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In order to study nonlinear ordinary differential equations with superposition principles, 
related to the exceptional simple Lie group G2 , the complex and real forms of its Lie algebra 
are examined and their maximal subalgebras are summarized. In particular the parabolic 
subalgebras of the noncompact real form t;c(R) are determined. Explicit matrix realizations 
of the fundamental representation D( 1,0) are used and studied in connection with invariant 
subspaces in a seven-dimensional (complex or real) vector space. The results are collected in 
three tables of specific interest for the study of nonlinear differential equations, which will be 
developed in Paper II of this series. 

I. INTRODUCTION 

A series of recent publications has been devoted to the 
problem of identifying and classifying all systems of first­
order nonlinear ordinary differential equations with super­
position formulas. l -6 The equations under study have the 
form 

r 

y I-' = L Zk (t)1J k l-'(y), It = l, ... ,n, 
k=1 

(1.1) 

and in this context a superposition formula is a mapping F: 
e"(m + Il-C" (or R,,(m + Il_R") expressing the general so­
lution y(t) of (1.1) in terms of m particular solutions y; (t) 
and n significant constants C; : 

y(t) = F(YI (t), .. ·,Ym (t),C1, ... ,C,,). (1.2) 

The problem of characterizing nonlinear ordinary differen­
tial equations with superposition formulas goes back to Lie.7 

. We shall not review the known results here, nor the motiva­
tion for our interest in these equations and the explicit super­
position formulas. 1-6 

Let us just mention that a system of ODE's with a super­
position formula can be associated with every Lie group-Lie 
subgroup pair G:J Go. To obtain the equations, one must 
realize the homogeneous space G /Go explicitly and intro­
duce convenient coordinates on this space. It has been shown 
that cases of particular interest are obtained when G is a 
simple Lie group and Go one of its maximal subgroups.4 

Attention has so far been focused on the case when G is a 
classical complex or real Lie group. Use was made of the 
defining matrix representations of the corresponding simple 
classical Lie algebras and Lie groups. The homogeneous 
spaces G /Go were constructed as Grassmannians, orin some 
other form. 1-6 

The purpose of this article is to start the analysis of the 
Cartan exceptional Lie groupsS.9 G2, F4 , E6, E7, and Es in the 
context of nonlinear superposition formulas. More specifi­
cally, we concentrate on the simplest case, namely the com-
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plex and real forms of the exceptional Lie group G2• 

It should be emphasized that the group G2 is of consider­
able interest in physics, quite independently of the applica­
tion mentioned above. The real compact form G ~(R) made 
its appearance in elementary particle physics in the early 
1960's, 10 as a possible candidate for the symmetry group of 
strong interaction physics and more particularly for hadron 
spectroscopy [it contains the all-important SU(3) group as 
one of its maximal subgroups]. 

Quantum theories based on octonionic quark fields were 
proposed in the 1970'SIl,12 and the exceptional group 
G ~ (R) was once again examined: this time as the automor­
phism groupl3 of the octonions. Other applications include 
non-Abelian gauge theories where G2 occurs as one of the 
groups that can accommodate three-quark color singlets 14 
and to many-body problems in nuclear and atomic phys­
iCS 15- 17 [here G2(R) figures, e.g., in the group reduction 
chain U(7) :JO(7) :JG2:JSU(3)]. More recently, possible 
global symmetries of extended supergravitiesls have also 
lead to the use of exceptional Lie groups, in particular Gz and 
its fundamental representation. An interesting application 
of Gz occurs in the study of a Toda lattice with unequal 
masses. 19 

The present article is devoted to group theoretical preli­
minaries, that should be of use in any physical application of 
the group Gz• It contains some known results and some, to 
our knowledge, new ones, on the subgroup structure and 
realizations of the complex group G2(C), the real compact 
form G~(R), and the real noncompact form G~c(R). The 
sequel (Paper II) will make use of these results to obtain 
explicitly the nonlinear ODE's with superposition formulas, 
associated to the various forms of G 2 (see also Ref. 20). 

Section II contains some general results on the group G2 

and its complex Lie algebrag2(C), The two real forms ofg2 
and some of their properties are discussed in Sec. III. The 
parabolic subalgebras21 of the noncompact real form 
t;C(R) are obtained using a method employed by Com­
well,22 dealing with the Iwasawa23 and Langlands24 decom­
positions. Finally, Sec. IV is devoted to explicit realizations 
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of the fundamental matrix representationD( 1,0) ofg2 (both 
complex and real). All maximal subalgebras are found and 
the reducible ones are identified as algebras of matrices leav­
ing different types of subspaces of 1(;7 or R7 invariant. The 
main results are presented in three tables, to be further used 
in Paper II of this series. Throughout the article, we make 
use of the Chevalley basis.25.26 

II. THE LIE GROUP G2(C) AND ITS LIE ALGEBRA 92(C) 

The exceptional Lie algebrag 2 ( 1(;) 26.27 is one of the three 
existing simple rank 2 complex Lie algebras. Its order is 14, 
its root space is of dimension 2 and hence it has two null and 
12 nonzero roots. Its root diagram has the well-known form 
of a "star of David.,,26.28 The fundamental irreducible repre­
sentations of g2(1(;) , namely D(1,O) and D(O,1), are repre­
sentations of complex dimension 7 and 14, the latter one 
being the adjoint or regular representation. 

We shall call a I and a 2 the two fundamental simple 
roots satisfying 

(al,al ) = 6n, (a2,a2) = 2n, (a l ,a2) = - 3n, 
(2.1) 

where the normalization factor neR > 0 can be chosen in 
some convenient way. The set a+ of positive roots is given 
by 

a+ = (a l ,a2,al + a2,al + 2a2,a l + 3a2,2a1 + 3a2) 
(2.2a) 

and the set of all roots is 

a = a+u( - a+). (2.2b) 

Throughout this article we shall make use of a particu­
larly convenient basis for g2' na~ely the Chevalley ba­
sis.25,26.29 This is an integral basis, in the sense that all struc­
ture constants are integers. It is hence highly advantageous 
for numerical calculations (on computers or otherwise, see, 
e.g., Ref. 30), for studies involving discrete subgroups or 
elements of finite order,31 and also for generalizations to infi­
nite-dimensional Lie algebras of the Kac-Moody type32.33 

(see Refs. 34 and 35). 
A Chevalley basis exists for every semisimple Lie alge­

bra L over an algebraically closed field of characteristic 
zero.29 Denoting the root system a and the roots a;, we can 
write the Chevalley basis as 

TABLE I. Values of Nail for gz (C) in the Chevalley basis. 

{hi,ea, j = 1, ... ,1, a;Ea}. (2.3a) 

The commutation relations are 

(i) [hl,hi] = 0, O<i, j<l; 

(ii) (hiOea] = 2(a,a; )/(a;oa; )ea, 

(iii) [ea,e -a] = ha; 

(. ) [ ] _ {± (r + l)ea + p , tv ea,ep -
0, if a + IN.a; 

if a +/3Ea, 

(2.3b) 

where a and /3 are linearly independent roots and 
/3 - ra, ... ,/3 - a,/3 + a, ... ,/3 + qa is the a-string through /3 
[i.e., all members of the string belong to a, but 
/3- (r+ l)aand/3 + (q+ l)adonot]. The signs in (iv) 
must be chosen in a consistent manner. 

Returning to g2 (1(;), we have the basis 

{ha, ,haz, e ± a, ,e ± az ,e ± (a, + az) , 

e ± (a, + 2az) ,e ± (a, + 3az) ,e ± (2a, + 3az) }, (2.4) 

with the commutation relations (2.3), or more specifically 

(a,/3) _ 
[ha, ,ha,l = 0, [ha ,ep ] = 2 -- ep==Aapep, 

(a,a) 

[ea,e -a] = ha' [ea,ep] = Napea +p, 

(2.5) 

Here lEI is the Cartan subalgebra and the values of N a' in 
agreement with (2.3), are given in Table I. For 
(a,/3) = (a l ,a2) (the fundamental roots) A is the Cartan 
matrix, for g2(C) equal to 

A = ( 2 - 1) (2.6) 
-3 2' 

The signs in Table I are chosen in such a manner that an 
automorphism of the g2 root diagram extends in a simple 
manner26 to an automorphism of the group G2 (K), where K 
is a perfect field of characteristic 3. 

The Cartan-Weyl basis used in much of the litera­
ture8,22,36 differs from the Chevalley basis only by a change 
of normalization. Thus, let us denote the basis used, e.g., by 
Cornwell as22 

{ha, ,haz,x ± a, ,x ± az,x ± (a, + az) , 

X ± (a, + 2az),x ± (a, + 3az),x ± (2a, + 3az)}' (2.7) 

Nap a l a2 a l +a2 a l +2a2 a l + 3a2 2a1 + 3a2 -at -a2 - (a l +a2) - (a l +2a2) - (a l + 3a2) - (2a l + 3az) 

a l 0 1 0 0 1 0 • 0 -1 0 0 -1 
a2 -1 0 -2 3 0 0 0 • 3 2 -1 0 
a l +a2 0 2 0 3 0 0 -1 3 • -2 0 -1 
a l + 2a2 0 -3 -3 0 0 0 0 2 -2 • 1 1 
a l + 3az -1 0 0 0 0 0 0 -1 0 1 • 1 
2a l + 3az 0 0 0 0 0 0 -1 0 -1 1 1 • 
-al • 0 1 0 0 1 0 -1 0 0 -1 0 
-a2 0 • -3 -2 1 0 1 0 2 -3 0 0 
- (a l +a2) 1 -3 • 2 0 1 0 -2 0 -3 0 0 
- (a l + 2a2) 0 -2 2 • -1 -1 0 3 3 0 0 0 
- (a l + 3a2) 0 1 0 -1 • -1 1 0 0 0 0 0 
- (2a l + 3a2) 1 0 1 -1 -1 • 0 0 0 0 0 0 
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We then have 

ha = Aha" ha, =i4ha" X±a =Cae±a' (2.8) 

with 

Ca, = - Ca, + 3a, = C2a, + 3a, = (1/.j8), 

Ca, = - Ca, +'a, = Ca, + 2a, = (lI.J24). (2.9) 

The group G2 (C) is isomorphic to the group of orthogo-
nal transformations acting on a complex seven-dimensional 
vector space and leaving a third-order antisymmetric tensor 
Tinvariant.27.29 Explicitly we can realize theD(1,O) repre­
sentationofthegroupG2(C) bythematricesgeC7X7 satisfy-
ing 

(2.10) 

gabTbcd = Taefgecgfd' (2.11) 

where the nonzero components of the completely antisym­
metric tensor T can be characterized by the values 

T127 = T 1S4 = T 163 = T 23S = T 264 = T374 = TS76 = 1. 
(2.12) 

The invariance of the tensor Tis equivalent to the invar­
iance of a "vector product" in seven dimensions37.38: 

g(yXz) = gyXgz, (2.13) 

where (in a specific representation) we have 

Ca - 3 
(yXz)a = 

a-2 
Za+2) 
Za_l 

Za_3) + (Ya+2 
Za_2 \va-I 

+ (Ya+ 1 Za+ 1), a = 1, ... ,7, (2.14) 
\va+3 Za+3 

and all indices are defined mod 7. The tensor T = {Tabc } is a 
fully antisymmetric cubic invariant,14 satisfying "altema­
tivity" relations.39 An explicit realization of T can be given in 
terms of octonions (Cayley algebra). 13 We shall make exten­
sive use of this tensor in Paper II of this series, when deter­
mining the nonlinear differential equations associated with 

G2• 

All maximal subalgebras of the complex and real forms 
ofg2 are determined in Sec. IV. In particular, g2(C) has five 
mutually nonisomorphic maximal reductive subalgebras. In 
addition to the compact real form ~ (lR) and the noncom­
pact one~c(lR) we have a class of simple s1(3,C) subalge­
bras, represented in the Chevalley basis by 

{ha, ,ha"e ± a, ,e ± (a, + 3a,) ,e ± (2a, + 3a,) }. (2.15 ) 

A fourth class of simple Lie subalgebras is represented by the 
s1(2,C) algebra: 

(2.16) 

Finally a class of semisimple maximal subalgebras is repre­
sented by the sl(2,C) Ell sl(2,C) subalgebra 

{ha, ,ea"e _ a,} Ell {ha, + 2a"ea, + 2a"e - (a, + 2a,)}, (2.17) 

The remaining maximal subalgebras of g2 (C) are maxi­
mal parabolic subalgebras,i.e., they contain the Borel subal­
gebra (the maximal solvable subalgebra). For g2(C) the 
Borel subalgebra is of dimension 8 and is unique up to conju­
gacy (for any complex simple Lie algebra). It can be chosen 
to be 
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B = {ha, ,ha"ea, ,ea"ea, + a"ea, +2a
"

ea, + 3a
"

e2a, + 3a, }, 
(2.18) 

The algebra g2(C) contains two mutually nonisomorphic 
classes of maximal parabolic subalgebras, the so-called stan­
dard parabolic subalgebras,22.29 given, e.g., by 

Pa, (C) = {ha"ha"e ±a"ea"ea, +a,' 

e e e } at + 2a2' a. + 3a2 ' 2a. + 3a2 
(2.19) 

and 

(2.20) 

Notice that we have 

B-Pa , (C)nPa, (C). (2.21) 

III. REAL FORMS OF 92 AND SOME OF THEIR BASIC 
PROPERTIES 

Let us first consider an arbitrary complex simple Lie 
algebra L(C) with Chevalley ba~is (2.3). To this Lie alge­
bra, we can always associate its .compact real form L C (lR) 
with basis36,40,41 

LC(lR) = {ihaJ ,Ea =ea -e_ a, 7Ja =i(ea +e_ a ), 

j= 1, ... ,I,ael1+}. (3.1) 

The noncompact real forms L NC (R) are then obtained from 
L C (R) through chief involutive automorphisms,37 defined 
with respect to the Cartan subalgebra lEI of the complexifica­
tion L(C) of L NC (R). 

The Cartan decomposition for a noncompact real form 
L NC (R) takes the form 

L NC(R) = K +P, (3.2) 

where K is a maximal compact subalgebra of L (unique up to 
conjugacy) satisfying 

K = {aeL IZa = a}. (3.3) 

The subspace P satisfies 

P= {aeL IZa = - a}. (3.4 ) 

For the present purposes we can restrict ourselves to chief 
inner automorphisms37.21 and we have 

Z = exp(adh), heH. (3.5) 

This automorphism is diagonal with respect to the canonical 
basis (3.1) of L C (lR). The basis elements iha (j = 1, ... ,/) 

j 

correspond to the eigenvalue + 1; Ea and 7Ja correspond to 
the eigenvalue exp{a(h)} = ± 1, where a(h) = B(h,ha ) 
[B(x,y) is the Killing form of L(C)]. We hence obtain 

K = {iha.,Ea,7Ja' i = 1, ... ,1 (alexp a(h) = I)}, 
I 

P = {iEa, - i7Ja (alexp a(h) = - I)}. (3.6) 

In the case of the exceptional Lie algebra g2 there exist 
two nonisomorphic real forms,37,38 the compact formg~(R) 
with the character - 14 and the noncompact one ~c(lR) 
with the character + 2. Correspondingly, two nonequiva­
lent chief inner automorphisms exist in this case. The first is 
given by the choice 
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expal(h) =expa2 (h) = I, (3.7) 

i.e., Z is the identity and we obtain gf (R) itself: 

7J2a, + 3a,}. (3.8) 

The second choice of automorphism is given by 

expa1(h) =1, exp a 2(h)= -I, (3.9) 

and provides us with a basis for the noncompact form 
gfc(R). In (3.2) we have, in this case, 

gfC(R) = {K,P}, 

K = {iha"iha"Ea, ,7Ja, ,Ea, + 2a,,7Ja, +2a,}, 

P = {iEa" - i7Ja, ,iEa, + a,' - i7Ja, + a, ,iEa, + 3a,' 

- i7J iE - i7J } a. + 3a:z' la. + 3a2 ' la. + la2 • 

(3. lOa) 

(3.lOb) 

(3.10e) 

An important concept for a noncompact Lie algebra is 
that of the Iwasawa23 decomposition: 

(3.11 ) 

where K is a maximal compact subalgebra, A is a maximal 
Abelian subalgebra of P, with dim A = m <I, and N is a nil­
potent subalgebra of L. Cornwell has given a direct prescrip­
tion22 for calculating the Iwasawa decomposition and has 
applied it to the pseudo-orthogonal Lie algebras so(3,1), 
so(4,1), so(3,2), and so(4,2). We applied Cornwell's meth­
od to gfc(R). Dropping all details, we simply give the re­
sults. If we choose the maximal compact subalgebra K of 
gfc(R) in the form (3.l0b) and use the basics (3.10), we 
find 

A = {iEa"iE2a,+3a) (3.12) 

and 

N={E +iE E -iE 7J -i7J 3 a l at + 3a2' a l + 2«2 a. + a l ' al at + al' 

7Ja, + 2a, + i7Ja, + a,' 

i7Ja, + iha" - i7J2a, + 3a, + i(2ha, + ha, )}. 

(3.13 ) 
Furthermore 

Pm = {A+N} (3.14) 

is a "minimal parabolic subalgebra" of gfC(R); it is a maxi­
mal solvable subalgebra42 and its complexification is the 
Borel subalgebra of g2(C), Following Cornwell's prescrip­
tion, we could use the Iwasawa decomposition to obtain the 
two "standard parabolic subalgebras" of gfc (R). Again, we 
only present the results and moreover, we shall use a differ­
ent basis and choose a different (equivalent) realization of 
the maximal compact subalgebra K. 

Indeed, consider the Chevalley basis (2.4) of g 2 ( C) , 
however, consider it over the field of real numbers R, rather 
than over C. In this case (2.4) immediately provides a basic 
for gfc(R). The maximal compact subalgebra is given as 

K={ea . -e_ a .,ea2 -e-a2,eal+a:z -e-a,-a:z,ea.+2a2 

- e _ GIl _ 2a2 ,eal + 3a2 - e - a l - 3a2 ' 

e -e 3} 2«. +3a2 -2«,- GIl ' 
(3.15) 

the Abelian algebra A of (3.11) is 
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A = {ha, ,ha, } (3.16) 

and the nilpotent algebra N is 

N = {ea"ea"ea, +a"ea, + 2a"ea, + 3a"e2a, + 3a,}. (3.17) 
The two nonisomorphic "standard parabolic subalgebras" 
(that are also maximal parabolic subalgebras) are 

and 

As in the complex case we have 

Pm = Pa, (R)nPa , (R), 

where Pm is the "minimal parabolic subalgebra." 

(3.18) 

(3.19) 

(3.20) 

Notice that the complexification of (3.18), (3.19), and 
(3.20) are (2.19), (2.20), and (2.18), respectively. 

All maximal subalgebras of g2( e), gf(R), and gfC(R) 
are derived in the following section. 

IV. THE MATRIX REPRESENTATION 0(1,0) AND THE 
MAXIMAL SUBALGEBRAS OF gz 

The fundamental representation D( 1,0) of g2 is of di­
mension 7. This is the lowest-dimensional faithful represen­
tation of g2 and as such, it is particularly convenient for visu­
alizing subalgebras of g2 (C) and its two real forms. 

For g2 (C) this representation can be viewed as a restric­
tion of the defining representation of 0(7,C) (the 21-dimen­
sional classical simple Lie algebra B3).27,29 For gf(R) and 
g~c(R) the representation D( 1,0) is a restriction of the de­
fining representation of the real algebra 0 (7), or 0 ( 4, 3 ), re­
spectively. 

A.· Matrix realizations of the complex and real forms of 
gz 

Cartan27 has proposed a specific realization of the alge­
bra g2(C) when this algebra acts on a seven-dimensional 
vector space V7 characterized by coordinates Xi' z, Yi 
(i= 1,2,3): 

(4.1 ) 

The infinitesimal operators are given as vector fields 

Xii = - Xi ~ + Yi ~ + .!.. (Xk ....!..... - Yk ~) 
aXi aYi 3 aXk aYk 

(no sum over i), 

a a 
X.u = -2z- +Yi-

aXi az 

+ .!.. E1'k (X. ~ - Xk ~) 
2' J tJyk tJyj' 

X Oi =2z ~i +Yi! + ~ Eijk ~j a:
k 

-Yk a~J' 
a a 

Xij=-Xj-+Yi- (i¥j). (4.2) 
ax; tJyj 

Note that we have 
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Xu +X22 +X33 = 0, (4.3) 

so that (4.2) oilIy represents 14 operators. 
The commutation relations of the g2 (C) Lie algebra in 

this basis are 

[Xjj,xiO] = jXiO' [XI/,xkO] = - !XkO (i=l=k), 

[Xii,xo;] = - jXo;. [Xjj,xOk] = !XOk (i=l=k), 

[XiO.xjO] =2EijkXOk, [XOi,xOj] = -2EijkXkO' (4.4) 

[XOi.xjk] =~ijXOk' [Xik.xjO] =~kjXiO' 

[XiO,xOj) = 3Xij' [Xij,xlm] = ~jlXim - ~miXlj' 

We shall eliminate one of three generators Xii [see 
( 4.3)] and use the following basis: 

{XI = Xu - X22' X2 = - 3Xw XiO,xOi,xij}' 

i=l=j, i,j=I,2,3. (4.5) 

Such a basis is related in a simple way to the Chevalley basis 
(2.4) of Sec. II. Indeed, we have 

XI = ha" X2 = ha2 , 

XIO = e -a2' X20 = - e - (a, +a2)' X30 = - ea, +2a2' 

XOI = ea2 , X02 = - ea, + a2' X03 = - e - (a, + 2a2) , 

X I2 = ea" X23 = - e _ (2a, + 3a2) , X31 = ea, + 3a2' 

X2\ = e _ a,' X32 = - e2a, + 3a2' X13 = e - (a, + 3a2) . 
(4.6) 

It is easy to pass from the realization (4.2) oftheg2(C) 
generators as differential operators to a seven-dimensional 
matrix representation. We shall need several different ma­
trix realizations for different applications. The algebra 
g2(C) will be viewed as a subalgebra of 0(7,C). A matrix 
Meo(7,C) satisfies 

KM+MTK=O, K=K T, detK=I=O, (4.7) 

where the superscript T denotes transposition and K is a 
fixed symmetric nonsingular matrix. We can pass from a 
realization corresponding to a given metric tensor K to a 
different realization with metric K I by putting 

K=STK'S, M=S-IM'S. (4.8) 

One convenient choice is due to Cartan27: 

(4.9) 

where 1 n is the n-dimensional identity matrix. Then we have 

MC~(~ 
2b _~T} 0 

-2d _AT 

A,C,.DeC3X
\ C T +C=O, 

DT +D=O, b,deC3XI
• (4.1Oa) 

For Me to lie in the g2(C) subalgebra of 0(7,C) we must 
impose Tr A = 0 and relate C and D to d and b, respectively: 
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C~( ~ 
-a03 aro) 

0 -~Ol , 

-a02 aOI 

D~ ( -~" 
a30 -aw) 
0 alO , 

a20 -alO 0 

(".~ (~') b = a20 , d = a02 . (4.1Ob) 

a3 a03 
The matrix of the form Me representing the generator XJ'v 

(jL,v = 0,1,2,3) or Xa (a = 1,2) of (4.5) is obtained by put­
ting the corresponding a J'V = 1 (or a i = 1) in (4.10), and all 
other entries aJ"v' = 0, at = O. 

