

Equation (5.28) identifies only coboundaries (see part I)
unless

GEr=62G" and G"—H"=0.

In this case the solutions are determined by Eq. (5.30),
which, in terms of differential forms, is

$,dP! =d3, P! =0, (5.31)

provided that H ” is the dual tensor of P . Equation (5.31)
implies

S,Pl =dP?, (5.32)
for some P%. Equation (5.31) states a cohomology subprob-
lem, which is formally equivalent to the problem studied in
this section in two dimensions (formally, because we are
actually dealing with objects defined in four dimensions).
This subproblem can be easily solved (Appendix D). If P)
is a coboundary of this subproblem, i.e., if

P! =3,R%+dR!}, (5.33)

then p(dd,,£™P}) =0, since arguing as in Lemma 5.3
one can prove that R | equals d3¢ times a covariant coeffi-
cient. Therefore, due to part I, P} defines a coboundary of
the main problem. There are two distinct a-cocycles of the
subproblem
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(P =Tr(A)Tr(dl),
(5.34)
(P})? =Tr(AdI).

The other a-cocycles differ from these by coboundaries. The
first, when replaced into Eq. (5.27), is annihilated due to Eq.
(5.28). The second corresponds to a (P2)?
= Tr(A)Tr(A dT"), which cannot be set into such a form as
to satisfy the hypotheses of part I of this theorem. Therefore
it defines a nontrivial cohomology class of the main problem,
a representative of which is the a-cocycle in Eq. (5.26).

What remains: What is left out by the previous analysis
has to be looked for among the Q}’s such that the corre-
sponding Q3 defined by Eq. (5.7b) does not vanish.

Theorem 5.5: The tensor dual to Q3 can be written in
the form

3, AL, 8, N, AKE PP im, (5.35)
where
Epegan im = e E b (5.36)

and E has weight 0 and is formed only with Kronecker &’s.

The proof is based on the fact that, since Q3isclass A
(Lemma 5.3), b3 Q3 alsois. Using the same argurnent asin
Lemma 5.3, we conclude that the dual tensor of Q3 can be
written in the form (5.35), where E is a covariant tensor
with weight 1 and canonical dimension 0, antisymmetric in /
and m and can be chosen antisymmetric under the exchange
of the group of indices (£2) and ({%:). Now, since the dual
tensor associated with dQ3 is

a A‘ a A" aIAkEI?anq.qzrlm

[ ]

+2313 A‘ a Aj AkEPlpzq|Qz" Im

A ]

+3,A. 3, N, A"aEw-%”m (5.37)

and must be of class A, we have in particular 3,E = 0, which
implies that E is a constant tensor, i.e., it is formed with
Kronecker &s and with the totally antisymmetric tensor
€™, Since also the second term on the right-hand side of Eq.
(5.37) must vanish the only possible form of E is given by
Eq. (5.36).

Theorem 5.5 brings our analysis to an end, since it is
now very easy to classify all possible Q3 ’s. Up to total differ-
entials (which correspond to coboundaries, due to Theorem
5.4), there are only three distinct possibilities:

Q3 =Tr(dA)Tr(dA)Tr(A),
03® =Tr(dAdA)Tr(A), (5.38)
033 =Tr(dAdA A).
We have
3 030 = 5> $,03® =
s Q3 = dTr(dAAAA)

If Q39 (i=1,2,3) were to correspond to coboundaries,
then from Eq. (5.7b) and Theorem 5.4 we would have

Q30 =5 P2 L gp3® =123, (5.39)

for suitable P3” and class A P2”. However Egs. (5.39) are
not satisfied, in particular for / = 1,2 because of the clause
that P% must be class A. For Q3 we can easily determine
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01® =4 Tr(dAAAA) and Q3™ =4 Tr(AAAAA) and
see that were they to correspondtoa coboundary, than there
would exist a P§® such that Q3 = 2 Pi®. No such
Pi® exists, !

Due to Theorem 5.1 part I and Theorem 5.2 part I, @ 3¢”
(i = 1,2,3) uniquely identify the only three distinct nontri-
vial cohomology classes belonging to the second family. One
can easily see that @3’ and Q 3'® correspond to the coho-
mology class identified by A’ [Eq. (5.10)] and A{?’ [Eq.
(5.26) ], respectively, while a representative for the third
cohomology class is

AP = f Tr(dA(dFP - -;- rrr)) .