Note that in this realization the orthogonal group 
O(7,C) leaves the quadratic form 

Q=XTKcX=r+ (x,y) (4.11) 

invariant, where 

X T = (x,z,y), x,yeC3
, zec' 

In terms of the more usual diagonal metric, 17, we have 

Kc =ST1~, M=SMcS-t, (4.12) 

with 

o 

o 

Explicitly, we have M + ~ = 0 and hence 

where 

m 
o 
-n 

R,U, VeC3X
\ R T + R = 0, 

U T + U = 0, m,neC3X t, 

(4.13 ) 

(4.14) 

2R = (A _AT +C+D), 2U= (A _AT - C-D), 

2V=i(A+AT-C+D), m=b-d, n=i(b+d). 

(4.15 ) 
In this realization the completely antisymmetric tensor 

T of (2.11) has the components (2.12) and in Lie algebraic 
terms the invariance condition (2.11) translates into 

MabTbcd = [Ta,M]cd = Tae/M/d -MceTaed' (4.16) 

Two further realizations will be needed below. For the 
first we put 

(4.17) 

and obtain 
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M'~ (_:T m ij 0 i~ , 
jVT in 

RT +R =0, U T + U=O, 

withR, U, V, m, and n as in (4.15). 

Finally, let J7 be the antidiagonal matrix 

J7 ={8a8 _ b , a,b=I, ... ,7}. 

We haveJ7 = S"T KcS" with 

a 2 -alO 

-aOI -al +a2 

a 02 al2 

M" =S"-IMcS" = - v2a30 v2a02 

-a31 a30 

-a32 0 

0 a32 

B. The maximal 8ubalgebras of 9a(C) 

(4.18) 

( 4.19) 

a 20 

a 21 

a l - 2a2 
v2a01 

0 

-a30 

a 31 

The maximal subalgebras of a semisimple Lie algebra 
can be embedded reducibly or irreducibly in a given finite­
dimensional representation.43 The reducibly embedded ones 
leave some vector subspace invariant, the irreducibly em­
bedded ones do not. Irreducibly embedded subalgebras are 
always reductive (semisimple, or the direct sum of a semi­
simple Lie algebra with an Abelian one.43 The semisimple 
subalgebras of the simple complex Lie algebras were classi­
fied by Dynkin,44 those of the real simple Lie algebras by 
Comwel1.4s 

The algebra g2 (C) has three irreducibly embedded sub­
algebras (up to conjugacy), all of them simple. They are as 
follows. 

( 1 ) gf( R), the maximal compact subalgebra of g2 (C). 
It is best obtained in the realization (4.14) by restricting all 
entries in R, U, V, and m and n to be real. We then have 

(4.22) 

where both g2(C) and 0(7) are realized using the metric 
K=I7• 

The identification (3.8) ofgf(R) in Sec. III in terms of 
the Chevalley basis is equivalent to that given by (4.22) [or 
( 4.14) with real entries], but does not coincide with this 
realization. Indeed, the choice (3.8) corresponds to 

gf(R) -g2(C)nsu(7), (4.23) 

where g2 (C) is taken in the realization (4.10) [with metric 
(4.9)] and su(7) is realized by matrices XeC7X7 satisfying 

lx+xt[~o. 1~ C 2 1) (4.24) 

(the superscript t denotes Hermitian conjugation). 
(2)gfc(lR), thenoncompactrealformofg2. Thissubal­

gebra can be easily obtained in the realization (4.18), corre­
sponding to the metric 14,3 of ( 4.17), by requiring that R, m, 
and Ube real and Vand n be pure imaginary. We then have 
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0 0 v'2 0 0 0 0 
0 v'2 0 0 0 0 0 
0 0 0 0 0 0 v'2 

S"= 0 0 0 0 0 0 (4.20) 

0 0 0 0 v'2 0 0 
0 0 0 0 0 v'2 0 

v'2 0 0 0 0 0 0 

and 

- v2a03 -a13 -a23 0 

v2a20 a 03 0 a 23 

v2a1O 0 -a03 a13 

0 - v2a1O - v2a20 v2a03 (4.21 ) 
- v2a01 -al + 2a2 -a21 -a20 

- v2a02 -a12 a l -a2 a lO 

v2a30 -°02 aOl a 2 

(4.25) 

where both g2(C) and O( 4,3) are realized using the metric 
14,3 • 

The realization (3.10) of Sec. III is equivalent to this 
one, though it does not coincide with it. The choice (3.10) 
corresponds to the intersection 

gfc(R) -g2(C)nsu(4,3), (4.26) 

where g2(C) is realized using the metric K = K C of (4.9) 
and sue 4,3) is realized by the matrices XeC7X7

, satisfying 

ix +x+i=o, 
1 

-1 

-2 ( 4.27) 

1 
-1 

(3) The algebra sl(2,C), already given in (2.16) is real­
ized, e.g., by the matrices 

{X12 +XOI,x21 +XIO,x1 +X2 } (4.28) 

in the realization (4.9) and (4.10). 
All other maximal subalgebras of g2(C) are embedded 

reducibly in the representation D(1,O).As such, they must 
leave a vector subspace of C7 invariant. The metric K pro­
vides us with an invariant vector product x T Ky in C7

• A 
vector xeC7 can thus be either nonisotropic [xT Kx::j:.O, we 
denote such a vector space ( + )], or isotropic [x T Kx = 0, 
we denote such a space (0)]. A subspace can be character­
ized by its dimension and by the number no of isotropic vec­
tors in an orthogonal basis (O<no< 3). If a degenerate space 
(no> 1) is left invariant by some group G, then its isotropic 
subspace (of dimension no) is itself invariant. If a subspace V 
is invariant under G, then its orthogonal complement ~ 
(with respect to the invariant metric) is also invariant. 
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In order to find all reducibly embedded maximal subal­
gebrasofg2(C), we must hence find the subalgebras leaving 
invariant spaces of the type ( + ), ( + +), ( + + + ), 
(0), (00), and (000). Let us consider the individual cases. 

( 1) ( + ). Consider the realization (4.9). With no loss 
of generality, we can choose the vectors space ( + ) in the 
form 

Vi={(OOOxOOO)}. (4.29) 

Imposing 

MeV-V, 

we obtain b = d = 0 in (4.10), which implies C = D = O. 
We obtain the algebra s1(3,C) realized as 

{X} = (~~ ~), AeC3x3, Tr A = O. (4.30) 
o 0 _AT 

Z3 -Z2 Zl 0 

0 Zl Z2 Y3 
-Zl 0 Z3 -Y2 

{X} = -Z2 -Z3 0 $ 

0 0 

0 0 

0 0 

We see that in this case we have 

s1(2,C) $ sl(2,C) -g2(C)n[0(4,C) $ o(3,C)]. (4.34) 

This algebra is conjugate to (2.17) (but does not coincide 
with it). 

The remaining invariant subspaces to be considered are 
completely isotropic. For the classical groups invariance of 
an isotropic subspace leads to parabolic subgroups (and 
their Lie algebras46

). We shall see that for g2(e) this is not 
always the case. 

(4) The space (0). We use the realization (4.21) with 
K = J7 ( 4.19). We choose the invariant subspace in the form 

Li= (OOOOOOx). (4.3S) 

Requiring M " L T _ L T implies 

a 23 = an = a 03 = a20 = a lO = 0 (4.36) 

and we obtain the maximal parabolic subalgebra Pal (C) of 
(2.19). 

Notice that the nine-dimensional algebra Pal + (C) can 
be interpreted as the restriction of the 16-dimensional simili­
tude algebra47 sim(S,C) tog2 (C): 

Pal (C) -sim(S,C)rw2(C), (4.37) 

where sim (S,C) is one of the maximal parabolic subalgebras 
of 0(7,C) [the group sim(S,C) is the group of Euclidian 
transformations of CS

, extended by dilations] . 
(S) The space (00). We again use the realization (4.21) 

and require that the subspace 

Lf=(OOOOOxy) (4.38) 
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This actually coincides with the subalgebra (2.1S). We have 

sl(3,C) -o(6,C)rw2(C), 

(2) ( + +). In this case, we use the realization (4.14) 
with (K = 17 ), With no loss of generality we choose the in­
variant subspace to be 

Vf=(xOOyOOO). (4.31) 

Putting MV~ V we find a four-dimensional gl (2,C) algebra. 
This algebra is contained in a s1(3,C) algebra conjugate to 
(4.30) and is hence not maximal. 

(3) ( + + + ). We again use the realization (4.14) 
and choose the invariant subspace in the form 

Vj = (OOOOxyz). (4.32) 

Requiring that the space (4.32) be left invariant by a subal­
gebra of matrices of the form (4.14) leads to the subalgebra 
s1(2,e) $ sl(2,C), realized as 

-Y3 Y2 Yl 
0 -Yl Y2 

Yl 0 Y3 
-Yz -Y3 0 (4.33) 

0 -2Y3 2Yz 
2Y3 0 -2Yl 

-2Y2 2Yl 0 

be left invariant. In (4.21), we then have 

(4.39) 

and we obtain the maximal parabolic subalgebra Pa , (C) of 
(2.20). This nine-dimensional algebra [not isomorphic to 
Pal (C)] can be interpreted as the restriction of the 14-di­
mensional "optical" subalgebra47 opt(S,C) of o(7,C) to 
g2(C): 

Pa ,(C)-opt(S,C)rw2(C), (4.40) 

( 6) The space (000) . We use the realization (4.10) and 
choose 

Lj= (OOOOxyz). (4.41 ) 

The condition M eL3- ~L3 implies b = 0, C = O. This 
would provide us with a new IS-dimensional maximal para­
bolic subalgebras of o(7,C). Restricting to g2(C), we find 
that C = 0 implies d = 0 and b = 0 implies D = 0 [see 
( 4.10) ]. We do not obtain a new parabolic subalgebra of 
g2 (C) but simply reobtain the maximal reductive subalgebra 
s1(3,C). 

Thus, we find that g2(C) has precisely seven classes of 
maximal subalgebras, summarized in Table II. 

C. The maximal subalgebras of ~(R) 

All maximal subalgebras of g~ (lIt) (and of any compact 
Lie algebra) are reductive. We shall use the D( 1,0) repre­
sentation, in which g~ (R) is viewed as a subalgebra of 0 (7) 
and choose the metric to be given by K = 17 , Thus we have 
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TABLE II. The complex Lie algebrag2 (e) and its maximal subalgebras. 

Complex (de) 
or real (dR ) 

Algebra dimension Basis and matrix realization 
Invariant subspace 

and metric used 

g2(e) de = 14 (2.4) and (4.10), (4.14), (4.18) 
or (4.21) withM,kEe 

gf(R) dR = 14 (3.8) and (4.14) with MikER 
gfc(R) dR = 14 (3.10) and (4.10), (4.18), or (4.21) 

withM,kER 
sl(2,e) de =3 (2.16) and (4.28) 
sl(3,C) de =8 (2.15) and (4.30) 
sl(2,e) e sl(2,C) de =6 (2.17) and (4.33) 
Pa , (e) de =9 (2.19) and (4.21) with(4.36) 

Vi={OOOxOOO}, K=Kc 
Vf = {OOOOxyz}, K=I7 

Li = {OOOOOOx}, K=J7 

Lf = {OOOOOxy}, K=J7 Pa, (e) de =9 (2.20) and (4.21) with (4.39) 

the matrices M of ( 4.14 ) with all entries real. In other words 
we have 

(b - d)eR3
, (A - A T),(C + D)eR3X3

, (4.42) 
i(b+d)eR3, i(A+A T), i(C-D)eB3X ). 

The only subalgebra of gf(R) irreducibly embedded in this 
representation is su(2). A basis for this "irreducible" su(2) 
algebra is given by 

i(ha, + ha,) 

0 0 0 

0 0 0 

0 0 0 
= 

0 0 
0 0 0 

0 0 -1 

Ea , + Ea , 

0 0 

0 -1 

1 0 

= 2 0 0 

0 0 0 
0 0 0 

0 0 0 

'TJa, + 'TJa, 

0 0 0 
(} 0 0 

0 0 0 
= 0 0 0 

0 0 

0 -1 

0 0 

0 -1 

0 0 

0 0 
0 0 
0 0 
0 0 

-2 0 
0 0 
0 0 
0 0 
0 0 
0 -1 

0 0 

0 0 
0 -1 

0 0 
0 -2 
2 0 
0 0 
0 0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 

-1 

-1 

0 
1 
0 
0 
0 
0 

0 
0 
1 

0 
0 
0 

o 
o 
o 
o 
o 

o 

(4.43 ) 

o 
-1 

o 
o 
o 
o 
o 

The reducibly embedded maximal subalgebras are ob­
tained by requiring that either a one-dimensional or three­
dimensional vector space be left invariant (a two-dimension­
al space leads to a nonmaximal subalgebra). Since the metric 
is positive definite, all vectors have positive length. 
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A one-dimensional vector space can be chosen to be V f 
= (000 x 000). Its invariance implies m = n = 0 in 
( 4.14) and we obtain the algebra su ( 3) realized as 

( 

(A-AT)/2 0 i(A +AT)/2) 
M= 0 0 0 , 

- i(A +A T)/2 0 (A -A T)/2 

A -A TeB, i(A +A T)eR. (4.44) 

We have in this realization 

su(3) -gf(R)nO(6). 

In terms ofthe canonical basis (3.8) we have 

su(3) - {iha, ,iha"Ea, ,'TJa, ,Ea, + 3a,' 

'TJa, + 3a, ,E2a, + 3a, ,'TJ2a, + 3a,}. 

( 4.45) 

( 4.46) 

Finally, a three-dimensional invariant subspace can be 
chosen to be V3 of (4.32). Its invariance leads to an 
su(2)esu(2) subalgebraoftheform (4.33) (with real en­
tries). We have 

su(2) e su(2) -gf(R)n[0(4) eo(3)]. (4.47) 

Equivalently, the su (2) e su (2) subalgebra in the canonical 
basis can be identified as 

{iha"Ea,,'TJa)e{i(ha, +2ha,),Ea,+2a,,'TJa,+2a)' (4.48) 

The results on the maximal subalgebras of gf(R) are sum­
marized in Table III. 

D. The maximal subalgebras of ~(R) 

Similarly as gf(R) the noncompact real form ~c(R) 
has just one maximal subalgebra that is irreducibly embed­
ded in the seven-dimensional fundamental representation. 
In this case, the subalgebra is sue 1, 1). To visualize it, let us 
take the "antidiagonal" realization of o( 4,3), i.e., the metric 
(4.9) and the realization (4.10) with all entries real.The 
algebra su ( 1,1) is given by 

ha, + ha, = Xl + X2, ea, + ea, = X 12 + XOI ' 

e_ a, +e_ a, =X21 +XIO' (4.49) 

i.e., its basis coincides with the basis (4.28) for sl(2,C), this 
time considered over the field of real numbers. 

Let us now tum to the reducible subalgebras. The metric 
is indefinite, so a vector space is characterized by its dimen­
sion and signature, i.e., the number of mutually orthogonal 
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TABLE III. The compact Lie algebra g~(R) and its maximal subalgebras. 

Algebra 
Real 

dimension Basis and matrix realization 
Invariant subspace 

(metric 17) 

~(R) -g2(C)rO(7) 

su(2) -sl(2,C)r'ffi(R) 
14 
3 

(3.8) and (4.14) with MlkeR 

i(ha , + h", ),Ea , + E",,71,., + 71", 
and (4.43) 

su(3) -g~(R)no(6) 
su(2) !D su(2) 
-g~(R)n[o(4) !Do(3) I 

8 
6 

(4.46) and (4.44) Vf = {OOOxOOO} 
Vi = {OOOOxyz} ( 4.48) and (4.33) with 

Yi,zleR 

basis vectors of positive ( + ), or negative ( - ), or zero 
(O)length.Let us now run through all possibilities. 

We start by considering nondegenerate invariant sub­
spaces and use the diagonal realization (4.18), with all en­
tries real and the metric (4.17). 

( 1) (+). We choose this vector space to be V ~ 
= (OOOxOOO) andobtainm j =nl =0, i.e., 

(

A -A T)/2 0 - (A +A T)/2) 
M= 0 0 0 , 

- (A +A T)/2 0 (A -A T)/2 

0 2(c3 - co) -2c2 2c1 

0 2c1 2c2 

AlkeR, Tr A = 0, (4.50) 

which is readily identified as s1(3,R). It coincides with 
(2.15), viewed over R. We have 

sl(3,R) -gfC(R)nO(3,3). 

(2) ( - ). We choose this vector space as 

V:" = (OOOOOOx). 

(4.51) 

(4.52) 

Requiring MV _ !;;;; V_we obtain a su (2,1) subalgebra, 
realized by the o( 4,2) matrices: 

-n3 -n4 0 

-n4 n3 0 
2c2 -2c I 0 2(co + c3) -2n2 -2nl 0 

M= -2c1 -2c2 - 2(co + c3) 0 

-n3 -n4 -2n2 2nl 
-n4 n3 - 2nl 2n2 

0 0 0 0 

(the Cj and nl correspond to compact and noncompact gen­
erators, respectively) . We have in this case 

su(2,1)-gfc(R)nO(4,2). (4.54) 

Equivalently, we could realize 

su(2,1) -gfC(R)nsu(4,2). (4.55) 

In the canonical basis (3.10) for gfc(R) one realization of 
(4.55) is 

su(2,1) -{iha.,iha"Ea.,TJa.,iEa• + 3a.' 

iTJa. + 3a"iE2a• + 3a"iTJ2a. + 3a,}. (4.56) 

(3) ( + + ), ( - - ), or ( + - ). Similarly as in the 
case of g2 (C) two-dimensional nondegenerate invariant sub­
spaces do not lead to maximal subalgebras. 

(4) (- - - ). We choose the space in the form 

V:" __ = (OOOOxyz). (4.57) 

The invariance of V:" _ _ implies n = 0, V = 0 in (4.18) 
and we are left with the maximal compact subalgebra 
su(2) $su(2) ofgfc(R). In this case we have 

su(2) $su(2)-gfc(R)no(4) $0(3). (4.58) 

The matrix realization is (4.33) (withy/,z/eR) and in terms 
ofthe canonical basis this is conjugate to (3.10b). 
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2nl 2n2 0 (4.53) 

0 -4co 0 
4co 0 0 
0 0 0 

(5) ( + + - ). We choose the space in the form 

V~ + _ = (OOxyOOz) (4.59) 

and obtain 

su(l,1) $su(l,l)-gfc(R)no(2,2) $0(2,1). (4.60) 

In the canonical basis (3.10) we can identify this algebra, 
e.g., as 

su(l,1) $suO,I) 

(6) ( + - -). We choose 

V~ __ =(OOOxyzO). 

( 4.61) 

(4.62) 

The invariance ofthis subspace leads to an 0(2,1) subalge­
bra, contained in sl(3,R) and hence not maximal. 

(7) (+ + + ). The invariance of such a subspace 
leads to an 0 ( 3,1) subalgebra that is not maximal. 

The remaining subspaces to be considered are degener­
ate, i.e. their bases contain at least one isotropic vector. In 
order to lead to a maximal subalgebra such a space must be 
completely isotropic. We shall consider these subspaces in 
the metric J7 (4.19) and hence use the realization (4.21) 
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TABLE IV. The noncompact real Lie algebra~c(H) and its maximal subalgebras. 

Algebra 
Real 

dimension Basis and matrix realization 
Invariant subspace 

and metric used 

~C(H)-g2(C)no(4,3) 

-g2(C)(\<Iu(4,3) 
sue 1,1) _sl(2,C)ngfc(H) 
s1(3,H) _~c(H)no(3,3) 

su(2,1) _~c(H)no(4.2) 

su(2) e su(2) 

14 

3 
8 
8 
6 

(2.4) over H, or (3.10);(4.10) 

(4.18) or (4.21) over H 
(4.49) 

(2.15) overHand (4.50) 

(4.56) and (4.53) 
V~ = (OOOxOOO), K=I 4•3 

V~ = (OOOOOOx), K=I 4•3 

V~ __ = (OOOOxyz), K=I4•3 (3.10b) and (4.33) overR 
_~c(R)n[o(4) eo(3)] 

su(1,1) e su(1,1) 6 {iha"i€a"il1a) + {i(2ha, + 3ha,}, V~ + _ = (OOxyOOz), K=I4•3 

-~c(R)n[o(2,2) eo(2,1)] 
Pa , (H) _~c(R)(\<Iim(3,2) 

IE2al + 3az ,i7J2a1 + 3az } 

Pa, (H) -~c(H)nopt(3,2) 
9 
9 

(3.18) and (4.21) with (4.36) over H 
(3.19) and (4.21) with (4.39) overR 

L r = (OOOOOOx), K=J, 

Lf = (OOOOOxy), K=J, 

with all entries real. The three possible invariant subspaces 
are (0), (00), and (000) and we choose them as in (4.35), 
(4.38), and (4.41), respectively. The resulting maximal 
parabolic subalgebras are exactly the same as in the case of 
g2(C), however viewed over the field of real numbers lIt To 
be more specific, we have the following. 

(8) The space (0) is left invariant by Pal (JR), i.e., 
(2.19) viewed over the JR. We have 

Pal (JR) -gfC(R)nsim(3,2), (4.63) 

where sim (3,2) is the corresponding maximal parabolic sub­
algebra ofo(4,3). We recall that Sim(p,q) is the group of 
linear transformations of the Minkowski space M(p,q) leav­
ing the metric dr = dx~ + ... + dx; - dx;+ 1 - ... 

- dx; + q invariant up to a constant scale factor: 
(dS')2 = t!- ds2, AEJR (see Ref. 47). 

(9) The space (00) is left invariant by Pa , (JR), i.e., 
(2.20) over JR. We have 

Pa , (JR) -g~C(JR)nopt(3,2). (4.64) 

We recall that Opt (p,q ) is a subgroup of the group of confor­
mal transformations of the Minkowski space M(p,q), leav­
ing a lightlike vector space x - y, (x - y)2 = 0, invariant.47 

(10) The space (000), as in the complex case, does not 
lead to a new maximal subalgebra. 

All relevant information on the subalgebras of gfc(JR) 
is summarized in Table IV. We see that results for parabolic 
subalgebras are greatly simplified if the appropriate basis is 
chosen, namely one in which the metric tensor is J7 of 
(4.19). The Iwasawadecomposition (3.11 )-(3.13) was per­
formed for the su( 4,3) metric (4.27) and o( 4,3) metric K C 
(4.9). The subalgebra conjugate to Pa, (JR) would be ob­
tained in that realization by requiring that the invariant iso­
tropic vector space be spanned by 
LT = (0,1, - i,O,O,l, - i). The corresponding maximal 
solvable algebra in this case is given by (3.12) and (3.13). 

This completes the classification of the maximal subal­
gebras of g2(C), g~(JR), and gfc(JR). The results are sum­
marized in Tables II, III, and IV. 
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A set of rotations and Lorentz boosts is presented for studying the three-parameter little groups of 
the Poincare group. This set constitutes a Lorentz generalization of the Euler angles for the 
description of classical rigid bodies. The concept of Lorentz-generalized Euler rotations is then 
extended to the parametrization of the E(2)-like little group and the 0(2,1 )-like little group for 
massless and imaginary-mass particles, respectively. It is shown that the E( 2) -like little group for 
massless particles is a limiting case of the 0 ( 3 ) -like or 0 (2,1 ) -like little group. A detailed analysis 
is carried out for the two-component SL(2,c) spinors. It is shown that the gauge degrees of 
freedom associated with the translationlike transformation of the E(2)-like little group can be 
traced to the SL (2,c) spins that fail to align themselves to their respective momenta in the limit of 
large momentum and/or vanishing mass. 

I. INTRODUCTION 

The Euler angles constitute a convenient parametriza­
tion of the three-dimensional rotation group. The Euler 
kinematics consists of two rotations around the z axis with 
one rotation around the y axis between them. The first ques­
tion we would like to address in this paper is what happens if 
we add a Lorentz boost along thez direction to this tradition­
al procedure. Since the rotation around the z axis is not af­
fected by the boost along the same axis, we are asking what is 
the Lorentz-generalized form of the rotation around the y 
axis. 

Since the publication ofWigner's fundamental paper on 
the Poincare group in 1939,1 a number of mathematical 
techniques have been developed to deal with the three-pa­
rameter little groups that leave a given four-momentum in­
variant. Our second question is why we do not yet have a 
standard set of transformations for Wigner's little groups. 

In this paper, we combine the first and second questions. 
One ofWigner's little groups is locally isomorphic to 0(3). 
Furthermore, the Euler angles constitute the natural lan­
guage for spinning tops in classical mechanics, while 
Wigner's little groups describe the internal space-time sym­
metries of relativistic particles, including spins. It is thus 
quite natural for us to look for a possible Eulerian parametri­
zation of the three-parameter little groups. 

As far as massive particles are concerned, the traditional 
approach to this problem is to go to the Lorentz frame in 
which the particle is at rest, and then perform rotations 
there. 1 Then, its four-momentum is not affected, but the di­
rection of its spin becomes changed. This operation, how­
ever, is not possible for massless or imaginary-mass parti­
cles. 

In order to construct a Lorentz kinematics that includes 

both massive and massless particles, we observe that the 
transformation that changes a given four-momentum can be 
carried out in many different ways. However, as Wigner ob­
served in 1957, the resulting spin orientation depends on the 
way in which the transformation is performed and on the 
mass of the particle.2 For instance, when a particle with posi­
tive helicity is rotated, the helicity remains unchanged. As 
far as the momentum is concerned, we can achieve the same 
purpose by performing a simple boost. However, this boost 
does not leave the helicity invariant. Furthermore, the 
change in the direction of spin depends on the mass. 

Indeed, the difference between the rotation and boost 
was studied for massless photons by Kupersztych, 3 who ob­
served that this difference amounts to a gauge transforma­
tion. In this paper, we extend the kinematics of Kupersztych 
to include massive and imaginary-mass particles. We shall 
show that this extended kinematics constitutes the above­
mentioned Lorentz generalization of the Euler rotations. 

We then study the extended Kupersztych kinematics 
using the SL(2,c) spinors. Among the four two-component 
SL (2,c) spinors, two of them preserve the helicity under 
boosts in the zero-mass limit, as was noted by Wigner in 
1957. However, the remaining two do not preserve the heli­
city in the same limit. We show that these helicity nonpre­
serving spinors are responsible for gauge degrees of freedom 
contained in the E(2)-like little group for photons. 

In Sec. II, we work out the Kupersztych kinematics for 
massive particles. It is pointed out that this new kinematics is 
equivalent to the traditional 0(3)-like kinematics in which 
the particle is rotated in its rest frame. We show in Sec. III 
that the E(2)-like little group for massless particles is the 
infinite-momentumlzero-mass limit of the 0(3)-like little 
group discussed in Sec. II. In Sec. IV, we discuss the continu­
ation of the transformation matrices for the 0 (3) -like little 
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x 

z 

FIG. 1. Lorentz-generalized Euler rotations. The traditional Euler parame­
trization consists of two rotations around the z axis with one rotation 
around the y axis between them. Ifwe add a Lorentz boost along the z axis, 
the two rotations around thez axis are not afl'ected. The rotation around the 
y axis can be Lorentz-generalized in the following manner. If we boost the 
system along the z direction, we are dealing with the system with a nonzero 
four-momentum along the same direction. The four-momentum p can be 
rotated around the y axis by angle fJ. The same'result can be achieved by 
boost S -I. However, these two transformations do not produce the same 
effect on the spin. The most eft'ective way of studying this difl'erence is to 
study the transformation SR, which leaves the initial four-momentum in­
variant. 

group to the case of imaginary-mass particles. 
In Sec. V, we study the transformation properties ofthe 

four two-component spinors in the SL (2,c) regime. It is 
shown that in the limit of infinite momentum and/or zero 
mass, two of the SL(2,c) spinors preserve their respective 
helicities, while the remaining two do not. We note, in Sec. 
VI, that four-vectors can be constructed, from the four two­
component SL(2,c) spinors. It is shown that the origin of the 
gauge degrees of freedom for photons can b~ traced to the 
spinors that refuse to align themselves to the momentum in 
the infinite-momentumlzero-mass limit. 

II. KINEMATICS OF THE 0(3)-L1KE LITTLE GROUP 

The Euler rotation consists of a rotation around the y 
axis preceded and followed by rotations around the z axis. If 
the boost is made aJong the z axis, the rotations around the z 
axis are not affected. In this section, we discuss a Lorentz 
generalization of tlte rotation around the y axis and its rela­
tion to the O( 3) -Uke little group for massive particles. 

Let us start with a massive particle at rest whose four­
momentum is 

(O,O,O,m) . 0) 

We use the four-vector convention: xl< = (x,y, Z, t). We can 
boost the above four-momentum along the z direction with 
velocity parameter a: 

P= m(O,O,a/(1- a 2)1/2,l/(1_ a 2)1/2). (2) 

The four-by-four matrix which transforms the four-vector of 
Eq. (1) to that ofEq. (2) is 

A(a) =(~ol ! 11(1 ~a')'" 
o a/O_a2)1/2 

(3) 

Let us next rotate the four-vector of Eq. (2) using the 
rotation matrix: 

R(O) =( ~~O ~ ~: D· (4) 

This rotation does not alter the helicity of the particle. 2 

As is specified in Fig. 1, we can achieve the same result 
on the four-momentum by applying a boost matrix. How­
ever, unlike tlte rotation ofEq. (4), this boost is not a heli­
city-preserving transformation.2 We c~ study the differ­
ence between these two transformations by taking the 
product of tlte rotation and the inve~ of the boost. This 
inverse boost is illustrated in Fig. 1, and is represented by 

_ ( 1 + 2(Sinb(A ~2)COS(B /2»)2 o 
1 
o 
o 

- (sinh(A /2W sin B 
o 

- (SinhA)COS(B/2») 

(SinhA)~in(B/2) , 
(5) 

S - _ (sinh(A /2»)2 sin B 
- (sinhA)cos(B /2) 

where 

A = 2[tanh- 1(a sin(B /2»)] . 

1 + 2(Sinb(A /2)sin(B /2»)2 

(sinh A)sin(B /2) cosh A 

(6) 

This matrix depends on the rotation angle B and the velocity parameter a, and becomes an identity matrix when the particle is 
at rest with a = O. 

Indeed, the rotation R (B) followed by the boost S(a,B) leaves the four-momentum p ofEq. (2) invariant: 

P=D(a,B)P, (7) 

where 

D(a,B) = S(a,B)R(B) . 

The multiplication of the two matrices is straightforward, and the result is 
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o -u/T 
o o 

au2/2T . (8) o 
o 

1+ u2/2T 
-au2/2T 

au/T ) 

1 + au2/2T 

where 

U= -2(tan(0/2») and T=I+(1-a 2 )(tan(0/2)f. 

This complicated expression leaves the four-momentum P of 
Eq. (2) invariant. Indeed, if the particle is at rest with van­
ishing velocity parameter a, the above expression becomes a 
rotation matrix. As the velocity parameter a increases, this 
D matrix performs a combination of rotation and boost, but 
leaves the four-momentum invariant. 

Let us approach this problem in the traditional frame­
work. 1 The above transformation is clearly an element of the 
O(3)-like little group that leaves the four-momentum P in­
variant. Then we can boost the particle with its four-momen­
tum Pby A -I until the four-momentum becomes that ofEq. 
( 1 ), rotate it around the y axis, and then boost it by A until 
the four-momentum becomes P of Eq. (2). It is appropriate 
to call this rotation in the rest frame the Wigner rotation.4 

The transformation of the 0 ( 3 ) -like little group constructed 
in this manner should take the form 

D(a,O) =A(a)W(O*)[A(a)]-I, (9) 

where W is the Wigner rotation matrix 

( 

cosO* 

W(O*) = ? n* 
-smu 

o 

o sinO* 

1 0 

o cosO* 

o 0 

~) o . 
I 

(10) 

We may call 0 * the Wigner angle. The question then is 
whether DofEq. (9) is the sameasDofEq. (8). In order to 
answer this question, we first take the trace of the expression 
given in Eq. (9). The similarity transformation of Eq. (9) 
assures us that the trace of Wbe equal to that of D. This leads 
to 

0* -I (1- (1-a
2
)(tan(0/2)f) 

= cos 1+ (1 - a 2 )(tan(0 /2)f . 
(11) 

It is then a matter of matrix algebra to confirm that D of Eq. 
(9) and that ofEq. (8) are identical. 

We have plotted in Fig. 2 the Wigner rotation angle 0 * 
as a function of the velocity parameter a. Here 0 * becomes 0 
when a = 0, and remains approximately equal to 0 when a is 
smaller than 0.4. Then 0 * vanishes when a_I. Iqdeed, for a 
given value of 0, it is possible to determine the value of 0 * 
that is the rotation angle in the Lorentz frame in which the 
particle is at rest. 

The D matrix in the traditional form of Eq. (9) is well 
known. 1 However, the fact that it can also be derived from 
the closed-loopR (0) andS(a,O) suggests that it has a richer 
content. For instance, the closed-loop kinematics does not 
have to be unique. There is at least one other closed-loop 
kinematics that leaves the four-momentum invariant.5 The 
Kupersztych kinematics, which we are using in this paper, is 

2230 J. Math. Phys., Vol. 27, No.9, September 1986 

convenient for studying the relation between the Euler an­
gles and the parameters of the O(3)-like little group. 

We have so far discussed the transformations in the x-z 
plane. It is quite clear that the same analysis can be carried 
out in the y-z plane or any other plane containing the z axis. 
This means that we can perform rotations Rz(t/J) and 
Rz (1/J), respectively, before and after carrying out the trans­
formations in the x-z plane. Indeed, together with the veloc­
ity parameter a, the three parameters 0, t/J, and 1/J constitute 
the Eulerian parametrization of the 0 (3) -like little group. 

III. E(2)-LlKE LITTLE GROUP FOR MASSLESS 
PARTICLES 

Let us study in this section the D matrix ofEq. (8) as the 
particle mass becomes vanishingly small, by taking the limit 
of a_I. In this limit, the D matrix of Eq. (8) becomes 

o 
I 

-u 
o 

o 
o 

U~2 ). 

- u2/2 1 + u2/2 

e" 
180° 1-----------
170° 1------__ 

150° I----_~ 

120°1--__ _ 

60°1--__ _ 

30°1---__ _ 

10° 1-------__ _ 
o 0.2 0.4 0.6 0.8 1.0 a 

(12) 

FIG. 2. Wigner rotation angle versus lab-frame rotation angle. We have 
plotted () * as a function of a for various values of () using Eq. ( 11 ). () = () • at 
a = O. () * is nearly equal to () for moderate values of a, but it rapidly ap­
proaches 0 as a becomes 1. 
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After losing the memory of how the zero-mass limit was 
taken, it is impossible to transform this matrix into a rotation 
matrix. There is no Lorentz frame in which the particle is at 
rest. If we boost this expression along the z direction using 
the boost matrix 

o 0 
o 

o 1/(1_{32)1/2 

o {3/(1_{32)1/2 

D remains form-invariant: 

D'(u) =B({3)D(u)[B({3)]-1 =D(u'), (14) 

where 

u' = [(1 + {3)/(1 - {3)] 1/2 U • 

The matrix of Eq. (12) is the case where the Kupersz­
tych kinematics is performed in the x-z plane. This kinema­
tics also can be performed in the y-z plane. Thus the most 
general form for the D matrix is 

D(u,v) ~(~ 
0 -u 

u ) -v v 

v 1 - (u2 + v2 )/2 (u2 + v2 )/2 . 

v _ (u2 + v2 )/2 1 + (u2 + v2 )/2 
(15) 

The algebraic property of this expression has been discussed 
extensively in the literature. I

,5-8 If applied to the photon 
four-potential, this matrix performs a gauge transforma­
tion.5,7 The reduction of the above matrix into the three-by­
three matrix representing a finite-dimensional representa­
tion of the two-dimensional Euclidean group has also been 
discussed in the literature. 8 

Let us go back to Eq. (9). We have obtained the above 
gauge transformation by boosting the rotation matrix W giv­
en in Eq. (10). This means that the Lorentz-boosted rota­
tion becomes a gauge transformation in the infinite-momen­
tum and/or zero-mass limit. This observation was made 
earlier in terms of the group contraction of 0(3 ) to E(2),9.1O 
which is a singular transformation. We are then led to the 
question of how the method used in this section can be ana­
lytic, while the traditional method is singular. 

The answer to this question is very simple. The group 
contraction is a language of Lie groups.9.IO The parameter a 
we use in this paper is not a parameter of the Lie group. If we 
use 1] as the Lie-group parameter for boost along the z direc­
tion, it is related to a by sinh 1] = a/( 1 - a 2 ) 1/2. However, 
this expression is singular at a = ± 1. Therefore, the con­
tinuation in a is not necessarily singular. We shall continue 
the discussion of this limiting process in terms of the SL ( 2,c ) 
spinors in Sec. VI. 

IV. 0(2,1)-LIKE LITTLE GROUP FOR IMAGINARY-MASS 
PARTICLES 

We are now interested in transformations that leave the 
four-vector of the form 

p= im(0,0,a/(a2 -1)1I2,1/(a2 - 1)1/2) (16) 
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invariant, with a greater than 1. Although particles with 
imaginary mass are not observed in the real world, the trans­
formation group that leaves the above four-momentum in­
variant is locally isomorphic to 0(2,1) and plays a pivotal 
role in studying noncompact groups and their applications 
in physics. This group has been discussed extensively in the 
literature. II 

We are interested here in the question of whether the D 
matrix constructed in Secs. II and III can be analytically 
continued to a > 1. Indeed, we can perform the rotation and 
boost of Fig. 1 to obtain the D matrix of the form given in Eq. 
(8), if a is smaller than a o where 

a~ = [1 + (tan(O/2))2]1(tan(O/2)f. (17) 

As a increases, some elements of the D matrix become singu­
lar when T vanishes or a = ao. Mathematically, this is a 
simple pole that can be avoided either clockwise or counter­
clockwise. However, the physics ofthis continuation process 
requires a more careful investigation. 

One way to study the D transformation more effectively 
is to boost the spacelike four-vector ofEq. (16) along thez 
direction to a simpler vector 

(O,O,im,O) , (18) 

using the boost matrix ofEq. (13) with the boost parameter 
{3 = 1/a. Consequently, the D matrix is a Lorentz-boosted 
form of a simpler matrix F: 

D=B(1/a)F(A)[B(1/a)]-I. (19) 

Here F is a boost matrix along the x direction: 

(
COS~A 

F(A) = 0 

sinhA 

where 

o 0 
1 0 

o 1 
o 0 

sin~A ) 
o ' 

cosh A 

- 2(a2 - 1)1/2 tan(O /2) 
tanh A = , 

1 + (a2 -1) (tan(O/2)f 

cosh A = 1 + (a2 
-1) (tan(O/2))2 . 

1- (a 2 -1) (tan(O/2))2 

(20) 

(21) 

If we add the rotational degree of freedom around the z axis, 
the above result is perfectly consistent with Wigner's origi­
nal observation that the little group for imaginary-mass par­
ticles is locally isomorphic to 0 (2,1). I 

We have observed earlier that the D matrix of Eq. (8) 
can be analytically continued from a = 1 to 1 < a < ao. At 
a = ao, some of its elements are singular. If a> ao, cosh A in 
Eqs. (20) and (21) become negative, and this is not accepta­
ble. 

One way to deal with this problem is to take advantage 
of the fact that the expression for tanh A in Eq' (21) is never 
singular for real a greater than 1. This is possible if we 
change the signs of both sinh A and cosh A when we jump 
from a < a o to a > ao. Indeed, the continuation is possible if 
it is accompanied by the reflection of x and t coordinates. 
After taking into account the reflection of the x and t coordi­
nates, we can construct the D matrix by boosting F of Eq. 
(20). The expression for the D matrix for a > a o becomes 
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(

1- 2/T 

D= 0 
-u/T 
-au/T 

o 
1 

o 
o 

u/T 

o 
1 +2/[(a2 -l)T] 
- 2a/[ (a2 - I)T] 

-au/T ) 
o 

2a/[ (a 2 - I)T] . 

1-2a2 [(a2 -1)TJ 

(22) 

This expression cannot be used for the a-I limit, but can be 
used for the a- 00 limit. In the limit a- 00, P of Eq. (16)· 
becomes identical to Eq. (18), and the above expression be­
comes an identity matrix. As for the question of whether D of 
Eq. (22) is an analytic continuation ofEq. (8), theansweris 
"no," because the transition from Eq. (22) to Eq. (8) re­
quires the reflection of the x and taxes. 