As one can see, only part I of Theorems (5.1) and (5.4) are
strictly necessary to prove our result. However, part II of
these theorems reveals the recursive character of the D-
anomalies when dimensions increase. Beside the a-cocycle of
the Adler-Bardeen type [ Eq. (5.40) ], we have other factor-
ized a-cocycles that contain as factors lower-dimensional a-
cocycles [we may consider Tr(A) a zero-dimensional a-co-
cycle]. The procedure we have presented suggests a clear
pattern to generalize the results of this paper to n dimen-
sions.

We recall that the construction of counterterms
throughout this section was carried out by explicitly forget-
ting the relation between metric and connection. In this way
we have found a result applicable also to gauge theories char-
acterized by nonsemisimple Lie groups. Indeed if we replace
I" by the relevant gauge connection and A by the gauge ghost
we can repeat almost verbatim the proof of this section. In
this case the cocycles corresponding to AJ’, A, and AS’
are true anomalies, and this result together with a suitably
adapted version of Sec. IV provides a uniqueness proof for
anomalies in gauge theories. '

(5.40)

VI. DISCUSSION OF THE PREVIOUS RESULTS

Let us discuss about the candidates for a-cocycles A}’

(i = 1,2,3) of Egs. (5.10), (5.26), and (5.40) in the light of
the splitting

=T +N., (6.1)

where F{,,,, is a metric connection and N/, is the nonmetri-
city tensor. When we insert the splitting (6.1) in A} and
A the pieces depending only on the symmetric part of T
vanish and the remaining terms are coboundaries in F. For
example, in A{” one of the surviving terms is
§ tr(dAN)tr(dN): it satisfies the consistency condition and,
as is implicit from the theorems of the previous section, it is
trivial: it is indeed generated by ftr(T'N)tr(dN) [here N is
the matrix one-form (N); = N, dx™].

When we insert the splitting (6.1) in AS’ we obtain
many coboundaries depending on N. For example, the term
linear in N is

A = f Tr[dA(d'fN+ NdT — %Nf‘f

=
|
|
Nl.—
e
=z
—_—

and
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2 A(s) — 0 A(S) EDEG)’

where
To= f Tr(f dCN+TNdT + %NITI‘).

We are left with the term depending only on I, which
does not vanish in this case and is nontrivial in F.

In the previous section we have separated I' into its sym-
metric part T and torsion T and shown that only the sym-
metric part enters the cocycles AY’, i = 1,2,3, implying that
cocycles (of the second family) containing 7" must be co-
boundaries. This is more evidence of the statement that
when we add to I',,, any covariant tensor Z/,, of weight
zero we get new cocycles from the old ones: the differences
between the old and new cocycles are coboundaries. We can
use this fact to split I into the Christoffel symbols plus suit-
able tensors: up to coboundaries we are therefore left with
A constructed only with the Christoffel symbols.

Now let us implement the additional point (1) men-
tioned in the Introduction, as far as A$’ is concerned. It is
easy to show that A5’ can be canceled by a local counter-
term. Indeed we remark that it is mapped into zero by the
Bardeen—Zumino map, which maps a-cocycles of 2, into a-
cocyclesof X, (see Ref. 5). Indeed let us write Eq. (5.40) as

AS =fTr(dA G (M) (6.2)
and let us consider the functional
1
e =J dtf Tr(HG®\(T,)), (6.3)
0 x

where I', = e ~#T'e’ + e ~*#de'™ and H is the logarithm of
the vielbein matrix. We obtain

2,89 =A%, 2,85%=0 (6.4)

In fact, the cocycle (5.40) is a sort of “fossil” of the
prehistory of the Lorentz bundle, upon which a gravitation
theory is constructed. A Lorentz bundle is a reduced sub-
bundle of the linear frame bundle, where the “gauge” group
is GL(4). From this point of view the a-cocycles AY’

(i = 1,2,3) are understandable.’