V. PARTICLES WITH SPIN-l 

The purpose of this section is to study the D kinematics 
of spino! particles within the framework of SL (2,c). Let us 
study the Lie algebra ofSL(2,c) (see Refs. 12 and 13): 

[S;oS}] = iEijkSk, [Sj,Kj] = iEijk Kk , 

[Kj,Kj] = - iEijkSk , (23) 

where Sj and K j are the generators of rotations and boosts, 
respectively. The above commutation relations are not in­
variant under the sign change in S;o but they remain invar­
iant under the sign change in K j • For this reason, while the 
generators of rotations are S; = !u;, the boost generators can 
take two different signs Kj = ( ± )(i/2)uj • 

Let us start with a massive particle at rest, and the usual 
normalized Pauli spinors X + and x_for the spin in the posi­
tive and negative z directipns, respectively. If we take into 
account Lorentz boosts, there are four spinors. We shall use 
the notation X ± to 'Yhich the boost generators K j = (i/2) U j 

are applicable, and X ± to which K j = - U/2) U j are appli­
cable. There are therefore four independent SL(2,c) spin­
ors. 12

,13 In the conventional four-component Dirac equa­
tion, only two of them are independent, because the Dirac 
equation relates the dotted spinors to the undotted counter­
parts. However, the recent development in supersymmetric 
theories, 14 as well as some of more traditional approaches, IS 
indicates that both physics and mathematics become richer 
in the world where all four ofSL(2,c) spinors are indepen­
dent. In the Appendix, we examine the nature of the restric­
tion the Dirac equation imposes on the four SL (2,c) spinors. 

As Wigner did in 1957,2 we start with a massive particle 
whose spin is initially along the direction of the momentum. 
The boost matrix, which brings the SL( 2,c) spinors from the 
zero-momentum state to that of p, is 

A(±l(a) 

= (((1 ± a)/o(1 =F a »)1/4 0 ) 
((1 =Fa)/(l ± a»)1/4 ' 

(24) 

where the superscripts ( + ) and ( - ) are applicable to the 
undotted and dotted spinors, respectively. In the Lorentz 
frame in which the particle is at rest, there is only one rota­
tion applicable to both sets of spinors. The rotation matrix 
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corresponding to WofEq. (10) is 

W f) * _ (COS(f) */2) - sin(f) */2») 
( ) - , 

sin(f) */2) cos(f) */2) 
(25) 

where the rotation angle f) * is given in Eq. (11). 
Using the formula of Eq. (9), we can calculate the D 

matrix for the SL (2,c) spinors. The D matrix applicable to 
the undotted spinors is 

D(+)(a,f) = ( lIff 
- (l - a)u/2ff 

(l + a)u/2.,fT\ , 

lIff ) 

(26) 

where T and u are given in Eq. (8). The D matrix applicable 
to the dotted spinors is 

D (-)(a,f) = ( lIff (1 - a)u/2.,fT\ . 
lIff ) - (l + a)u/2ff 

(27) 

We can obtain D (-) from D (+) by changing the sign of a. 
BothD(+) andD(-) become WofEq. (25) when a = o. 

If the D transformation is applied to the X ± and X ± 
spinors, 

'-D(+) " -D(-)' (28) X±- X±, X±- X±, 
the angle between the momentum and the directions of the 
spins represented by X + and X_is 

f)' = tan-I(O - a)tan(f) /2»), (29) 

which becomes zero as a-I. On the other hand, in the case 
of x_and X +' the angle becomes 

f)" = tan- I((1 + a)tan(f) /2»). (30) 

a-O 

x+:+ 
x+ 

x: 

• 
Momentum 

Boost ~
x~ 

X~ 

I 

,. ~8,\ 
x~ 

FIG. 3. Lorentz-boosted rotations of the four SL(2,c) spinOfS, If the parti­
cle velocity is zero, all the spinon rotate like the Pauli spinors. As the parti­
cle speed approaches that of light, two of the spins line up with the momen­
tum, while the remaining two refuse to do so. Those spinors that line up are 
gauge-invariant spinors. Those that do not are not gauge invariant, and they 
form the origin of the gauge degrees of freedom for photon four-potentials. 
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In the limit of a_I, this angle becomes {)I' where 

()I = tan-I (2(tan({) 12») . (31) 

Indeed, the spins represented by X _ and X + refuse to align 
themselves with the momentum. This result is illustrated in 
Fig. 3. 

There are D transformations for the a > 1 case. In the 
special Lorentz frame in which the four-momentum takes 
the form ofEq. ( 18), theD transformation becomes that of a 

I 

pure boost along the x axis: 

FC ±) A = ( COSh(A 12) 
() ± sinh(A 12) 

± sinh (A 12») (32) 
cosh (A 12) , 

where A is given in Eq. (21). 
For a < ao, we can continue to use D (+) and D (-) given 

in Eq. (26) and Eq. (27), respectively. However, for a > ao, 
the D matrix is 

± (a ± l)/(a+ 1»)1/2/.J"=T\ 
(a2 -1)1/2(tan({)12»)lFT ). 

(33) 

The above expression becomes an identity matrix when 
a-oo, as is expected from the result of Sec. IV. The D matri­
ces ofEq. (33) are not analytic continuations oftheir coun­
terparts given in Eqs. (26) and (27), because thecont~u­
ation procedure, which we adopted In Sec. IV and uSed in 
this section, involves reftections in the x and t coordinates. 

VI. GAUGETR~SFORMATIONS IN TERMS OF 
ROTATIONS OF SPINORS 

It is clear from the discussions of Secs. III-V that the 
limit a-l·can be defined from both directions, namely from 
a < 1 and from a> 1. In the limit a-I, D (+) and D (-) ofEq. 
(26) and Eq. (27) become 

U), D(-)= ( I 
1 -u ~). (34) 

After going through the same procedure as that from Eq. 
(12) to Eq. (15), we arrive at the gauge transformation ma­
trices8 

D(+)(u,v) = (~ u ~ iV), 

(_) (1 0) D (u,v) = . l' 
-U-lV 

(35) 

applicable to the SL(2,c) spinors, wheretheD (:I:) areappli­
cable to undotted and dotted spinors, respectively. 

The SL (2,c) spinors are gauge invariant in the sense 
that 

D(+)(u,v)X+ =x+, D(-)(u,v)X_ =X-. (36) 

On the other hand, the SL( 2,c) spinors are gauge dependent 
in the sense that 

D(+)(u,v)X _ = X _ + (u - iv)X + , 
(-) " . . (37) 

]) (u,v)X + = X + -.(u + IV)X _ . 

The gauge-invariant spinors of'Eq. (36) appear as polarized 
neutrinos in the real world. However, where do the above 
gauge-dependent spinors stand in the physics of spin-! parti­
cles? Are they really responsible for the gauge dependence of 
electromagnetic four-potentials when we construct a four­
vector by taking a bilinear combination of spinors? 

The relation between the SL(2,c) spinors and the four­
vectors has been discussed for massive particles. However, it 
is not yet knoWn.~hether the same holds-true for the mass­
less case. The central issue is again the gauge transformation. 
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I 
The four-potentials are gauge dependent, while the spinors 
allowed in the Dirac equation are ga.uge invariant. There­
fore, it is not possible to construct four-potentials from the 
Dirac spinors. 

On the other hand, there are gauge-dependent SL(2,c) 
spinors, which are given in Eq. (37). They disappear from 
the Dirac spinors because N _ vanishes in the a-I limit. 
However, these spinors can still play an important role if 
they are multiplied by N +' which neutralizes N _. Indeed, 
we can construct unit vectors in the Minkowskian space by 
taking the direct products of two SL (2,c) spinors 

- X +X + = (l,i,O,O), X -X _ = (1, - i,O,O) , 

X+X- = (0,0,1,1), X-X+ =(0,0,1, -1). 
(38) 

These unit vectors in one Lorentz frame are not the unit 
vectors in other frames. For instance, if we boost a massive 
particle initially at rest along the z direction, Ix +X + > and 
Ix -X - > remain invariant. However, Ix +X - > and Ix -X + > 
acquire the constant factors [(1 + a)/(l - a) j1/2 and 
[( 1 - a)/( 1 + a)] 1/2, respectively. We can therefore drop 
Ix -X + > when we go through the renormalization process of 
replacing the coefficient [ (1 + a) I (1 - a) ] 1/2 by 1 for par­
ticles moving with the speed of light. 

The D(u,v) matrix for the above spinor combinations 
should take the form 

D(u,v) = D(+)(u,v)D(-)(u,v) , (39) 
where D (+) and D (-) are applicable to the first and second 
spinors ofEq. (38), respectively. Then 

D(u,v)( -Ix+x+» = Ix+x+> + (u + iv)lx+x->, 

D(u,v) Ix -X-> = Ix -X -> + (u - iv)lx +X->' (40) 

D(u,v)lx+x_> = Ix+x->· 

The first two equations of the above expression correspond 
to the gauge transformations on the photon polarization vec­
tors. The third equation describes the effect of the D trans­
formation on the four-momentum, confirming the fact that 
D( u,v) is an element of the little group. The above operation 
is identical to that of the four-by-four D matrix of Eq. (15) 
on photon polarization vectors. 

VII. CONCLUDING REMARKS 

We studied in this paper Wigner's little groups by con­
structing a Lorentz kinematics that leaves the four-momen-
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Massive I I Massless between Slow I I Fast 

Energy 
E=1 

I Einstein's I 
E=p 

Momentum 2m 
I E=.jm2+p2 I 

Spin,Gauge S3 I Wigner's I S3 

Helicity SI S2 I Little Group I Gauge Trans. 

FIG. 4. Significance of the concept ofWigner's little groups. The beauty of 
Einstein's special relativity is that the energy-momentum relation for mas­
sive and slow particles and that for massless particles can be unified. 
Wigner's concept of the little groups unifies the internal space-time symme­
tries of massive and massless particles. 

tum of a particle invariant. This kinematics consists of one 
rotation followed by one boost. Although the net transfor­
mation leaves the four-momentum invariant, the particle 
spin does not remain unchanged. The departure from the 
original spin orientation is studied in detail. 

For a massive particle, this departure can be interpreted 
as a rotation in the Lorentz frame in which the particle is at 
rest. For massless particles with spin-I, the net result is a 
gauge transformation. For a spino! particle, there are four 
independent spinors as the Dirac equation indicates. As the 
particle mass approaches zero, the spin orientations of two of 
the spinors remain invariant. However, the remaining two 
spinors do not. It is shown that this noninvariance is the 
cause of the gauge degrees of freedom massless particles with 
spin-I. 

In 1957,2 Wigner considered the possibility of unifying 
the internal space-time symmetries of massive and massless 
particles by noting the difference between rotations and 
boosts. Wigner considered the scheme of obtaining the inter­
nal symmetry by taking the massless limit of the internal 
space-time symmetry groups for massive particles. In the 
present paper, we have added the gauge degrees of freedom 
and spinors that refuse to align themselves to the momentum 
in the massless limit. The result of the present paper can be 
summarized in Fig. 4. While Einstein's special relativity uni­
fies the energy-momentum relations for massive and mass­
less particles, Wigner's little group unifies the internal space­
time symmetries of massive and massless particles. 
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APPENDIX: SL(2,c) SPINORS IN THE DIRAC SPINORS 

We pointed out in Sec. V that the four-component Dirac 
equation puts a restriction on the SL (2,c) spinors. Let us see 
how this restriction manifests itself in the limit procedure of 
a----+I. In the Weyl representation of the Dirac equation, the 
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rotation and boost generators take the form 

o ) (U/2)O'; 0) 
!O'; , K; = 0 - (i/2)O'; . (AI) 

These generators accommodate both signs of the boost gen­
erators for the SL(2,c) spinors. In this representation, Ys is 
diagonal, and its eigenvalue determines the sign of the boost 
generators. 

In the Weyl representation, the D matrix should take the 
form 

(
D(+l(U,V) 

D(u,v) = 0 (A2) 

applicable to the Dirac spinors, which, for the particle mov­
ing along the z direction with four-momentum p, are 

U(p) =( N+X-;), V(p) = (±N-:-X-) , (A3) 
±N_X+ N+X-

where the + and - signs in the above expression specify 
positive and negative energy states, respectively. Here N + 

and N _ are the normalization constants, and 

N± =((1±a)/(1+a»)1/4. (A4) 

As the momentum/mass becomes very large, N _/ N + 
becomes very small. From Eqs. (36) and (37), we can see 
that the large components are gauge invariant while the 
small components are gauge dependent. The gauge-depen­
dent component of the Dirac spinor disappears in the a----+ 1 
limit; the Dirac equation becomes a pair of the Weyl equa­
tions. If we renormalize the Dirac spinors of Eq. (A3) by 
dividing them by N +, they become 

U(p) = eo+). v(p) = C,o_). (AS) 

For Ys = ± 1, respectively. The gauge-dependent spinors 
disappear in the large-momentum/zero-mass limit. This is 
precisely why we do not talk about gauge transformations on 
neutrinos in the two-component neutrino theory. 

The important point is that we can obtain the above 
decoupled form of spinors immediately from the most gen­
eral form of spinors by imposing the gauge invariance. This 
means that the requirement of gauge invariance is equivalent 
to Ys = 1, as was suspected in Ref. 8. 
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The auxiliary group approach developed in Paper 1 [R. Dirl, P. Kasperkovitz, M. I. Aroyo, J. N. 
Kotzev, and M. Angelova-Tjurkedjieva, J. Math. Phys. 27, 37 ( 1986) ] is generalized for the case 
of corepresentations of anti unitary groups. It allows us to reduce the multiplicity problem and to 
derive consistent generating relations for the elements of the reducing matrices for coreps. Two 
examples are worked out to illustrate the general scheme. 

I. INTRODUCTION 
In our recent paperl hereafter referred to as I (see also 

Refs. 2 and 3), we discussed the group-theoretical aspects of 
one of the standard problems in the theory of representations 
(reps) and its applications in physics: the determination of a 
reducing matrix S (see Refs. 4-7), which transforms a re­
ducible unitary matrix rep R of a group G into a direct sum of 
irreducible reps (irreps) rk, 

StR(g)S= EB (efXrk(g»), geG. 
k 

Here ef is an identity matrix whose dimension equals the 
multiplicity of r k in R, i.e., dim ef = mk' According to its 
definition the columns of S are labeled by the triple index 
(k,m,a), where k is the label of the irrep r\ m ( = 1, ... ,md 
is the multiplicity index, and a = 1, ... ,nk = dim r k is the 
row index of rk. The square reducing matrix S can be split 
into rectangular submatrices S k,m consisting of n R 

( = dim R) rows and n k columns that satisfy 

R(g)Sk,m = Sk,mrk(g), geG. 

For fixed r k the set of blocks sk,m, m = 1, .. "mk' may be 
considered as the basis of a linear space of dimension m k • 

This space becomes a unitary one if a scalar product is de­
fined. To arrive at a unitary matrix S we assume 

(sk,m,sk"m') = trace(Sk,mtSk',m') 

= nk/)m,m' , 

One basic problem in calculating reducing matrices is 
related to their non uniqueness. This comes from the fact that 
every matrix S is unique only up to (i) left multiplication by 
unitary matrices belonging to the commuting algebra of the 
reducible representation R, and (ii) right multiplication by 
unitary matrices M belonging to the commuting algebra of 
the reduced representation EB k (ef X r k

). Because of 
Schur's lemma these matrices have to be of the form 

M= EB Mk= EB (LkX/k). 
k k 

Here /k is an identity matrix with dim / k = dim r k and L k 
is an arbitrary unitary matrix whose matrix elements are 
labeled by the multiplicity index, m = 1, ... ,mk' The matrix 
Lk belongs to the commuting algebra of the rep (efxrk). 

Usually this arbitrariness inherent to the determination 
of S is utilized to construct a reducing matrix whose ele-

ments satisfy certain symmetry relations (e.g., symmetry 
under complex conjugation, permutations, associations of 
reps by Kronecker multiplication of a given r k with one­
dimensional irreps r j of G, etc.). However, in most of the 
existing approaches to the multiplicity problem these addi­
tional symmetry requirements on the reducing matrix are 
applied separately and independently. Consequently the 
multiplicity problem remains partially unsolved in many 
cases where the combination of all operators would lead to a 
complete solution. 

To gain a maximum of symmetry and generating rela­
tions in a systematic way we introduce an auxiliary group 
QREP. This group consists of bijective mappings of the set of 
all unitary matrix representations of G onto itself. Three dif­
ferent types of mapping are considered: (i) associations of 
representations, i.e., multiplication of representations with 
one-dimensional ones; (ii) automorphisms of representa­
tions, i.e., mappings of representations induced by automor­
phisms of the group G; and (iii) complex conjugation of 
representations. These operations are combined to form the 
auxiliary group Q REP. For a given rep R we find a subgroup 
Q of Q REP that leaves R invariant up to a similarity transfor­
mation and a subgroup ~ of Q leaving rk (which occurs in 
the reduced R) invariant up to unitary equivalence. Further­
more we define operator groups Q" that are associated with 
~ and act only on the multiplicity index m of ~,m : 

mk 
T(q)Sk,m= L !l.m'm(q)Sk,m', qeQk, T(q)eQk. 

m'=l 

The space spanned by the blocks sk,m, m = 1, ... ,ntk , 
turns out to be a carrier space for a corepresentation (corep) 
!l. of the auxiliary group Q k if at least one of the operations of 
~ contains the complex conjugation. In all such cases Q" 
contains antiunitary operators and the subspaces invariant 
under Q" are carrier spaces for coreps that are in general 
reducible. (The definition and the basic properties of coreps 
are discussed in Sec. II A. For further details see Refs. 4 and 
7-10.) Therefore the resolution of the multiplicity problem 
is related to the reduction of the corep !l. into irreducible 
constituents: if !l. decomposes into inequivalent irreducible 
coreps the multiplicity problem is resolved, but if!l. contains 
an irreducible corep at least twice the multiplicity problem is 
solved only in part. 
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The next step of our approach consists of defining 
"partner blocks" SC ',m associated to the blocks sc,m by gen­
erating relations of the form 

sk'.m = U(q')sk,m. 

Here we assumed that r k ' = qTk -I-- r k 
, where the operation 

q' is a coset representative of Q with respect to Q k and U(q') 
the corresponding similarity transformation of R. 

Like other approaches our procedure is based on the 
transfer of the transformation properties of the involved reps 
on the reducing matrices. However, our scheme is more sys­
tematic, as the various operations are closed into a group, 
and their combined application is often more effective than 
considering them separately. Our approach helps (i) to re­
duce (sometimes even t~ solve completely) the problems 
related to the multiplicity of r k in R; and (li) to determine 
generating relations for the sub-blocks S k,m of the reducing 
matrix S, which are consistent in that the effect of any se­
quence of the above-mentioned operations is defined and cal­
culable. The details, the corresponding references, and three 
examples are given in I. 

The determination of reducing matrices is the main 
mathematical problem in many physical applications of 
group theory and in particular in the well-known Wigner­
Racah algebra or the method of the irreducible tensor sets 
(see, e.g., Refs. 4-6). This powerful technique of modem 
quantum mechanics is based on the theory of linear reps of 
groups of unitary operators. However, already in the 1930's 
Wigner had shown that in the physics of systems with mag­
netic symmetry the transformations containing the antiuni­
tary time reversal operator play an important part. The cor­
responding antiunitary groups and their corepresentations 
( coreps) determine the transformation properties of the 
wave functions and operators. These specific properties also 
allow us to predict, for instance, degeneracies of energy lev­
els and selection rules that can differ from those following 
from ordinary representation theory. 

It is well known that the main theorems of the rep the­
ory are esSentially changed in the construction of the corep 
theory.7-1o In the last decade this has led to intensive work 
on the development of the Wigner-Racah algebra for sys­
tems with magnetic symmetry on the base of the theory of 
the Wigner coreps. 10--17 

In this paper it is shown that the auxiliary group ap­
proach initially introduced for linear reps in I can readily be 
generalized to coreps. The peculiar properties of the antiuni­
tary groups lead to a number of new symmetry properties for 
the elements of the reducing matrix S. 

The paper is organized as follows: In Sec. II we give the 
scheme of the generalized auxiliary group approach for the 
corep case. The generating relations and uniqueness proper­
ties of the reducing matrix for coreps are discussed in Sec. 
III. Two examples of the application of the method for an­
tiunitary groups for coreps are given in Sec. IV. 

II. AUXILIARY GROUP APPROACH TO COREPS 
A. Preliminary 

For a better understanding of the peculiarities of the 
auxiliary group approach for coreps it is useful to start the 
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discussion with a brief review of the main principles of the 
corep theory (a more detailed presentation can be found in 
Refs. 4 and 7-10). 

Consider a Hilbert space and a group G(H) of unitary/ 
antiunitary operators acting on its elements. Here H is the 
subgroup of unitary operators of index 2. If ao is an arbitrary 
but fixed antiunitary element of G(H), then one has the co­
set decomposition 

G(H) =H +Hao . (2.1) 

If we choose an orthonormal bases of the Hilbert space then 
the action of an operator geG(H) onto this basis is given by 
an unitary matrix D(g). Because of the mUltiplication law of 
the unitary/antiunitary elements of G(H) the correspond­
ing matrices have to satisfy the following composition law 
("comultiplication") : 

D(gl)D(g2)(g,) =D(glg2) ' 

where 

(2.2) 

D( )(g,) = {D(g2) ' iff gl unitary. (2.3) 
g2 D(g2)*' iff gl antiunitary. 

(The definition (2.3) is identical to 

M = {M, iff q unitary, 
q M *, iff q antiunitary 

[Eq. (2.21) in I]. Nevertheless we will use both of them in 
order to distinguish better the origin of the complex conjuga­
tion in the expression of the type (1.3) or (2.21) of I.) Ac­
cording to Wigner4 the set 

D = {D(g) IgeG(H)}. (2.4) 

endowed with a multiplication law (2.2), is called a corepre­
sentation ofG(H), or "corep" for short.4,7 

Ifwe change the basis by a unitary transformation Y, we 
get an equivalent corep D', which is related to D by 

D(g) = ytD 'eg) y(g), geG(H). (2.5) 

If the corep D is irreducible it will be denoted by d in the 
following. Each irreducible corep (coirrep) d of G(H) is 
uniquely determined by the irreps r k of the unitary sub­
groupH. According to the restriction of D k J,H three types of 
coirreps have to be distinguished: 

type I: D k J,H _ r k , 

type II: D k J,H _ r k (B r k , (2.6) 

type III: D k J,H _ r k (B riC , 

where riC(g) = r k (ao- 1 gao) •. 

These three types of coirreps are analogous to real, sym­
plectic, and complex reps, respectively. 

Of particular importance is also the generalization of 
the Schur lemma.7.14.16 Every matrix M'< , which commutes 
with all matrices Dk (g), geG(H) , of a coirrep Dk (in accor­
dance with the comultiplication rule), 

MkDk(g) = Dk(g)Mk(g) , geG(H) , (2.7) 

is in general not a multiple of the identity matrix. The corre­
sponding commutator algebra is a division algebra over R 
and it is isomorphic to the real numbers R, the quatemions 
Q, and the complex numbers C for the coreps of type I, II, 
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and III, respectively. 12,14.16,17 This peculiarity of the general­
ized Schur lemma is central for the application of the corep 
theory. 

This brief report on the corep theory will be sufficient 
for the generalization of the auxiliary group approach. 

Following closely the general scheme developed in I, we 
will now discuss its modification for the corep case of antiun­
itary groups. 

B. The auxiliary group ~o for coreps 

The set of all bijective mappings of the corepsD of G(H) 
onto itself, generated by the operations "association," "auto­
morphism," and "complex conjugation," form the auxiliary 
group Q co with the structure 1 

Q co = ASSQ< (AUT ® CON) , (2.8) 

where Q< means semidirect product. 
Similar to the case of reps the association of a given 

corep D with the Kronecker product D j X D is defined byl.15 

(ajD) (g) = Dl(g) XD(g), gEG(H) , dim Dj = 1 . 
(2.9) 

The corresponding operators form an Abelian subgroup 
ASSofQco. 

The corep generalization ofthe subgroup CON, gener­
ated by the operator c of complex conjugation 
CON = (C)~C2' is also trivial, 

{
D(g)* c - c 

(c1D) (g) = D(gY' = '1 - 2 ' gEG(H) . 
D(g) , c1 = c = e , 

(2.10) 

The differences between QREP and Qco are mainly 
manifested in the determination of the subgroup 
AUTCQco, consisting of bijective mappings of the coreps 
of G(H), generated by its automorphisms /3: G(H)-G(H): 

(bkD)(g) = DIP k-I(g»), gEG(H). (2.11) 

There are two specific features that should be empha­
sized. First, the automorphism group Aut G of a given ab­
stract group G is the set of all bijective mappings of G onto G 
that preserve the multiplication law. For the case of an an­
tiunitary group G(H) we define its automorphism group 
Aut G(H) as the set of mappings that preserve the multipli­
cation law and leave the unitary subgroup H invariant. That 
is, ifG~G(H), then 

Aut G(H) 

= {p I/3EAut G, G~G(H), /3(H) = H}~Aut G . 

(2.12) 

Second, for ordinary reps all inner automorphisms of G do 
not permute the classes of conjugated elements and therefore 
are considered as trivial transformations in Aut C Q REP [see 
the comments before Eq. (2.2) in I]. For coreps the same 
statement is only valid for the inner automorphisms of the 
unitary subgroup H<JG(H). Hence in AUT it is necessary to 
include also those inner automorphism of G(H) that are 
outer in respect to H<JG(H). They can lead to additional 
symmetry relations and give more information about the 
structure of S. The action of the general element 
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Q = (aj,bk'Cl)EQCO on the coreps is determined as in Eq. 
(2.5) ofI: 

(qD)(g) = (aj(bk (cID) )(g) = Dj(g) XD IP k- 1 (g»C, . 

(2.13) 

This is in accordance with the semidirect multiplication 
rules 

q'q = (a';b 'c')(a;bc) = (a'ah'C';b 'bc'c) , (2.14) 

where 

ah'c' = (b 'c')a(b 'c') -I = b '(c'ac' - I)b ' - I. (2.15) 

Obviously if ca = ac [which is the case in all gray groups and 
black and white groups with aoEZ(G(H»)] and if ba = ab 
[e.g., if there is only one nontrivial one-dimensional coirrep 
in G(H)], then the automorphism (2.15) is trivial and the 
semidirect product in (2.14) and (2.8) becomes a direct pro­
duct (see Sec. III B). 

c. The groups Q and Ok for coreps 

Let R(g), gEG(H), be a reducible corep that is decom­
posed into irreducible components Dk by a unitary transfor­
mation of the type (1.5), 

StR(g)S(g) = EIl(e:XDk(g»), gEG(H). 
k 

(2.16) 

Here the coirrepDk appearsmk = (R IDk) times in identi­
cal form, i.e., e: is an identity matrix with dim e: = mk' 

The groups Q, ~ and the corresponding Q-equivalent 
classes [k] are determined as in I, just by substituting "rep" 
with "corep" and QREP with Qco: 

Q= {qlqR-R, qEQcO}~Qco, 

Qk = {qlqDk_Dk, qEQ~QCO}~Q, 

[k ] = {qD k IqEQ} = {q\k) D k,q~k) D k, .. .} . 

(2.17) 

(2.18 ) 

(2.19) 

Here the elements q\k) are suitable coset representatives of 
~ in Q. For convenience we adopt the following conven­
tion: 

D1=q\k)Dk, for D1E[k]. (2.20) 

D. The groups Q and jj< for coreps 

IfqEQ, there exists a set of unitary matrices U(q), which 
relate the equivalent coreps qR and R in accordance with Eq. 
(2.5), 

(qR)(g) = U(q)tR(g)U(q)(g), qEQ. (2.21) 

The appearance of U(q)(g) = U(q)* for g = antiunitary, 
does not change anything in the rest of Sec. II D in I. In 
particular, applying the comultiplication rule, Eq. (2.20) of 
I, we determine the group Q, generated by the matrices U( q) 
for a reducible corep R: 

Q= (U(q», qEQ. 

Analogously we define, for qE~ , 

(qDk)(g) = Uk(q)tDk(g)Uk(q)(g) , qEQk, ,p = (Uk(q», qEQk. 

Aroyoetal 
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III. THE OPERATOR GROUP (jk AND THE 
TRANSFORMATION PROPERTIES OF THE REDUCING 
MATRIX 

Following the procedure developed in I we now define 
the operator group Qi' and investigate the transformation 
properties of the reducing matrix S. For coreps there are 
some essential peculiarities, which should be discussed in 
detail. 

The reducing matrix S was defined as a unitary matrix, 
which reduced a corep R into a block-diagonal form (2.16). 
For our further discussion it will be more convenient to split 
the reducing matrix S into rectangular blocks S'< consisting 
of all the columns of S, which belong to the coirrep JJ'< , 
(Sk)tR(g)Sk(g) = (~XDk(g»), geG(H). (3.1) 

Acting with the operators qe(t C Q on both sides of 
(3.1), we get 

(qSk)t(qR) (g) (qSk)(g) 

= (efx(qDk)(g»), geG(H), qeQk. 

From the equivalence of the coreps qR - R 
and qD k _ D k [( 2.23)] follows the relation 

(qS k)tU(g)tR (g) U(q) (g) (qSk) (g) 

= (~X Uk(g)tD k(g)Uk(q)(g» . 

(3.2) 

[(2.21) ] 

(3.3) 

Using (3.1) and the properties of the direct product of ma­
trices, Eq. (3.3) can be transformed into the form 

{(Sk)tU(q) (qSk)(efx Uk(q»)t}(~XDk(g») 

= (~XD k(g»{(Sk)tU(q)(qSk)(~X Uk(q)t)}(g) , 

(3.4) 

where the reducible coreps of both sides of (3.4) are identi­
cal (not only equivalent). 

The matrix in the curly brackets in Eq. (3.4), 

Mk=Mk(q) = (Sk)+U(q)(qSk) 

X(~Uk(q»)+, qeQk, (3.5) 

is a unitary matrix with dim M k = mk dim D k, and it com­
mutes with the reducible corep (~XD k). Due to the gener­
alized Schur lemma for reducible coreps (see, for example, 
Ref. 14) the matrices Mk form a commutator algebra of the 
corep (~XDk). The structure of this algebra is uniquely 
determined by the Wigner type of the coirrep Dk . 

As is shown in Ref. 14, the matrices Mk can be factor­
ized into a direct product of two submatrices, 

Mk(q)=Lk(q)XI\ qeQk, (3.6) 

if the coirreps are in the Wigner canonical form. Here J'< is 
an identity matrix with dim I k = dim rk, where r k is the 
corresponding unitary subgroup irrep (2.6). The matrix 
L ~q) is an unitary matrix whose dimension equals 
Pk = (R I rk), the multiplicity of r k in the restriction R ~H. 

I 

Zll Zl2 zlmk 

Obviously the matrices Lk (q)belong to an algebra a(Lk ), 

which is isomorphic to the commutator algebra a(M'<) of 
the reducible corep (efXDk), i.e., a(L kh::::.a(M k). We 
shall identify a(L k) with a(Mk). 

For coirreps Dk in the Wigner canonical form it is more 
convenient to split the row and column indices of JJ'< (g) into 
pairs of indices, aa, where a = 1, ... ,dim r k and a = 1,2 dis­
tinguishes the submatrices r k in D k for coirreps of type II 
and type III, and a = 1 for type I [see Eq. (2.6)]. 

In this notation the matrix elements of M'< (q) are of the 
form 

Mk(q)m'a'a',maa =Lk(q)m'a"ma~a'a' qeQk. (3.7) 

Combining Eq. (3.5) with Eq. (3.6) we get 

U(q) (qSk) (~X U~q»t = Sk(L k(q) Xlk). (3.8) 

From this equation and Eq. (3.7) it is seen that the blocks S'< 
can be divided into Pk sub-blocks S :,m, each of them contain­
ing the columns s~m, a = 1, ... ,dim rk. These blocks, en­
dowed with a scalar product 

(s _ak,m,s~:m'> = trace(S~,m)t s~:m' = dim rk~ ,~ __ , 
" a a mm aa' 

(3.9) 

form a unitary space. Taking into account (3.8) we can de­
fine the operators T( q) acting in this space: 

(T(q)Sk);;, = U(q) L (qSk)~ Uk(q)~'a 
a' 

_ ~ Sk,m'Lk( ) Qk - ~ a' q m'a',ma' qe . (3.10) 
m7i' 

Here Uk(q>a'a is the corresponding submatrix of lJ'< (q). 
It can be shown that the set of operators T(q) defined by 

(3.10), U(q)eQ, and Uk(q)eQ\ form an operator group 
Qi' . The operator T(q)eQi' is unitary/antiunitary iff qe~ is 
unitary/antiunitary. The corresponding set of matrices 
L k (q) forms a corep of the group Qi' . 

The further discussion concerns mainly the following 
two properties of the set of matrices L k (q): (i) they belong 
to the commutator algebra of the corep (efXDk) of the 
group G(H) [here we identify a(L k) witha(M'<)]; and (ii) 
they form a corepLk ofthe operator group Qi', Eq. (3.10). 

First, we determine the structure of matrices L k (q) as 
elements of the commutator algebra for the three different 
types of coreps Dk . 

For JJ'< of type I we have dim D k = dim r k and 

Lk(q)m'a',ma =L k'(q)m'm~a'a,lI , (3.11) 

where L k, is an orthogonal matrix with dim L k, = mk • We 
should note that for the case of ordinary reps the commuting 
matrix L k is of a similar type but in general it will be unitary 
instead of orthogonal. 

For Dk of type II and type III, the matrices are of the 
form 

L k" = 
Z21 Z22 z2m. I Xlj Yij I where Zjj = _. .' 

Ylj Xjj 
xlj"yljeC; (3.12) 

Zmkl Zmk2 Zmkmk 
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x1l 0 X!2 X!mk 0 

0 0 0 
L kill = xt! xtmk , x/jeC. (3.13) 

0 X:.k! 0 0 X:'~k 

We can say something more about the L kill matrix. It is 
obvious that it can be reduced into a block-diagonal form 

I
L kill'! 0/ Lkm_ 

- 0 L km ,2 ' 
(3.14) 

where the blocks refer to the barred indices a'a and 

x1l X!2 x!mK 

L km.! = x 21 X22 X2mk 

x mk! Xmk2 x
mkmk 

d' L km,! 1m =mk , (3.15a) 

L km,2 = (L km'!) •. (3.15b) 

L km( ) q m'a',ma 

L km,! () I: L klll.2() I: (3 16) = q m'm U a'a.ll + q m'm U a'a.22 . , 

The second aspect concerning the L k (q) matrices is re­
lated to the fact that the matrices L k (q), qeO: , form a corep 
L k of Qic . For the type I coirreps])'< the Pk = mk linearly 
independent blocks sk.m = s~,m, endowed with the scalar 
product (2.9), span a carrier space of dimension m k of the 

k - k corepL 'ofQ I: 

(T(q)Skr = LL kl(q)m'mSk.m' , (3.17) 
m' 

As we have already pointed out this result resembles very 
much the results for the case of ordinary reps! with the ex­
ception that for the case of coreps L kl = L kl*. 

For the type II coreps ])'< 

(T(q)Sk);;' = L L kn(q)m'a'.ma s~:m' , (3.18 ) 
m'a' 

where L kn is of the type (3.12). The difference between 
(3.18) and (3.17) [or the analogous relation for reps, Eq, 
(1.4) in I] is obvious. For the type I coreps Dk the matrix 
L kl realizes a mixing of the basis functions S kl.m labeled by 
the different multiplicity indices m (m being the multiplicity 
label of Dk in R). For the type II coreps])'< the pair of sets 

S ~n and S ~n are grouped together into a double set 

and the matrix L kn intermixes all the functions belonging to 
S kn. In other words, the functions from a double set span a 
carrier space of dimension P k = 2m k of a corep of Q kll . 

For Dk of type III the relation (3.8) splits into two 
relations, because of (3.16), 

(T(q)Sk)'{' = LL km'!(q)m'm s~·m', (3.19a) 
m' 
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(T(q)S)~ = L L km.2(q)m'm s~·m' , 
m' 

L km.2(q)m'm = L km.! (q):"m . (3.19b) 

Thus, the sets S ~m and S ~III span carrier spaces for two 
coreps of Q k, L km'\ and L km.2, where dini L kill'! 

= dim L km.2 = mk' The matrices L klll.a, a = 1,2, are relat­
ed by (3.15b). If the complex conjugation is a symmetry 
operation for the coreps L kill'!, L klll.2, then L km.! _ L km.2. 

In order to take more advantage of the fact that the 
L k (q) matrices form a corep of Qic we need the concept of 
"G-equivalent" bases!8 (G = Qic in our case). It is always 
possible to choose the basis of a carrier space so that the 
matrices coincide identically with those of a "standard set of 
coreps" (which means a set of corep matrices chosen and 
fixed in a definite way), Ifthere exist several possibilities to 
choose such a basis these bases are called "G-equivalent." 

Considering the fact that the reducing matrix blocks 
S ~,m are the basis functions for a corep L k of Q k, it is natural 
to determine this basis in such a way that L k is reduced to a 
block-diagonal form. In addition every irreducible constitu­
ent L S is required to occur in standard form 

Lk(q) = EB (e:XLS(q»), qeQk. (3.20) 
S 

Accordingly, the blocks S ~.m. of Sk form a Qic -equivalent 
basis. 

To what extent does this reduction solve, eliminate, or 
reduce the arbitrariness of~? We should note that even if 
we fix the corep matrices L' (q) the corresponding basis is 
not uniquely determined. Due to the Schur lemma the basis 
is only fixed up to a unitary matrix M' belonging to the 
commuting algebra a(LS

) ofthe corresponding irreducible 
corep L S 

• These matrices depend on the type of the corep and 
are of the following form: 

type I: MS= ±Is; (3.21a) 

type II: 

type III: 

MS = I x Y I XIs, 
-y. x· 

x,yEC, Ixl2 + lyl2 = 1; (3.21b) 

Ms=l; x~IXIS, xeC, Ixl=l. 
(3.21c) 

Obviously for the special case L k = L S the basis S ~.m is de­
termined up to a sign, up to three real parameters, and up to 
one real parameter for corep types I, II, and III, respectively. 
This "inherent arbitrariness" in fact determines the highest 
level of uniqueness that can be achieved by means of the 
auxiliary operator method. We should note that for the case 
of ordinary reps the inherent arbitrariness is only of the 
phase factor type. 
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The procedure of solving the arbitrariness problem can 
be extended by including additional operations, e.g., permu­
tations if R is a direct product corep.3 However, this will not 
affect the inherent arbitrariness. One possibility to overcome 
the "Schur lemma barrier" (2.21) is to adopt some sensible 
conventions. For instance, this can be done by standardiza­
tion of phases, based on the Racah lemma as discussed in 
details in Ref. 15. 

If a given D" occurs only once in the reduction of R, i.e., 
m = mk = 1, it is necessary to determine the corresponding 
block S~,I by standard methods (e.g., the projection meth­
od). 

If mk > 1 then the auxiliary group can be used as in I to 
reduce the multiplicity problem. If it is not completely re­
solved by this approach the remaining arbitrariness of the 
blocks can be eliminated by further convention, e.g., by 
means of the Schmidt orthonormalization procedure. 

To exploit the auxiliary groups Qco to the utmost de­
gree one has to generate the blocks S ~m, Ie [k], from the 
already known blocks S ~m. This can be done using the gen­
erating relation 

s~m = U(q?»(q}k) s~,m) , (3.22) 

which is identical to Eq. (2.42) in I. 
The following two examples illustrate the scheme pro­

posed here. 

IV. EXAMPLES 
A. An eight-dimensional corep of the gray double point 
group C:' ®9 

As a first example we consider a reducing matrix for a 
corep of the antiunitary gray double point group 
G(B) = C:' ®a (see, e.g., Ref. 7). The unitary subgroup 
B = C:' is isomorphic to Cs~(C:z = E, E2 = E). We de­
fine the group 

AUT~Aut(Cs®C2)~2' (4.1) 

where we have taken into account that AUT C2 = C1 and 
the cyclic group Cs has only outer automorphisms. 

From the character table of C:' ® a (Table I) it is seen 
that the only nontrivial one-dimensional coirrep is D 2. In 
accordance with 

aD(g) = D(g) xD 2(g) (4.2) 

and the corep multiplication table (Table II) we find that 
the operator a generates the group 

ASS = (a)~C2' (4.3) 

The group Qco has the following structure: 

Q co = C2 ® (D2 ® C i) = (a,b ltb2,c) . (4.4) 

TABLE I. Character table of C: ® e. 

IY r k Type E C. c; C! (J 

D' r l I 1 1 1 1 1 
D2 r 2 I 1 -1 1 -1 1 
D3 r 3 +r4 III 2 0 -2 0 0 
DS rS+~ III 2 \11 0 \11 0 
DB rB+r' III 2 -\11 0 -\11 0 
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TABLE II. Corep multiplication table of C: ® e .. 

KS( 2 3 5 8 

1 1 2 3 5 8 
2 2 1 3 8 5 
3 3 3 12 + 22 5+8 5+8 
5 5 8 5+8 12 + 3 22+ 3 
8 8 5 5+8 22+ 3 12 + 3 

We note that the semidirect product in (2.8) is reduced to a 
direct product, because (i) D 2 is a real corep, so ac = ca; and 
(ii) D 2 is the only nontrivial one-dimensional corep of C:' 
®a, i.e., bD 2 =D2 andab = ba. 

The action of the generators of QCo on the classes of the 
equivalence coreps is shown in the qk table (Table III). 

To illustrate our scheme we calculate the matrix S for 
the reducible eight-dimensional corep R = D 3 xD 8 xD s 
-2D 1+ 2D2 + 2D3.Using the qk tablethegroupQiseasi­
ly determined as 

Q=Qco= (a,b l ,b2,c). (4.5) 

The Q-classes are therefore 

[ 1] = {D i,D 2}, 

[3] = {D3}, 

[5] = {D S,D 8} . 

(4.6a) 

(4.6b) 

(4.6c) 

The corresponding ~ groups and coset representatives are 
the following: 

Q I = (bitb2,C)~2 ® a, qP) = e, qii) = a, 

Q3 =QCO~D2h ®a, 

(4.7a) 

(4.7b) 

Qs _ (b c)"""'C "" a (5) - (5) - (5) - b - it - 2"" , ql - e, q2 - a, q3 - 2' 

(4.7c) 

The matrices R (g) of the generators g I = C 4z and g2 = B of 
G(B) are 

R(C4z ) = diag(1,i,i, - 1, -1, - i, - i,I), 

R(B) = skew diag(1, - 1, - 1,1,1, - 1, - 1,1) . 

(4.8a) 

(4.8b) 

These matrices are obtained as Kronecker products of the 
corresponding matrices Dk (g) taken from 7 

D 3 (C4z ) = diag(i, - i), D 3 (B) = skew diag (1 , 1) , 

D S (C4z ) = diag( -x*, -x), (4.9a) 

x = exp(hr/4) , DS(B) =skewdiag( -1,1). (4.9b) 

The nonzero elements ofthe matrices U(q) for the genera­
tors ofthe group Q~Qco are then 

TABLE III. qk-table of C: ® e. 

qIY ~ IY 
D' D2 D3 D' DB 

aD" D2 DI D3 DB D' 
b,IY D' D2 D3 DS DB 
b2IY D' D2 D3 DB DS 

cIY D' D2 D3 DS DB 
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U(a): (1,5) = (2,6) = - (3,7) = (4,S) = (5,1) 

= - (6,2) = - (7,3) = (S,4) = 1, (4. lOa) 

U(b l ) = U(b2) = U(c) 

= skew diag(1, - 1, - 1,1,1, - 1, - 1,1). (4. lOb) 

This set of matrices satisfies the relations 

(U(a)f = (U(cW = E, 

U(a)U(c) = U(c)U(a), 

and forms the group Q~C2 ® e. 