Finally let us quote the following coboundary:
A, =fTr(dA dT)A. (6.5)

Here A is a one-form 4,, dx™, where 4,, is any vector field
with weight 0. We shall elaborate on it as a useful illustration
of Theorem 3.1. It is a coboundary since

A, =fTr(dA(R +TIT)M

=3, f Tr((R + -;— rr)r) 4, (6.6)
where R is the curvature two-form. If 4,, = T*,,, A pisa
coboundary we may disregard. But if 4,, is an Abelian gauge

field, the local action on the right-hand side of Eq. (6.6) is
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not gauge invariant: removing the coboundary A p interferes
with gauge invariance. This is an indication of the existence
of an a-cocycle of the coupled operation =, + =,. We shall
clarify this point in the next section.

V. THE COHOMOLOGYOF 2, + 2, + 3,4

We are now able to find all the a-cocycles of the whole
cohomological system 2, + =, + 2. Let us consider first
2, + =,. On the basis of Theorem 3.1, we know that the a-
cocyclesof 3, + Z, are determined by the a-cocycles of 2,
that admit a Lorentz partner and by the D-a-cocyclesof 2, .
The latter are well known because they correspond to the
Lorentz anomalies, which are computed by understanding
D-invariance.>~® In four dimensions there exist no D-a-cocy-
clesof 2, (see, however, the comment on the mixed anoma-
ly at the end of this section).

As for the a-cocycles of Z,,, those belonging to the sec-
ond family are certainly admissible because they are X, -
invariant. The first family requires a closer examination. Let
us write the generic a-cocycle belonging to it as

KD = f d,€ I\/gj .
We split the family into three sets.
(1stset) AP, i=1,,.

AP =0, 2G A =
(2nd set) A“’, j=12,...: 3, 2A(";é0
Examples:

&L =Tr(w,0,0,0,)8™"g"

(7.1)

or
Tr(w,o,)g™" Tr(V,V,)g",

where ¥V, = V{T“is a gauge field and v = 0’2, is the Lor-
entz connection.
(3rdset) AL, k=12,..:

340 =0, 34,40 0.
Example: .& = Tr(V,,V,V,V,)g™g".

Let us consider, for example,

3, A9 =3, f 3,£'gg™g" Tr(w,,0,0,0,)

= —4fa,§’\/§g""’g"Tr(6mu ©,0,0,).

There ex1sts no P- funct10na1 ZA‘ D linear in u% such that
3, A0 LAY = 0. Therefore ,A¢" is not an admissi-
ble a-cocycle of 2p wrt. £y + 2, . One easily realizes that
the same is true for all the a-cocycles of the second set, while
those of the first and third set are all admissible. Therefore
we have completely determined the a-cocycles of the opera-
tor2, +3,.

When also Z; is taken into account, we again apply
Theorem 3.1, where the role of 2 is now played by =,
+ 2, and that of 2, by 3. Using the same arguments as
above we easily find that the third set must be excluded, too,
while we must add the diffeomorphisms and Lorentz-invar-
iance-preserving a-cocycles of 2, i.e., the usual and well-
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known gauge anomalies.”'® Finally the nontrivial cohomo-
logy classes of 2, + 2, + Z; are determined by the
a-cocycles of 2, belonging to the second family and to the
first set of the first family, and by the usual gauge anomalies:
the expected or, perhaps, the desired resuit.

As for the a-cocycles of the first set of the first family a
comment is in order. They can be expressed as

AP =3,C0, i=12,., (7.2)
where
E“"’=fJ§an§f“", i=12,.... (1.3)

Technically speaking, according to our definition, the
AY’s are a-cocycles since C ‘”’s in Eq. (7.3) are local but
nonpolynomial functionals. However, Eq. (7.2) tells us that
there are regularizations free from such anomalies. Never-
theless, the A} are not devoid of physical interest since, as
shown in Ref.6, they are strictly connected with Weyl anom-
alies.

Above we did not mention the so-called mixed Lorentz
anomaly

A, =fTr(du do)A=2%, fTr(a)R — %www)A,

(7.4)

where u = u* Zab, because it is a coboundary exactly in the
same way as A » [Eq. (6.5)] is. We recall that we have
shown in Ref. 6 that they are mapped into each other by the
Bardeen—-Zumino map. Now, let us recall Eq. (6.6) and ob-
serve that

S f Tr(wR—;— wwa))A
=3, f Tr(I‘(R + % rr)) 4

since 32;4=dA. Therefore this a-cocycles of
3p + 2, 4+ Z; may appear either as a gauge anomaly or as
a Lorentz anomaly or as a D-anomaly. We may reduce it to
the form we wish through a simple redefinition of the vertex
generating functional. Observe that Eq. (7.5) implies that
the Bardeen-Zumino functlonal necessary in order to map
A . and AG into each other,> is a P-functional. Finally we
remark that in the above list of a-cocycles of
3p + 2, + 2, this a-cocycle appears in the form A sim-
ply because of the order among =, =, , and £; we have
chosen in applying Theorem (3.1).'° Needless to say, this
order is arbitrary.

=f/1 Tr(RR)=Ag,

APPENDIX A: TRANSLATIONS

Rigid translations are the Abelian subgroup 7 of D ob-
tained by restricting the parameters £ "(x) to constant val-
ues b ™. We can construct the cohomology operator = in
the usual way. Since the group is Abelian the “ghosts” b " do
not transform. If the differential space is the space of local P-
functionals, there are a-cocycles of 2 ;.. For, if a,, is any local
expression not expressible as a total derivative, then

Zijmam=0, fb'"a,,,;éETC, Vlocal C. (Al)
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We can avoid these anomalies by enlarging the differential
space to include all integrated polynomial expressions of the
fields, their derivatives and the coordinates x™. Then it is
easy to see that

fb'”am = —Erfx”am

Of course in this way we get more cocycles of Z ;. but it turns
out that they are all coboundaries. Indeed let

(A2)

(A3)

where C,,; ..., is any general local expression (it may have
other saturated or unsaturated indices besides those written
down), symmetric in /,--/,. The consistency condition can
be written as

b ],
am ] ml,---l,,x Teas X ",

2T j b mcmll...lnxl""xl" = — f bmb? ap le,___,"x"...xl"

=" f b7b PC gy x %" (A4)

Therefore either (1) C,,.; is totally symmetric in

I . . .
m,ly,..0l,, 01 (2) C,,y.., X2x " is a derivative.
Case (1):

f Cot XXX " 20

and

p f Cm,l_,_,nx"...xl"x'" =(n4+1) fb " m;,...,"xl'mxl",
(AS)

which shows that the cocycle is a coboundary.

Case(2): C,,,,.., is an nth-order derivative and, integrat-
ing by parts repeatedly in the initial expression, we are re-
duced to Eqgs. (Al) and (A2).

The proof can be easily extended to expressions contain-
ing finite sums of terms of the type (A3). Therefore all cocy-
cles of X, are coboundaries.

Now let us define the coupled cohomologyof 2y and Z ,
(Z,). If we set

3raf=0, Z,b™=b’a,", T,b™=b"a,”, (A6)
we get

(2, 4+2,)?=0 and (. +3,)*=0. (A7)
For D we can do the same, provided that we define

S.E'=b"3,€, Zpb™=0. (A8)
Then

(2T+2D)2=0' (Ag)

By applying Corollary 3.2, we can now conclude that the
admissible a-cocycles of 2 ,, 2 ,, and 2, lie in the restricted
differential space of the local P-functionals.

APPENDIX B: THE COHOMOLOGY OF X,

“a in Eq. (4.1) is a local polynomial whose transforma-
tion law under X, is the following:
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w, mkyerk,

mk, -k,
T=xPa,7 0, You g+, ey

w . mkyk,
I, Gy, ol ool
Ik, mk,k,

mwgy " P wy M,
—a;" "y, 1 "+ Z a; " 0y p,

i=1

! kw mk,u-p-~-k

- Y a, "

(4 Rl
=t

mk,--k,
+ wa, ? wa,g‘..'.[’

(B1)

Using this equation and Eq. (2.14) one can write down ex-
plicitly the consistency condition 2, A, = 0. Integrating by
parts and differentiating twice w.r.t. a”, and a}, one gets

K w, ke
0 = J [6 a”l
wr.r k k2

+ z (8 wa

i=1

5,,, w kk,

nII

mwy Kk
5 11,...,,...1 )

IS NLE T L
i=1
+ (w— 1)(5’<w me ke — g wape )] (B2)
Let us denote by B,,,, v “ the object contained inside the
square brackets.
We are going to show now that the only solution of this

equation is b = 0 identically. To see this we perform on the
field a generic finite transformation aeD . We get