(4.l1a) 

(4.11b) 

The next step in our procedure is the determination of 
the groups Q k = {U(q) IqEQ k} for the coreps JJ'< occurring 
in the decomposition of R. 

Using the matrices Dk given in (4.9) and Eqs. (2.23), 
we get the following matrices if (q). 

For the corep D I of class [1], as dim D I = 1, we can 
choose 

UI(q) = 1, forallqEQI, hence QI~CI' (4.12a) 

For the corep D 3 of the class [3], 

U 3(a) = U 3(c) = U 3(b l ) = U\b2) 

1
0 11 -3 = 1 0' hence Q ~C2' (4.12b) 

Now we are in the position to determine the general 
form of blocks of S. From the theory of coreps, especially the 
Schur lemma for reducible coreps, it follows that the reduc­
ing matrix block S I, which satisfies 

R(C4z )SI =S ID I (C4z )' 

R(O)S I· = S ID 1(0) , 

(4.13a) 

(4.13b) 

is determined up to two-dimensional orthogonal transfor­
mation. 

Using (4.S) and (4.13) we obtain, for S 1, 

a +ib 

o 
o 
o 
o 
o 
o 

a-ib 

, where a,bER . (4.14 ) 

The action of the operators T(q), q = blb2, CEQ 1, is given by 
the following relations: 

T(bl)SI = U(bl)SIUI(bl)t =SI·, 

T(b2 )SI = U(b2 )S I U I (b2)t =SI., 

T(C)SI = U(C)SI·UI(C)t =SI. 

(4.15a) 

(4.15b) 

(4.15c) 

So Q I~C2 ® e, and the character table of this group is given 
in Table IV. Obviously the multiplicity problem is solved 
because if the reducing matrix blocks S 1,1 and S 1,2 are fixed 
by 

S 1,1: a = 1, b = 0, (4.16a) 

SI,2: a=O, b=l, (4.16b) 

they tum out to be basis functions for the two inequivalent 
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TABLE IV. Character table of C2 ® e. 

Type E 

1 
-1 

e 

1 
-1 

one-dimensionaicoirrepsL I = D I andL 2 = D 2. This is seen 
from the corresponding L I (q) matrices 

L I(e) =diag(1,I), 

L I(b) = diag(1, - 1) , 

L I(C) = diag(1,I) . 

(4.17a) 

(4.17b) 

(4.17c) 

As thecorepD 2 0 fG(H) = C: ® ebelongs to the same 
class [Eq. (4.6a)] we can useEqs. (3.22) and (4.7a) and the 
matrix U(qi\) = U(a), Eq. (4.1Oa), to find the blocks2

,m • 

The general form of S 3,m can be obtained from the defin­
ing relations 

R(C4z )S3 =S3D 3(C4z )' 

R(0)S3. =S3D 3(0), 

( 4.1Sa) 

(4.1Sb) 

whereR (g) andD 3(g) are given by (4.S) and (4.9), respec­
tively. SinceD 3 is a type III coirrep it follows from the Schur 
lemma that S 3,m is determined up to two complex param­
eters (3.13) . For the general form of the blocks S 3,m we get 

0 0 

a l +ibl 0 

a2 + ib2 0 

s3,m= 0 0 
where a;ob;ER . 

0 0 
, 

0 - a2 + ib2 
0 -a l + ib l 
0 0 

( 4.19) 

The action of the operators T( a ), T( b ), T( c) on the S 3,m 
blocks (3.10) showsthatQ3~2 ®e. The character table of 
this group is given in Table V. If we choose the blocks S3,1 
and S 3,2 in the form 

S3,1: a l = a2 = 1, bl = b2 = 0, 

S3,2: a l =a2=0, bl = -b2=1, 

TABLE V. Character table of D2 ® e. 

Dk r k Type E C2• C' 2 

D' r l I 1 I 
D2 r 2 I -1 1 
D3 r 3 I 1 -1 
D4 ~ I -1 -1 

C~ 

1 
-1 
-1 

1 
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the set S ~ 1 = {S ~'l ,S ~i2} spans a carrier space for the reduc­
iblecorepofQ3, Eq. (3.19a), given by the matricesL 3,1 (q): 

L 3
,I(e) = I~ ~I, L

3
,I(a) = I~ _ ~I ' 

(4.21 ) 

L 3
,I(b) = I~ _ ~I, L

3
,I(c) = I~ ~I· 

kma 111 121 211 221 311 

~1/2 i~1/2 0 0 0 

0 0 0 0 ~1/2 
0 0 0 0 M 

S= 0 0 ~1/2 i~1/2 0 

0 0 ~1/2 - i~1/2 0 

0 0 0 0 0 

0 0 0 0 0 

~1/2 - i~1/2 0 0 0 

B. The matrix of Clebsch-Gordan coefficients of D"XD" 
of the black and white double point group o*(r) 

Next we discuss the antiunitary black and white double 
point group 0 * ( T *) and a' reducing matrix for the Kron­
eckerproouctD 4 X D 4, composed ofClebsch-Gordan coeffi­
cients. In the notations of Bradley and Crackneif 

O*(T*) = T* + (}C2a T*, (4.23) 

where the asterisk indicates that we are dealing with the 
double groups. 

As a set of generators for 0 * ( T *) we choose for the 
unitary subgroup T*<lO *(T*) the generators (Clz )2 = E 
and (C it ) 3 = E and add the fixed antiunitary coset repre­
sentative ao = (}C 2a' Because of the abstract isomorphism 
O*(T*)~O* (where (}C2aT~C2aT), the defining rela­
tions and the group multiplication table of 0 * (T *) are the 
same as for the double octahedral group 0*. 

The table of corep characters is determined by the irrep 
table of the unitary subgroup T * since all the coreps are of 
the type I (see Table VI). For convenience we also give the 
corepmultiplication table of 0 *(T*) (Table VII). It is seen 
from Table VI, that there exist three one-dimensional coreps 
of 0 * ( T *), viz. D I,D 2,D 3. They belong to one class of asso­
ciated coreps {D I,D 2,D 3} (see Ref. 15), i.e., (Dk )3 = D 1 

TABLE VI. Character table of 0 • ( T·). Here f.t) = exp( i1l' /3). 

lY' r k Type E C2• Ci'i Cit DC", 
C2• ec2• 

DI r l I 1 1 1 1 
D2 r 2 I 1 1 f.t)2 f.t)4 1 
D3 r 3 I 1 1 f.t)4 f.t)1 1 
D' r I 3 -1 0 0 1 
D' r' I 2 0 1 1 v'2 
D6 r 6 I 2 0 f.t)4 f.t)2 -v'2 
D7 r 7 I 2 0 f.t)2 f.t)4 -v'2 
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So S~,I is transforming according to the identity coirrep, 
while S ~i2 is a basis function of one of the nontrivial one­
dimensional coirreps [e.g., D 4 if T( a )~Clz' T( b )~C 21 . 

In this way we succeed in solving completely the multi­
plicity problem for the reducing matrix for 
R = D 3XD 8 xD 8

• The finalform of Sreads 

312 321 322 

0 0 0 

0 i~1/2 0 

0 - i~1/2 0 

0 0 0 

0 0 0 

-M 0 i~1/2 

-~1/2 0 - i~1/2 

0 0 0 (4.22) 

and (D k)2 = D k', k =/=k' = 2,3. In accordance with the de­
finition (1.9) the group ASS is generated by association with 
D 3, and the corresponding operator a determines the group 

ASS = (a)~C3' (4.24) 

The action of the operator ceCON~C2 is obvious from Ta­
ble VI. 

The determination of the group AUT is facilitated by 
the fact that the element Ebelongs to the center of 0 *(T*), 
i.e., Aut 0 *~Aut O~O. So the only automorphism of 
o * ( T *) that is outer for the unitary subgroup T *, is of sec­
ond order, and can be realized by a conjugation with 
(}C2b eO *( T*) is 

P(Clz ) = C2Z , P(C 3t) = C 31' P«(}C2a ) = (}C2a . 

(4.25) 

Consequently 

AUT = (b )~C2 . 

Hence we obtain the full group 

QCO=C3Q«C2®C~) = (a;b'C)~6(D3)' 

(4.26) 

(4.27) 

From the definitions of qeQco and Table VI and Table 
VII we construct the qk table of 0 * ( T *) (see Table VIII). 

The present example deals with the construction of the 
reducing matrix S, which carries out the transformation of 
the reducible corep R = D 4 X D 4 into a direct sum of its irre­
ducible constituents: 

(4.28) 

Since the corep R is a Kronecker product the elements of the 
reducing matrix S are the familiar Clebsch-Gordan coeffi­
cients. 

From the gk table it follows that 

Q = Qco = (a,b,c)~D6(D3) . (4.29) 

We can easily construct the Q-classes 
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TABLE VII. Corep multiplication table of 0 * ( T *). 

2 3 4 

1 1 2 3 4 
2 2 3 1 4 
3 3 1 2 4 
4 4 4 4 1+2+3+4+4 
5 5 6 7 5+6+7 
6 6 7 5 5+6+7 
7 7 5 6 5+6+7 

[ 1] = {D I,D 2,D 3}, 

[4] = {D 4
}, (4.30) 

[5] ={D S,D6,D7}. 

The corresponding Q k_groups and coset representatives are 

QI = <a,c>~C2®e, 
qj1) = e, q~1) = a, q~1) = a2 ; 

Q4 = Qco; (4.31) 

QS= <b,C>~C2®e, 

q~S) = e, q~S) = a, q~S) = a2 . 

ThematricesR(g) = D4(g) XD4(g) for the generators 
C2z ,C It ,(}C2a are obtained by using the following standard 
corep matrices 7 of D 4: 

-1 0 0 

0 -1 o , 
0 0 1 

0 1 0 

0 0 (4.32) 
-i 0 0 

0 1 0 

1 0 0 
o 0 

For the unitary matrices U(q), q = a,b,ceQ [Eq. 
(2.21)], we obtain 

U(a) = diag(w,w,w,w*,w*,w*, - 1, - 1, - 1) , 

(4.33a) 

U(c) = diag(1,I, - 1,1,1, - 1, - 1, - 1,1). (4.33b) 

U(b) .. = {I, ij = 15,24,36,42,51,63,78,87,95, 
'J 0, otherwise. 

(4.33c) 

TABLE VIII. Theqk tableofO*(T*). 

qD" "" 

D" 
Dl D2 D3 D4 DS D6 D7 

a2D" D2 D3 Dl D4 D6 D7 DS 

aU D3 Dl D2 D4 D7 DS D6 
bD" Dl D3 D2 D4 D' D7 D6 
cD" Dl D3 D2 D4 D' D7 D6 
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5 6 7 

5 6 7 
6 7 5 
7 5 6 

5+6+7 5+6+7 5+6+7 
1+4 2+4 3+4 
2+4 3+4 1+4 
3+4 1+4 2+4 

To determine the Q group we have to consider the fol-
lowing generating relations satisfied by the U(q) matrices: 

(U(a»)6 = (U(b))2 = (U(C»)2 = E, 

U(b)U(c) = U(c)U(b), 

U(a)U(c) = U(c) (U(a»)S, (4.34) 

U(a)U(b) = U(b)(U(a»)S . 

From the relations (4.34) we find that 

Q~C6Q«C2 ® Ci)· 
The determination of U I (q) is trivial because 

dirnDl = 1: 

UI(q) = 1, q=b!~eQ', h~nce QI:"'clxe. (4.35) 

BecauseofQ4 = (lco ,we need U 4 (q) forqeQco. Tak­
ing into account the corep matrices of D 4 [Eq. (4.32)], we 
obtain the following U 4 (q) matrices: 

w 0 0 

0 w* 0 

0 0 -1 

0 1 0 

1 0 0 (4.36) 

0 0 1 

1 0 0 

0 0 

0 0 -1 

The above matrices U 4(q), qeQ4, satisfy the same defining 
relations (4.34), as the matrices U(q) ofQ, whence Q4~Q. 

Now we are ready for the determination of blocks S k,m 

of S. The use of the relations of the type (2.1 ) for the genera­
tors of 0 * ( T *) suffices to obtain the general form of S I. 

R(g)Sl(g) =S'D'(g), g= C2z 'C 3i ,(}C2a ' (4.37) 

This block is determined up to one real parameter since D I is 
a type I corep. The block S I is a column matrix with nonzero 
elements d l1 = dSI = - d91 = d. To obtain a unitary S we 

put d = ..Jf73. Now S 2 andS 3 are obtained from the relations 
(3.22), (4.31), and (4.33a), 

S2 = U(a2 )S', 

S3 = U(a)S'. 

(4.38a) 

(4.38b) 

Proceeding in the same way as before we get the follow­
ing general form of s4,m: 
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0 0 0 

0 0 -z 
0 z* 0 
0 0 -z* 

s4.m= 0 0 0 , z=a +ib, zeC. (4.39) 
z 0 0 
0 z 0 

t* 0 0 

0 0 0 
In accotdance with the consequences of the Schur lemma for 
coreps, s4.m is determined up to two real parameters. 

The action ofthe operators T(q) on the s4.m blocks is 
given by Eq. (3.10), where U(q), U 4 (q), are taken from 
(4.33) and (4.36): 

T(b)S4 =S4, 

T(C)S4 = _ S4 , 

(T(abc»)6S4 =S4, 
T(b)T(c) = T(c)T(b) , 
T(abc)T(b) = T(b)(T(abc)f. 

(4.40) 

From these generating relations we conclude that the group 
Q4isisomorphictoD6 (D3 ). [We obtain an antiunitaryoper­
ator T(abc) of sixth order that can be considered as the 
colored rotation (JC(,z' Its square is a unitary operator corre­
sponding to C3z ' The unitary operator T(b) corresponds to 
C lx; in this scheme T( c) = Clz (JClx .] The characters of 
D6 (D3 ) are given in Table IX (see Ref. 13). _ 

To obtain the explicit form of the corep matrices of Q 4 

we have to make a choice for the parameters of S 4.m, i.e., we 
have to choose a basis defining the corep of D6 (D3 ). The 
simplest choice of S4.1 and S4.2 is determined by the follow­
ing values of the parameters a,b: 

S4.1: a = 1, b = 0 , 

S4.2: a = 0, b = 1 . 
(4.41) 

This gives rise to the following corep matrices 
L4(q) =D 3 (q) ofD6(D3 ): 

1 2 3 
S 1 1 1 

1 1 1 

41 41 ~1/3 ~1/3aJ* ~1/3aJ 
41 42 0 0 0 

41 43 0 0 0 
42 41 0 0 0 
42 42 ~1/3 ~1/3aJ ~1/3aJ* 

4 
1 
1 

0 
0 
0 
0 
0 

TABLE IX. Character table of D6 (D3). 

IY rk Type E e3z e2 ee2 

DI r l I I 1 1 1 
D2 r 2 I 1 1 -1 1 
D3 r 3 I 2 -1 0 0 

4 11 01 L (b) = 0 1 ' (4.42) 

1
-1 01 L 4(C) = 0 1 . 

It is evident from (4.42) that this choice of the parameters a 
and b results in a Clebsch-Gordan coefficient matrix S 4.m, 
which is "self-consistent" only under complex conjugation 
and automorphism. That is, only complex conjugation and 
automorphism lead to symmetry operations for the 
Clebsch-Gordan coefficients of the "simple phase factor" 
type.6 Here this phase factor reduces to a mere sign. 

That it is not possible to obtain "simple phase factor" 
symmetries of the Clebsch-Gordan coefficients for all the 
three operations simultaneously follows from the irreduci­
bility of the corep D3 = L 4(q). One may ask whether it is 
possible to diagonalizeL 4(a) by a suitable choice oftheS4.m 

matrix. But since D4 + D4 is a type I corep, all the L 4(q) 
matrices should be (real) orthogonal according to (3.10). 
But the diagonalization of L 4(0) transforms it into a com­
plex matrix that does not belong to the commutator algebra 
ofthecorepD 4 + D 40fO *(T*). Therefore, it is not possible 
to find a S4-matrix, which is "self-consistent" under associ­
ation. It should be noted that in the case of unitary irreps of 
T * it is possible to diagonalize the associations because the 
corresponding commutator algebra is complex (see example 
A in I). 

For the choice (4.41) of the parameters we obtain the 
following S matrix: 

4 4 4 4 4 
I 1 2 2 2 
2 3 1 2 3 

0 0 0 0 0 

0 -~1/2 0 0 - i~1/2 
~1/2 0 0 - i~1/2 0 

0 -~1/2 0 0 i~1/2 
0 0 0 0 0 

42 43 0 0 0 ~1/2 0 0 ~1/2 0 0 

43 41 0 0 0 0 ~1/2 0 0 i~1/2 0 

43 42 0 0 0 ~1/2 0 0 - i~1/2 0 0 

43 43 -~1/3 ~1/3 ~1/3 0 0 0 0 0 0 

(4.43 ) 
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The matrix elements (4.43) coincide with the Clebsch­
Gordan coefficients for coreps reducing the direct product 
D 4 X D 4 of 0 • ( T·) as given in the full set of tables for the 
cubic groups. !3 

An additional restriction of the form of s4,m blocks fol­
lows from the requirement that L 4 (q) should form a "stan­
dard" corepofQ4 [see Eq. (3.20) J.1t is irreducible and is of 
the first type, so the matrix S 4 is determined up to its "inher­
ent arbitrariness," i.e., a sign [see Eq. (3.2Ia) J. 

If we want "the standard form" of L 4 (q) = D 3 (q) of 
D6 (D3 ) following!3 

L 4(a) = I-! 13/2 1, 
13/2 -! 

4 1
0 

11 L (b) = I 0 ' 

L4(C) = 10_1- ~I, 
then we must take the blocks S 4,m with parameters 

b=~, 

S4,2: a = 4, b = - 4 . 

(4.44) 

(4.45) 

The new S 4,m blocks are related to (4.41) by the an 
orthogonal transformation. However, it is seen from (4.4) 
that they have not the symmetry of the "simple phase factor" 
type under automorphism and complex conjugation. 
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The analysis over q-commutative algebras (generalized supercommutative algebras), that is, 
differentiation and integration for functions defined on superspace over a q-commutative 
algebra, is studied. 

I. INTRODUCTION 

In the last ten years or so, the supersymmetric quantum 
field theory has been studied extensively, I and recently, at­
tempts to give a mathematical foundation are very active,2 
where Grassmann algebras (supercommutative algebras) 
play an essential role. Supercommutativity is a generaliza­
tion of commutativity but not the most general one. The 
generalized supercommutative algebras of Scheunert,3 

which we call q-commutative algebras, are considered to be 
the most general. In our previous paper,4 we developed the 
theory of matrices whose entries are elements of a q-commu­
tative algebra and studied Lie groups consisting of those ma­
trices. These Lie groups are considered to be transformation 
groups of superspaces over q-commutative algebras. Several 
authors studied the theory of infinitesimals of the Lie 
groups, that is, q-Lie algebras (representation theory,5 co­
homology theory6). 

In the present paper, we study analysis over q-commu­
tative algebras, that is, differentiation and integration of 
functions defined on a superspace over a q-commutative al­
gebra. Since the q-commutative algebras include para-Bose 
and para-Fermi number systems as well as Grassmann alge­
bras, our theory will provide a foundation to the study of 
commutation relations that appear in quantum field theor­
ies,7 and will also help us towards deeper understanding of 
supersymmetry. 

In the supersymmetric case, parameters of superspace 
are taken from a Grassmann algebra, but in our general case 
they are taken from the tensor product of the crossed prod­
uct on the group of even grades and the generalized Grass­
mann algebra over odd generators. We define G'-functions 
(r-times continuously differentiable functions) along the 
method of Rogers.8 If r is greater than the nilpotency of 
superspace, then G '-functions have standard forms called 
the standard expansions. Though the derivatives with re­
spect to odd variables are not uniquely determined, we can 
choose the canonical one using the standard expansion. For 
a G '-function f, the integration is defined as follows; first 
pick up the tOpfloo. q (x) from the standard expansion 

f(xl, ... ,x P,51,"',5 q) = 2:.}j"ooi, (x)5 i, ... 5 i" 
'<.q 

and integrate it on the body b(X) of the superspace X. The 
main theorem of this paper is a consistency theorem 

(Theorem 7.4), which states that under a change of vari­
ables the (super) Jacobian appears to adjust values ofinte­
grals. Recently, Rogers9 formulated integration with respect 
to even variables as the contour integration in the supersym­
metric case. In our general case, the same formulation is also 
possible, but it is practical and essential that integration with 
respect to even variables is taken to be the integration on the 
body as usual. 10 

This paper is organized as follows: In Sec. II, we define 
supemumbers, superspaces, and functions on superspaces 
(superfields). In Sec. III, we define the derivatives and the 
higher derivatives of superfields, and prove the analog of 
Taylor's expansion theorem (Proposition 3.8). In Sec. IV, 
we investigate functions defined on the body. To such func­
tions correspond a set of ordinary functions. Using this cor­
respondence, we define integration and prove its consistency 
under a change of variables on the body (Proposition 4.6). 
In Sec. V, we define the Jacobian matrix as usual, and the 
Jacobian to be the superdeterminant of the Jacobian matrix. 
The inverse mapping theorem (Theorem 5.4) is proved. In 
Sec. VI, we give the standard expansion for G '-functions 
(not only G CO-functions), where the concept of excessively 
C '-functions is introduced. In Sec. VII, consistency of inte­
gration (Theorem 7.4) is proved in an elementary way, by 
decomposing the general form of change of variables into 
elementary ones. We give some remarks in the final section. 