ZZC

w,n,s ky-k,
11 l

Y 1!
%, (deta)”~'a)'a)f

wpkmk ik, (B3)

nll {ol{

X (@~ ~@ Ny,
This is the same as Eq.(B2) except that the C coefficients
have been transformed. Since C Qllk does not contain (con-
stant) tensors (we have excluded it from the beginning, in
Sec. IV), we can conclude that terms with different 7, 5, and
w must vanish separately. Likewise we can conclude that Eq.
(4.2) implies
B

=0, Vwrs. (B4)

The possibility that B be a global derivative corresponds to a
vanishing cocycle. From the form of “b one sees that the
most general “a satisfying Eq. (B4) can be written as

o ik,
w, ke

P
Qg _6k° 1 +a§l 61 1ol + Z 6 b1,...1...1
(BS)

where 4, a, a are local polynomials of the fields and their
b

derivative to be determined. Substituting (BS) inta Egs.
(B4) and (B2) we get a sum of terms involving these un-
known polynomials multiplied by two Kronecker §’s. It can
vanish only if (1) all the coefficients of distinct products of

&’s vanish and (2) &, a and a further factorize into é factors.
b

Case (1): The independent equations that one derives are
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&= -a,, w—1), Va,
B =gl w—1), Vb, (B6)
ahrk = gk Ya,
5 b s
Equation (B5) becomes
W= w— DS~ 3 A+ 3 s
a=1
(B7)
z, [a = [ab(w-nafmise+ 3 sad,
_ z 57,_2,...;‘...1() (B8)
j=1

Therefore all the solutions of the consistency condition (B2)
pertaining to case (1) are coboundaries. Whenr = s = 0, the
above treatment is meaningless. This particular case is treat-
ed in Sec. IV.

Case (2): No new solutions from this case.

Therefore the nontrivial cohomology classes of 3, are
determined by Eq. (4.2).

APPENDIX C: PROOF OF THE SUFFICIENCY
CONDITION

In this Appendix we prove the sufficiency condition in
part I of Theorem 5.1. To this end we recall Eq. (5.1) and all
the specifications made at the beginning of Sec. V. To Eq.
(5.1) we add all possible terms coming from dP}, for a class
A P!. The density of Q; — dP} is then

0 =39E(B, + I'C, + I'TD, + dT'E, + I'TTF, + dITG,
+ 33TH,) + 339€(B, + I'C, + TTD, + dT'E,)

+ 9393 (B + I'Cy) + dIAIFEB,, (C1)
where all B,, C,, etc. are D-covariant tensors with D-weight
1.

Now, the relevant consistency condition is

A —~
ZD Q = 0.
This means, in concise form,

OOEIEX + IOEIOIEY + IVEIIPIEZ + GPEIIIEW = 0,
(C3)

where X, Y, Z, and W depend on I', T and on the covariant
coefficients. It is clear that in order for Eq. (C3) to be satis-
fied, X and W must either vanish or have suitable symmetry
properties in the indices. After inspecting their explicit form
one can conclude that ¥ and Z can only vanish. Briefly

(C2)

s s
X=0, Y=0 Z=0, W=0, (C4)

s
where = means equal up to symmetry properties of the
indices. The first two equations of (C4) break down in turn
into more independent equations according to the powers of
I" and JTI". We are going to find all the solutions of these
equations and show that they are all coboundaries.
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To this end it is very useful to write down all the co-
boundaries of S p belonging to the second family. They can
be written as follows:

J
%1 = FMI,
%2=FFN1, %5=3FN2,
%3 = PFFRI, %6 = aFFRz, cgs = aaFR3,
¢,=TTTTS, €,=dITTS, %,=drdrs,,

where M|, N, R;, S; are covariant tensors of D-weight 1 and
dimensions 3, 2, 1, and 0, respectively.

Our strategy consists in identifying all the solutions of
Egs. (C4) corresponding to the coboundaries (C5) and
proving that they are the only ones. For example, if we set all
the coefficients equal to zero except G, and E,, we have a
solution of Egs. (C4),

Gll""le;'lnz-:l-‘zq = 28&E2 -::-‘zq !I’l.Pz"z — 6}I’|E2 -::-‘:q :’r:”zpz,

(C6)

where E,;»%#:" = E "4, This solution of Eq. (C2)
corresponds to a coboundary, precisely to 2, % o, provided
that we identify £, with S,. Similarly we find other solutions
of Eq. (C2) corresponding to

$,%, if B,=M, 3,%, if C,=E,=R,

$,¢, if C,=2N, 2,%, if D,=}G,=85,
S$,%, if D,=3R, 3,%, if B,=R,,
S,€, if F,=4S, S$,%, if C,=H, =S5,
S,%s if By=N, 3,%, if B,=S,

(er))

All these solutions must be contained in the most general
solution of Eq. (C2) [or (C3) or (C4)]. Since they can be
multiplied by arbitrary numerical coefficients we can sub-
tract them from the latter, which, in this way, looses any
dependence on the covariant coefficients except E,, G,, and
H,. When one considers again Eq. (C2) with only these co-
efficients surviving, one easily sees that the only solution is
E, = G, = H, = 0. Therefore the only solutions of Eq. (C2)
are the coboundaries (CS).

APPENDIX D: SPECIFICATION OF THE DERIVATION OF
(5.27)

The derivation of formula (5.27) deserves a specifica-
tion. 2 pdP3 in Eq. (5.25) can be written as follows, in terms
of dual tensors:

zbal (& rg- JAglr_,_ &9 §’B,]’"+ g—t . pzf JCP.szr ).
(D1)
Here we have written down explicitly only the first terms
[see Eq. (5.23)]. Equation (5.25) implies 3,4, = 0, conse-
quently 4 can be absorbed into B. In general, Eq. (5.25)
unphes also 6,8 2 = 0. That is not the case when B"”
B , because 2 (€9, 7) = 0. Moreover we must have
,.'57231 + 3,C;PP" = 0.
Either B=C=0o0r
Br=49,C", (D2)
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% o= ITTS;,
%,, = 33drS,,

where

(C5)

i
where C is completely antisymmetric in p, /, ». Now we can
apply the usual argument and, after repeated applications,
obtain Eq. (5.27).

The cohomology defined by Eq. (5.32) can be solved
along the same lines as the main problem With a theorem
analogous to 5.1 we proye that P} is a coboundary if and
only if it is a solution of s (P} —dR}) =0 for some class
AR} (werecallthat P} isclass A). The nontrivial solutions
are contained in the set of 21’s such that P2 #0. Since dP?
must be class A we have a theorem analogous to (5.5): the
dual tensor of dP? can be written as

81(3,£13, 8,& ) Fwwimn,

which implies thz}\t Fis a constant tensor that can be written
F3pnlmn — ghlmr [P and F %: and is made of Kronecker &’s.
Therefore up the total differentials we have only two possibi-
lities:

P2V =Tr(A)Tr(dA) and P2? =Tr(AdA).

(D3)

They correspond to two distinct a-cocycles of
Eq.(5.34).
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A path integral constructed over a particular Riemann space is developed and applied to two-
dimensional wedge problems. This path-integral-Riemann-space (PIRS) approach recovers the
exact solutions of the heat conduction and the corresponding electromagnetic wedge problems. A
high-frequency asymptotic evaluation of the PIRS electromagnetic wedge solution returns the
standard geometrical theory of diffraction (GTD) results. Ramifications of this approach and its
relationships with known path-integral methods are examined.

i. INTRODUCTION

Many quantum mechanical applications of path inte-
grals defined on multiconnected spaces have appeared in the
literature.'~ Similarly, using a double-sheeted Riemann sur-
face Buslaev® established the viability of the path-integral
approach to the scattering of electromagnetic waves from
smooth conductors. However, in spite of the known impor-
tance of the multiconnected space description of diffraction
phenomena (see Sommerfeld’ or Carslaw®), the application
of an analogous path-integral approach to electromagnetic
diffraction problems has been neglected. It is the object of
this paper to demonstrate the utility of a path-integral-Rie-
mann-space approach in wedge diffraction problems and to
point out several interesting aspects of the resultant repre-
sentations of the solutions.

In Secs. II-V, a path-integral-Riemann-space (PIRS)
approach is developed and applied to the ele