II. SUPERNUMBERS AND SUPERSPACES 

In this section we prepare the basic notions, super­
number, and superspace on which we develop the (super) 
calculus. 

First, we summarize some notions and notations intro­
duced in the previous paper4 that will be used in this paper. 

Let G be a finite Abelian group and IF be the real or the 
complex number field. We call a mapping q: G X G-+lF a sign 
of G if it satisfies 

(i) q(a + P,r) = q(a,r)q( P,r), 

(ii) q(a, P)q( p,a) = 1, 

for any a, p, yeG, and the pair (G,q) is called a signed group. 
By (ii) we see q(a,a) = ± 1 for anyaeG. The event part 
{aeG Iq(a,a) = l} and the odd part {aeG Iq(a,a) = -l} 
of G are denoted by Go and G I' respectively. Since ql G is an 
even sign, there is afactorsystemrjJ: GoXGo-+F - {o} asso­
ciated with qlG

o
' that is, rjJ satisfies 
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(i) tfJ(a, {3 + r)tfJ( {3,r) = tfJ(a, {3)tfJ(a + {3,r), 

(ii) tfJ(O,O) = 1, 

(iii) tfJ(a, {3)/tfJ( {3,a) = u(a, {3), 

for a,{3,yeGo. We can choose tfJ so that ItfJ(a,{3) I = 1 
(Proposition 2.7 of Ref. 4). Let C = $ aeG

o 
Ca be the crossed 

product of F and Go defined by means of tfJ, that is, Ca 
= F,ua is the one-dimensional vector space over F with gen­
erator Ua of grade a and the multiplication in C is defined by 

Ua ,up =tfJ(a,{3)ua+p' 

Then C is a u-commutative algebra over F by (iii) above. 
A finite set I is called a G-set if it is linearly ordered and a 

grade g(i)eG is assighed to every ele~ent ie!. Let L be an 
odd G-set, that is, each element I of L has an odd grade, 
and let V be the G-graded vector space over F with basis 
{v/l/eL}, where the grade of VI isg(/). LetBbetheu-Grass­
mann algebra over V defined by B = T( V) / K, whereK is the 
ideal of the tensor algebra T( V) over V generated by the 
elementsvivj -a(g(i),g(j»)vjv/ (i,jeL). LetMbe a subset 
of L. M is a G-set in a natural way. The ordered product 
"/eMV/ is written as VM • Then B is a G-graded u-commuta­
tive algebra with a linear basis {vMIMCL} over F. Let 
A = C ® FB be the graded tensor product of C and B over F, 
then A is a finite-dimensional u-commutative algebra. In the 
rest of the paper we fix the algebra A of which elements are 
called supernumbers. 

Any eleII1ent a of A is expressed uniquely as 

a = L aa,Mua ® vM' 
a,M 

(2.1) 

where aa,MeF and a ranges over the elements of Go and M 
the subsets of L. the norm lIall of the element a is defined by 

lIall = ~ laa,MI· 

Then A is a Banach algebra over F. 
The Grassmann-Banach algebra BIL I of RogersS is ob­

tained as a special case of our algebras, when G = Z2 and 
u(a,{3) = (-1)afJ,fora,{3eZ2' In this case Go = {O} and 
the factor system tfJ is trivial and so C is equal to the base field 
F. On the other hand, B is the Grassmann algebra generated 
by IL I elements. Thus A = C ® FB = B is nothing but the 
algebra BIL I • 

The para-Bose and para-Fermi number system of Oh­
nuki and KamefuchF is also obtained if we put 
G = Z2 $ ... $ ~ and define u appropriately. 

Returning to the general case, A is a G-graded algebra 
whose homogeneous component Aa of grade aeG is the set 
of elements 

a = L ap,Mup ® VM, 
p+g(M) =a 

where 
g(M) = ~g(/). 

Here we introduce another gradation onA. An element aeA 
given as (2.1) is called s-homogeneous of s-grade M if aa,M' 
= 0, for all M' :l=M. Identifying C with C ® 1 and B with 
1 ® B, C and B are considered to be subalgebras of A. Here C 
is nothing but the homogeneous component of A of s-grade 
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0. Moreover, F is a subalgebra ofCby identifying Fuo with 
F. 

Definition 2.1: ForaeA given as (2.1), we define 

b(a) = L aa/Z;ua ® 1, s(a) = L aa,Mua ® VM· 
aeGo aeGo, M ;0<0 

We call b(a) the body of a ands(a) the soul of a. Moreover 
for a subset 8 of A, we set b(8) = {b(a) laeS} and s(8) 
= {s(a) laeS}. 

Note that the body b(a) is invertible ifit is nonzero and 
homogeneous, while the soul s(a) is nilpotent. Of course, 
any element is uniquely decomposed as a sum of its body and 
its soul. The body of an odd element is zero, but the converse 
is not true; an even element may have a nonzero soul. 

Proposition 2.2: Let A ' be a F -submodule of A generated 
by some elements ofthe form Ua ® v M with aeGo and M CL. 
Then the left annihilator and the right annihilator of A ' coin­
cide; they are denoted by Ann(A '), where Ann(A ') is a 
graded submodule of A with respect to s-gradation. 

Proof: Leta = Ua ®vMeA and let b = ~M'CLCM' ®VM', 
where cM,eC. Suppose ba = O. Then 

(~CM' ® VM' )(Ua ® vM) 

= Lo(g(M'),a)cM,ua ®VM,VM =0. 
M' 

It follows that CM ' = 0, for M' such that M'nM = 0. 
This implies ab = 0 and 

Ann(a) = L C®vM,· 
M'nM;o<0 

SinceA ' is generated by such a's, our assertion follows. 
Definition 2.3: Let A ' be as in Proposition 2.2. Define 

Sav(A ') = L C®vM, 
M 

where M ranges overall theMCL such thatvMA ':1=0. Then 
we have 

A = Sav(A ') $ Ann (A '). 

For al, ... ,aneG, Pa, ... a• denotes the projection from A to 
Sav(s(Aa ) ... s(Aa »). Moreover for a G-set M = {il> ... ,in }, , . 
Pg(l,) ... g(l.) is abbreviated to PM' 

Definition 2.4: Let 1= {1, ... ,p,p + 1, ... ,p + q} be a G-
set such that g(i) are even for i = 1, ... , P and odd for 
i =p + 1, .. "p + q.LetX =A/ = $Ag(l) be the direct sum 
of Ag(i) (ie!). The X is a Banach space by the product topol­
ogy induced from A and is called supers pace over A. 

In the usual supersymmetric case, X is the superspace 
B fiql of Rogers. 8 

Definition 2.5: Let I and J be G-sets. Let X = A / and 
Y = AJ be superspaces. A mapping T: X_Y is an A-linear 
mapping, ifthere is a (J X I)-matrix M = (M ~) such that 

T(x)j= LM{xi, jEJ, 
iE/ 

for x = (xi)eX. We say T is associated with M. If M is in­
vertible, then so is T and the inverse mapping T - 1 is asso­
ciated with the inverse matrix M -I. Clearly, an A-linear 
mapping is F-linear. [The definition of a (J X I)-matrix is 
given in Ref. 4.] 
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Definition 2.6: For a point x = (xiliel) in a superspace 
X, b(x) = (b(xi) liel) and sex) = (s(xi) liel) are called the 
body and the soul of x, respectively. Let Ube a (connected 
open) domain of X. Here b( U) = {b(x) IxeU} is called the 
body of U. Then b( U) is contained in the even part 

Uo = {(x ..... ,xp,O, ... ,O) I (x ..... ,xP ,xP+ I, ... ,x p+q)eU}of U. 

Let x = (x I , ... ,x p,O, ... ,O) be in b (X). Then Xi = iiUg(i) 
for some iieF. The mapping - which sends x to the point 
i = (i ..... ,i P) is a homeomorphism of b(X) onto the (real 
or complex) p-dimensional space P. For a domain Vof 
b(X), V = {ilxeV} is a domain ofFP. We sometimes write 
the odd coordinates x P +} as s} and express a point of X as 
(x,s) = (Xl , ... ,x P,s I , ... ,s q) in order to distinguish between 
the even and the odd coordinates. 

Let U be a domain of X. Here A U denotes the set of 
functions (superjields) on U which take their values in A. A 
function feA U is said to be homogeneous of grade aeG, if 
j(x)eAa , for allxeU. Thus A U is naturally au-commutative 
G-graded algebra over F. 

For a domain Vof b(X), A V also denotes the set of A­
valued functions defined on V. A function leA v is written 
uniquely as 

I(x) = Lla.M(X)Ua ®VM, xeV, (2.2) 
a,M 

where aeGo, MeL, and la.M(x)eF. The functions ia.M' 
which are defined by 

ia.M(i) =la.M(X), xeV, 

are F -valued functions on the domain V. 

III. DIFFERENTIAL CALCULUS 

In this section we study differential calculus on the su­
perspaces in the sense of Sec. II. Through this and the subse­
quent sections we assume that the base field F is the real 
number field R. 

Let 1= {t, ... ,p + q} be a G-set withp even and q odd 
elements, and let X = AI be the superspace. Let Ube a (con­
nected open) domain of X. 

Definition 3.1: (Compare Rogers.s ) Let iel and a point 
xoeUbe fixed. A function/eA U is called right differentiable 
at Xo with respect to Xi, if there is a constant aeA such that 

I(x~, ... ,x~-I,x~ + y,x~+ I, ... ,x{;+q) 

= I(xo) + ay + o( IlYlI) (as y-<», 

for 

yeAg(i) 

with 

(x~, ... ,x~ - l,x~ + y,x~ + !, ... ,x {; + q)eU. 

(3.1 ) 

The constant a is called the right differential coefficient ofl at 
Xo with respeCt to Xi. 

The function/is right differentiable on U with respect to 
Xi if there is a function I' in A U such that I' (x) is a right 
differential coefficient of/at any x in U. Though!" which is 
called a right derivative off, is not uniquely determined in 
general, it is unique modulo Ann(Ag(i) ). We use the symbol 
Ix' or simply l(i) . to denote one of them. 
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Remark 3.2: If iel is an even index and if/eA U is right 
differentiable at Xo with respect to Xi, then the right-differen­
tiaI'coefficient is (absolutely) unique and is equal to 

1· 1 (I"i( I i-I i + 1: i + I ,. ) 
~ 7i J I xo,· .. ,xo ,xo uUg(i),xo ,···,xo 

- I(xo) ]Ug (;) -I, (3.2) 

where~elR. 

Definition 3.3: A function/eA U is r-times right differen­

tiable on U with respect to xio, ... ,xi., ifthere is an (r - l)th 
derivative/(il ... i,_,) with respect toxil, ... ,xi,_" which is right 

differentiable on U with respect to Xi,; a derivative of 

l(il ..... i,_ ,) with respect to Xi, is denoted by I(;, ..... i,) . 
Proposition 3.4: The difference of two derivatives of I 

with respect to xio, ... ,xi, belongs to Ann(U;= IAg(/]». 
Proof: Let hand g be derivatives of I with respect to Xl, 

then k = h - geAnn(Ag(i»' Hence 

limJ.. [k(XI, ... ,x}-I,x}+~y},xJ+!' ... ,xp+q) -k(x)] 
c5--+0~ 

= k(j) (x)y) 

is also in Ann (Ag(;) ), where &R. Becausey} is arbitrary in 
Ag(j), k(j) (x) belongs to Ann(Ag(i)Ag(j»' Since h(j) 
- g(j) is equal to k(j) modulo Ann (Ag(j) ), h(j) - g(j) be­

longs to Ann (Ag(i) Ag(j) ). 
Repeating this argument we can show the assertion for 

higher-order derivatives. 
By definition it is clear that an (r - s)th derivative 

(I(il ..... i,) ) (iH , .... ,i,) of an sth derivative !ci"".i,) of/is an rth 
derivative!ci" ... ,i,) off Therefore 

= (!cil, ... ,i,) ) (iH , .... ,i,) mod Ann(DI Ag(i]) ) . 

Definition 3.5: A continuous function lin A U is called 
GOon U The function I is said to be G r on U if there is a 
continuousrthrightderivative!ci, ..... i,) on U for any il, ... ,irel. 

The set ofG r-functions on Uis denoted by G r( U). It is a 
u-commutative algebra over R in a natural way (cf. Proposi­
tion 3.10). In a usual way we can prove the following propo­
sition. 

Proposition 3.6: Let/be in A u. Then/is G r on U if and 
only if 

p+q 
I(x + y) =/(x) + L hi (x)/ + o(llYlI) (asy-D), 

i=1 

for some G r- 1- functions hi> where x, x + yeU. This hi (x) 
is a right derivative of/with respect to Xi. 

Let Jbe a G-set andl = {jil jeJ} be a set of functionsl} 
eGr(u) such that the grade ofji isg(j). Then/induces a 
Gr-mapping/= (Ii): U--+Y=AJ by 

I(x) = (/}(x»). xeU. 

Preposition 3.7: Lety = (yi) be a G I-mapping from U 
to a domain Vin AJ • Then for /EG I( V), the composition 
I(y(x») of/andy belongs to G I( U) and the equality 
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fc.i) (x) = I.fc.j) (Y(X»). Y{i) (x) mod Ann (Ag(i) ) 
j 

holds on U. 
Proof: By definition 

= yj(x) + Y{i) (x) . x; + o( Iix; 11), 
and by Proposition 3.6 

f(Y+YI) =f(y) + I.fc.j)(Y) .y~ +o(IIYIIi)· 
j€J 

Hence 

f( y(xl , ... ,xi - l,xi + x; ,xi + I, ... ,x P + q») 

(3.3) 

=f(y(x») + I.fc.j)(y(x»)·Y{i) (x) .x; +o(lix;Ii)· 
j 

This completes the proof. 
Proposition 3.8 (Taylor's expansion): Lety = (/)es(X) 

be the nilpotent of nilpotency r, that is, /, ... /' = 0 for any 
r-tuple (il, ... ,i,), ikE!. Let fEG '( U) and XEU. Suppose 
x + (}YEU for all () with 0 < (), I, then 

f(x + Y) 

,-I I . 
= I. ., . I.. fc.i.".i,) (X)/' "·Y"· 

n = 0 n. ('I''''''.) 

(3.4 ) 

Proof' LetaERandsetg(a) =f(x + ay). Theng(a) isa 
function defined on a neighborhood of 0 in R and takes its 
values in A. By the ordinary Taylor theorem, 

g(1) = ':f J,g(n)(o) + ~g(')«(})' 
n =0 n. r. 

where 0 < () < 1. Applying (3.3) repeatedly [note that (3.3) 
is an exact equality when i is even], we have 

(n)(o) "I' () i , i. g = ~ J (i. ". i , ) X • Y ... Y . 
(i", .. ,in ) 

Sinceg(')«(}) = 0, (3.4) follows. 
Proposition 3.9: For fEG 2 ( U), we have 

fc.ij) = u(g(i),g(j) )fui) mod Ann(Ag(i) Ag(j) ). 

Proof' Set 

g(a,b) =f(XI, ... ,Xi-l,xi + a/,xi+ I, 

... ,xj-I,xj + byj,xj+ I, ... ,x p+q), 

where, a, heR. Then the equations ga,b(O,O) =fc.ij) (x)yY 
and gb,a (0,0) = fc.ji) (x)/yj hold by Proposition 3.7. Since 
ga,b (0,0) = gb,a (0,0), fc.ij) (x) - u(g(i), g(j») fc.ji) (x) lies 
in Ann (Ag(i) Ag(j) ). 

Proposition 3.10: Let/, geG 1 ( U) and h be homogeneous 
of grade a. ThenfgeG I (U) and we have 

(fh)(i) = u(g(i),a)f(i) . h + f· h(i) mod Ann(Ag(i»)' 

Proof' Straightforward from the definition. 
Proposition 3.11: Letfbe a G'-function on U let a be a 

point in X that is nilpotent of nilpotency r. Then 
f(i • ... i,) (x) . ai, ... ai• is a G '-function on U. 

Proof' By Propositions 3.8 and 3.9 we have 
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for any sufficiently small tin RP + q, where ci, ". i. are nonzero 

real constants. Therefore every fc.i. ". i,l (x) . ai, ... a
i
• can be 

written as a linear combination over R of G '-functions}; (x) 

=f(x + ta) with tERp+q. Consequently fc.i.".i ,) (x) 

• ail ... ai
• is G'on U. 

Definition 3.12: For a subset S of X, we define 
S = {x + a I xES, aes(X)} and call it the (soul) saturation 11 

of S. If S = S, then S is called saturated; S is called s-connect­

ed 12 if Sn txT is connected for every xES. 
Proposition 3.13: Suppose a domain U is s-connected and 

every point of s( U) has nilpotency r. Then any G '-functionf 
on U can be uniquely extended to a G' -functionJ on U. 

Proof: For y = x + aEU with XEU and a € s(X), define 

The s-connectedness of U assures that J is well defined. We 
seeJI u = f andJEG '(U) by Proposition 3.11, and moreover 
Jis unique because of Propositions 3.4 and 3.8. 

As the following example shows, the assumption that U 
is s-connected cannot be removed in Proposition 3.13. The 
example also explains the necessity of the condition that 
x + (}yeU for all () with 0 < (), I in Proposition 3.8. 

Example 3.14: LetA be the Grassmann algebra generat­
ed by two elements VI' V2 and X = R + RV1V2 be the super­
space over A with one even coordinate. Let 

U = {x + yv1v2 lx,yeR and y;60, for x,O}, 

then U is a domain of X which is not s-connected. Let t{J(x) 
be a C ""-function on R such that t{J(x) = I, for x>O and 
t{J(x) = 0, for x, - l. Define a functionfon Uby 

f(x + YV1V2) 

{

I, 

= t{J(x) + (d~~) )YV1V2, otherwise. 

if x,O and y>O, 

Then f is a G ""-function on U. However, since f = 0 on 
{x+yv1v2Ix< -1,y<O}andf= lon{x+yv lv2Ix< -I, 
y> O},J cannot be extended to U = X as a continuous func­
tion, still less as a G "" -function . 

Left differentiability and left derivatives are defined 
dually. It is clear that a functionfis left differentiable if and 
only if it is right differentiable. 

IV. FUNCTIONS ON THE BODY 

In this section we study functions defined on the body. 
Let X = A I be the superspace and Vbe a domain of the body 
b (X) of X. Since we treat only even variables here, we sup­
pose the G-set lis even, that is, 1 = 10 = {I, ... ,p}. 

Letfbe an A-valued function defined on V. The right 
differentiability and the right differential coefficient off are 
defined by Eq. (3.1) in Definition 3.1 under the restriction 
th t '0 C d (1 i-I i + i+ 1 -»+q) a q = , yE g(i)' an xo,·.·,xo ,xo y,xo , .. ·,"'"b 
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E V. Since the right differential coefficient of/at Xci with re­
spect to Xi is unique, as mentioned in Remark 3.2, we use the 
notation a/(axi) -I (xo) to denote it. 

As we stated at the end of Sec. II,jEA v is a sum of/a •M , 

aEGo, MCL, with which we associate JR-valued functions 
la.M on VC RP. 

Proposition 4.1: /EA v is right differentiable at X with 
respect to Xi if and only if la.M is differentiable at x with 
respect to Xi for every aEGo and MCL, and 

a/(axi)-I(X) = L ala~7 (x)(ua ®VM)Ug(i~' 
aeG.MCL ax 

For a positive integer n, [a(axi) -I]" means n times ap­
plication of right differentiation with respect to Xi. Let 
N = {n)ieI be a sequence of non-negative integers indexed 
by I. Set IN 1= l:ielni andN! = "iel(ni!). Weusetheabbre­
viation x N for the ordered product II (Xi) "'. The higher-order 
derivative a INIj(axN) -I of/is a successive application of 
[a(axP)-lp, [a(axp-I)-I]"p-\ ... ,[a(axl)-I]", to/in 

this order. Here/EA v is said to be cr ifit is r-times continu­
ously right differentiable; C r

( V) stands for the set of c r
_ 

functions on V. 
By Propositions 4.1 we have the following proposition. 
Proposition 4.2:/EA. v is C r if and only if every la.M is C r. 

Definition 4.3: LetJbe a G-set and let Vbe a domain in 
heX). Let/= (p) be a Cl-mapping from V to AJ • The 
(J XI)-matrix 

D(/ Ix) = (ajJ(axi)-I) 

is called the Jacobian matrix for f, if J is even and II I = IJ I, 
the determinant of D( / Ix) is called the Jacobian forf, and is 
denoted by !1(/ Ix). 

Hereafter we consider the casewhereJis even, II I = IJ I 
and each /J is a C-valued C I-function, that is, P(x) 
lJ(x)ug(j)' Then/is a mapping from V to the body h( Y) of 
Y = AJ • By Proposition 4.1 we have 

aljJ(a i)-I - ajJ -I (41) :x - axi ug(j) ug(i)' . 

Let I (resp. :1) be the G-set obtained from I (resp. J) by 
redefining the grade of every element of I (resp. J) to be O. 
Let U1 (resp. UJ ) be the (l X I) - [resp. ( J X j) -] matrix 
defined by (_U1 ):· = 8:. uglJ} [resp. (UJ ) ~ = 8 ~ ug ( J) ]. 

Let D( / Ix) and !1 (/ Ix) be the ordinary Jacobian ma­
trix and Jacobian for J, respectively. Then we have by (4.1) 

D(/Ix) = UJD(llx)U1-
I. (4.2) 

Thus by Theorem 3.6 of Ref. 4 we have 

!1(/ Ix) = det( UJ )!1(l Ix)det( U1)-1 

= !1(llx)det( UJ )det( U1) -I. 

This formula implies the following proposition. 
Proposition 4.4: Under the same situation as above, 

D(/Ix) is invertible if and only if D(llx) is invertible. 
Moreover if 1= J, then we have 

!1(/lx) =!1(llx). 

Next we define integration on the body. 
Definition 4.5: Let Wbe the subset of V such that Wis a 
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measurable subset ofR p. Let/EA vbe integrable on W, that 
is, all the la,M are integrable on W. We define 

fw/(X )dx = fw/(X l , ... ,x P)dx l ..• dx P 

= L [(_la'M (XI, ... ,iP)dXI ... dXP](Ua ®VM)· 
a.M Jw 

The following proposition is a special case of Theorem 
7.4 and will be used to prove it in Sec. VII. 

Proposition 4.6: Let I be an even G-set and Vand W be 
domains in heX), X =A1. Lety = (yl) be a one to one C 1_ 

mapping from Wonto Vsuch that!1( ylx) is nonzero. Then 
we have 

Proo/: By definition 4.5 and Proposition 4.4 we have 

fw/(Y(X») I !1(~) Idx 

= ~[fwla.M(ji(X»I!1(!)ldX](Ua®VM)' (4.3) 

By the usual formula of change of coordinates, (4.3) is equal 
to 

L [ (la.M( ji)dji] (ua ® VM) = ( /( y)dy. 
a.M Jv Jv 
The following propositions hold. 
Proposition 4. 7: If/eC I ( V) has a compact support then 

we have 

f {a/(axi)-I(x)}dx = O. 

Proposition 4.8: Letf, hEC I ( V) and suppose h is homo­
geneous of grade{3. If h has a compact support, then we have 

f {/(x)ah(axi)-I(x)}dx 

= - a(g(i), (3)f{af (axi) -I(x)h(x)}dx. 

V. JACOBIAN AND INVERSE MAPPING THEOREM 

In this section G-sets are not necessarily even. The even 
(resp. odd) part of a G-set I is denoted by 10 (resp. II)' 

Definition 5.1: Let I and J be G-sets. Let X = A I' 
Y=A J , and Ube a domain ofX. Let/= (PljEJ) bea G 1_ 

mapping from U to Y. The (J XI)-matrix 

D(/Ix) = (/{i) (x» 

is called the Jacohian matrix forf, where/{I) is a right deri­
vative of/ defined in Definition 3.1. Note that it is unique up 
to modulo Ann(Ag(i»)' When D( / Ix) is square, that is, 
1101 = IJol and lId = IJII, thesuperdeterminantofD(/lx) 
is called the Jacobian for / and denoted by !1 (I Ix). It is 
unique up to modulo Ann(s(A»). Hence the invertibility of 
D(/ Ix) does not depend on the choice of the derivatives 
f{I)' (See Definition 3.9 and Proposition 3.10 of Ref. 4.) 

Proposition 5.2: Let I, J, and K be G-sets and let UCA1 
and VCAJ. Let/= (Ik) beaG I-mapping from V toAK and 
y = (yJ) be a G I-mapping from U to V. Composing/and 

Y. Kobayashi and S. Nagamachi 2251 



                                                                                                                                    

y,/is considered to be a mapping from U to A K' Then 

D(I/x)-::::.D(I/y) .D(y/x), 

where -::::. means that the (k,i)-elements ofthe matrices are 
equal modulo Ann(Ag(i»)' Thus if the matrices are square, 

ll.(I/x) =ll.(I/y) .ll.(y/x) mod(s(A»). 

Proof: It immediately follows from Proposition 3.7 and 
Theorem 3.11 of Ref. 4. 

Corollary 5.3: In thesa.q1e situation as above, D( I/x) is 
invertibleifandonlyifbothD(I/y) andD( y/x) are invert­
ible. 

Theorem 5.4 (inverse mapping theorem): Let / and J be 
G-sets such that 1/01 = IJol, I/d = IJII· Let X = AI' Y = AJ , 

and UCX. Letl= (Ji) beaG'-mappingfrom U to Ywith 
r> 1. If ll. ( 1/ x) :1= 0 at xoe U, then there are an open neighbor­
hood Vof/(xo), a neighborhood Wofxo, and a G'-mapping 
h: V_Wsuchthath (/(x») =xand/(h( y») =y,forallxeW 
andyeV. 

Proof: With the Jacobian matrixD = D(I/x) we associ­
ate an invertible A-linear mapping T fromX to Y(Definition 
2.5). Let TR denote the R-linear mapping TregardingX and 
Yas vector spaces over R. Regarding! as a mapping from the 
domain Uin the R-vector space X to Y, its ordinary Jacobian 
matrix corresponds to TR • Since (TR)-I = (T-I)R' the 
usual inverse mapping theorem gives us a neighborhood Vof 
I(xo) , a neighborhood Wofxoandamappingh from Vto W 
such that h (/(x») = x and/(h( y») = y, for xeW andyeV. 
Since the ordinary Jacobian matrix of h corresponds to 
(TR ) -I( = (T -I)R) and T -I is associated with the inverse 
D -I of D, we have 

h( y +z) - h( y) = T-I(x) + o(lIzll) = D -IZ + o(lIzll>. 
It follows that h is a G I-mapping from V to U of which (su­
per) Jacobian matrix is D -I. Moreover, all the elements of 
D -I are rational functions of the derivatives of I and the 
denominators of the rational functions have nonzero bodies 
(see Corollary 3.8 of Ref. 4). They are clearly G'-I- func­
tions. Consequently, h is a G'-function as desired. 

Proposition 5.5: Under the same condition as above, sup­
pose ll. ( 1/ x) :1= 0 and U and every point of s (U) has nilpo­
tency r. 

( 1) If U is saturated, then so is I( U). 
(2) If/(x) is one to one on U, then so is b(l(x») on 

b(U). 
Proof: By the inverse mapping theorem, for any Yo~( U) 

there are an s-connected open neighborhood Vof Yo in Yand 
aG '-mappingh: V-Usuch that/(h (y») = y, for allyeV. By 
Proposition 3.13, h can be extended to the saturation V, and 
I(h ( y») = y holds on V because I· h is G '. Therefore 
V = I(h (n) C/( U) and (1) follows. 

Assume that b (I(xl ») = b (/(x2» for some XI andx2 in 
b( U). Then there are s-connected neighborhoods VI of Yi 
= I(x l ) and G '-mappings hi on Vi to U such that hi ( Yi ) 
= Xi and/( hi (y») = y, for yeVi (i = 1,2). Thus hi can be 

extended to VlnV2, both of which are the inverse ofj. Sincel 
isonetoone,h l = h2( = h) holds.Sinceb( YI) = b( Y2) and 
hisG', wehaveb (II( YI») = b (h( Y2»).Itfollowsthatxl = X2 

and (2) is proved. 
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VI. STANDARD EXPANSIONS 

Let / be a G-set and X = A l' Let U be as-connected 
domain of X. Let r be a fixed integer such that the soul of 
every point of X has nilpotency r. Since every G '-function on 
U is uniquely extended to the saturation U of U, we assume 
U = U in this section. 

Definition 6.1: Let/be a function defined on b( U) and t 
be a non-negative integer. This/is called excessively C tor C f 
if for every il, ... ,illeJo with O<:;n<:;r, Pg(i,) "'g(i.) I is n-times 

right differentiable with respect to X\ ... ,xi. and the deriva­

tive a "( Pg(i,) ... g(i.) I) (axi,) -I ... (axi.) -I is C t (recall De­
finition 2.3). 

When n = 0, Pg(i,) ... g(i.) in the above definition is the 
identity mapping and so a Cf-function is ct. 

Proposition 6.2: If I is C f on b (U) with t> 1, then 
a/(ax;') -I is C f- Ion b( U) for ioeJo. 

Proof: If/is Cf, 

a"[ Pg(i,) ... g(i.J] (axi,)-I ... (axi.)-I 

is C' for every il, ... ,ineJo with n<:;r. Hence 

an [p. . (a~(axi.) -I)] (axi,) -I ... (axi.)-I 
g(',) "'g('.) 'J' 

= Ea [a n( Pg(i,) ... g(i.J)(axi,) -I ... (axi.) -I] (ax;')-I 

is C t
-

I for il, ... ,ineJo with n<:;r, where 

E = Uk = I a(g(iO),g(ik»)' 

This implies al( ax;') - I is C f - I. 
Proposition 6.3: If/is a G '-function defined on the even 

part Uo of U, then the restriction/lb(U) ofl to b( U) is Cr. 
Conversely, any Cr function on b( U) can be extended 
uniquely to a G'-function on Uo. 

Proof: Let leG '( Uo) and il, ... ,i"eJo be given. Set g(x) 
= l(i, ... i.) (x). By Proposition 3.11, g(x) . al 

• ... ai, is G' on 

Uo, for any a = (ai}), ai}es(Ag(i}»)' Write 

g(x) = L ga,M(X)(Ua ®VM)' for xeb(U), 
a,M 

wherega,M(x)eR. Then 

Pg(i,) "'g(i.) (g(x») = Lga,M' (x)(ua ®vM,), 
a,M' 

where M' ranges over all M'CL such that VM ' 

. s(Ag(i,) ) ... S(Ag(i.) ) :1=0. For any such M' take ao = (ag) so 

thatvM, . aa ... a~:I=O. Let {M "} be the family ofsubsetsM " 

of L satisfying VM" . aa ... a~:I=O. Since 

i . ~ i . 
g(x) • ao ... a6 = ~ ga,M' (x) (ua ® VM' )ao ... a6 

a,M' 

= L ga,M" (x) (ua ® VM" )a~· ... aa 
a,M-

is C' on b(U), every ga,M" is C'by Proposition 4.1, and in 
particular ga,M' (x) is C'. Therefore 

Pg(i,) "'g(i.) (g(x») = an [ Pg(i,) ... g(i.)/] (axi,) -I ... (axi.)-I 

is C' and/is Cr on b( U). 
To show the converse, we shall prove more generally 
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that if h is a C: -function on b ( U), then the function/on Uo 
defined by 

I(x) = L ~! [aINI(PNh)(axN)-'(b(x»)]s(x)N, xeUo, 

is G t, where N = {n j } is a sequence of non-negative integers 
indexed by 10 and PN is the projection to 

Sav [niel.(s(Ag(l) ) )"1]. We proceed by induction on t. When 
t=O, every [aIN1(PNh)(axN)-I(b(x»)]s(x)N is contin­
uous and so is I(x). Suppose t> O. Let 

hex) = L_l- [aINI{PN(ahcaxi)-I)} 
N! 

X (axN)-I(b(x»)]s(x)N, 

for xeUo. Then we can see 

l(xl, ... ,xi-I,Xi + /,xi+ \ ... ,xP) - I(x) 

=h(x)/ + 0(1I/1i), 
and we find that/(x) is right differentiable with respect to Xi 
on Uo and its derivative hi) (x) is equal to h (x). Because 
every ah (axi) -I is C: - I by Proposition 6.2, h is G t - 1 by 
induction hypothesis. Consequently we find/is G t. 

The uniqueness of the extension follows from Proposi­
tion 3.8. 

Example 6.4: Let X be the superspace given in Example 
3.14. Then the soul of every point of X has nilpotency 2. Let 

g(x) =go(x) +gl(x)vI +g2(X)V2 +g3(X)VIV2 

be a function on b(X) = R, where gi (x) are real-valued 
functions. Then g is Ct if and only if go is C 3 and gl' g2, 
and g 3 are C 2. In this case if we define 

I(x) =g(b(x») +g'(b(x»)s(x), for xeX, 

then/is a G 2-function onXby Proposition 6.3. 
Now letfbe a G r -function defined on the whole domain 

U. By Proposition 3.8 we have 

1 
I(x,s) = L -,-,. .L . 15Jm"'5J'xl •... xl,(b(x») 

m.n. (11' ••• "n;JI ..... Jm> 

Xs(xi,) ... S(Xi·)S i, .. , s1m, 
for xeUo, seUI . By the proof of Proposition 6.3, 

Pg(j,) '" g(jm)g(i,) .•• g(i.) (/5Jm ... 5i,x' • ... Xl,) is C r, and hence 

Pg(} ) ... g(1 ) (f Jm J) is C r on b( U).1t is extended unique-
, m 5 "'5' 

ly to the G r-functionh, "'1m on Uo, which is actually given by 

h, ... 1m (x) 

for xeUo. Therefore we have 

Summarizing the previous argument, we have the fol­
lowing theorem. 

Theorem 6.5: Letfbe a G r_ function on U, then it can be 
uniquely expressed as follows: 
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I(x,s) = ~ 1M (X)SM, (x,s)eU, 

where M ranges over all subsets of II and 
(i)/M(X) is a Gr-function on Uo, 

(6.1 ) 

(ii) IM(X) belongs to Sav(n}eMAg(j) ), for all xeb( U). 
As we used in (6.1), SM means 51, ... sim, for 

M = {j" ... ,jm}CII withj, < .. ·<jm' 
Definition 6.6: The expression (6.1) in Theorem 6.S is 

called the standard expansion13 of I(x,s). The function 
II, (x) that appeared in (6.1) is called the top of I(x,s). If 
every/M(x) in (6.1) belongs to the body b(A) for xeb( U), 
I(x,s) is called proper. 

As we stated before, derivatives with respect to odd vari­
ables are not unique, but here we can choose canonical ones. 
Using the standard expansion off, we have 

ji( &-1 &-}-I&-}+ 1&-1+1 &-q) 
x,~ ,,,.,~ ,~ 7J ,~ , ••• ,~, 

=/(x,s) + L EMIM(X)SM-{}}1/1, 
}eM 

where EM = n}<ko(g(j),g(k»). This shows that 
I.jeMEM IM(X)SM- {I} is a derivative of/with respect to 51. 
We call it the derivative of I with respect to 5 i. which is 
denoted by al( as I) -I, that is, 

al(as})-I = L EMIM(X)SM-{I}. (6.2) 
MCI,,}eM 

Since the derivative of I with respect to even variable Xl is 
unique, we also use the notation al(axi ) -I for it. It is clear 
that 

al(axi)-I = L o(g(i),g(M»)aIM(aXi) -I(X)SM. (6.3) 
M 

Since alcas 1) -I is again a G r-function and (6.2) is its 
standard expansion, the derivative of it can be defined. On 
the other hand al(axi) -I may not be G r, but considering 
(6.3) as if it is the standard expansion of al(axi) -I, we de­
fine its derivative in the same way as above. Inductively we 
can define the higher-order derivative a NI( axN) -I ofl for a 
sequence N = {nJ of non-negative integers indexed by I. 

If/(x,s) =I.MIM(X)SM and hex,s) =I.MhM(x)SM 
are the standard expansions of I and h, then I.M(/M(X) 
+ hM(x»)SM is the standard expansion off + h. From this 

fact it follows that the operation a(axi ) -I is additive. 
The left derivative (axi)-'ja of leGr(U) is defined 

similarly. If/is homogeneous of grade a, we have 

(6.4) 

The following are elaborations of Propositions 3.9 and 
3.10. 

Proposition 6.7: We have 

a :/(axi) -I (ax 1) -I = o(g(i),g( j»)a 2/(ax1) -I (axi) -I. 

Proof: Straightforward. 
Proposition 6.8: Letf, h be proper G r-functions on U and 

suppose h is homogeneous of grade a. Assume that 
njEl,Ag(j) #0. Then we have 
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a(jh)(axi)-I =O'(g(i),a)al(axi)-'·h +I·ah(axi)-'. 
(6.5) 

Proof: When i is even, (6.5) is true by Proposition 3.10. 
Let i be odd. Since a(axi) is additive, we may suppose 
I(x,s) =a(x)sMandh(x,s) =b(x)sKforsomeM,KC/,. 
IfiM/uK or somej( =l=i)eMnK, then the both sides of (6.5) 
are zero. If ieMnK, thenjh = 0 and the left-hand side is zero. 
The right-hand side of (6.5) is equal to 

O'(g(i),a)Ela(x)sM - {;}b(X)SK + E2a(x)sMb(x)sK -{I}, 

where 

SM = EISM-{i}Si, SK = EztK-{;}Si. 

Here we have 

E2a(x)sMb(x)sK - {;} 

= E2EIO'(g(i),a - g(i»)a(x)sM- {;}b(X)SK - {i}Si 

= EIO'(g(i), - g{i»)O'(g{i),a)a(x)sM-{;}b(x)sK. 

(6.6) 

Since i is odd, O'(g{i), - g(i») = - I and (6.6) turns outto 
be zero. 

Finally assume MnK = 0 and ieMuK. Since I and 
h are proper and sMsK=I=0 by assumption, jh 
=u(g(M),a-g(K»)a(x)b(x)sMsK is the standard ex­

pansion ofjh. Therefore, if iEl( (the case when ieM is simi­
lar), then 

a(jh)(axi)-' = EO'(g(M),a -g(K»)a(x)b(x)SMSK-{;}, 
(6.7) 

wheresK = Es K- {i}Si. Sinceal(axi ) -I = o and ah(axi) -I 
= Eb(x)SK-{;}, (6.7) is equal to the right-hand side of 
(6.5). 

Proper G ""-functions on U form au-commutative G­
graded algebra and Proposition 6.8 asserts that a(axi) -I is a 
G-graded superderivation of this algebra. 

Remark 6.9: The operation a( axi) - I is not a derivation 
on the algebra G "" ( U) of all G "" -functions on U, even if A is 
a Grassmann algebra. In fact, let A be the Grassmann alge­
bra generated by a single element v. Let I(x,s) = v and 
h(x,s) = S. Thenjh = 0, but - al(as)-'h + jah(as)-' 
= v=l=O. 

VII. BEREZIN INTEGRALS 

The integer r is such that the soul of every point of X has 
nilpotency r. Let U CX = A I be a domain and let leG' ( U). 
We suppose U is equal to its saturation Ii, in particular U 
contains its body b( U). 

We say that/(x,s)eG '( U) has a compact support, iff or 
any So the restriction ofg(x) = I(x,so) to the body b( U) has 
a compact support. Here G ~ ( U) denotes the set of G '-func­
tions on U with compact support. Let I(x,s) 
= l:M 1M (x)s Mbe the standard expansion off Thenl has a 

compact support if and only if every 1M (x), xeb (U) has a 
compact support. We call I singular if IM(X) is in 
Ann(Hie/,Ag(j) ), for any xEb( U) and MC/,. 

Definition 7.1: For leG ~ ( U), the (Berezin) integral of I 
on U is defined as 
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r I(x,s)dx ds = i h, (x)dx, Ju btU) 

(7.1) 

whereh, (x) is the top off We should note that the integra­
tion in the right-hand side of (7.1) is defined in Definition 
4.5. 

Lemma 7.2: Let Uand VbedomainsinAI . Letz = (Zi) 
beaG'+'-mappingfrom V toAI andy = (/) beaG'+'­
mapping from U to V. Then a (zlx) - a(zly)a( ylx) is a 
singular function in x, where the Jacobian is understood to 
be made from the canonical derivatives. 

The proof of this lemma which is an elaboration of Prop­
osition 5.2 is given in Ref. 14 and is omitted here. It is easily 
seen that the product of a singular function and any function 
is singular. Moreover, the integral of a singular function van­
ishes because its top is zero. Therefore we have the following 
lemma by Lemma 7.2. 

Lemma 7.3: In the same situation as in Lemma 7.2 sup­
pose y( U) = V and z( V) = Wa domain in AI. Let/be a 
G'- function on Wwith a compact support. Then we have 

L/(Z( y(x»))a (: ) dx = L/(Z( y(x»))a ~) a (~ ) dx. 

Theorem 7. 4: Let / be a G-set and U be a saturated do­
maininX =AI . Lety = (y\r/) beaG'+ '-mappingofU to 
X and suppose thaty is one to one and a( ylx) =1=0 on U. Let 
V=y(U) and/eG~(V). Then we have 

L/(Y(X'S)'71(X,s»)a (~) dx ds = E LI( y,71)dy d71, 

(7.2) 

where E = 1 or E = - 1 according to whether the Jacobian 
of the C'+ I-mapping b(y) from b( U) to b(X) is positive or 
negative. 

Proof: From (1) of Proposition 5.5, V is also saturated 
and the right-hand side of (7.2) makes sense. Since the given 
change of variables is decomposed into the following two 
types, Lemma 7.3 assures that it suffices to prove the asser­
tion in each case separately: 

(1) yk = yk(X,S) and 711 = S I, 

(2) yk=Xk and 711 = 71I(X,S)' 

The case (1) can be still broken up into the following sub­
cases: 

(1.1) yk=yk(X) and 711 =SI, 

(1.2) yl = Xl + a(x)sK, yk = x\ 

for k =1= 1 and 711 = Sl, 

where k( =1=0) C/I. 

The case (1.1) can be reduced to the following two cases: 

(1.1.1) yk = yk(x)eb(A), for xeb( U) and 711 = S I, 

(1.1.2) yl = Xl + a(x) with a(x)2 = 0, yk = Xk, 

for k =1= 1 and 711 = S I. 

The case (2) can be reduced to the following two cases: 

(2.1) yk=Xk and 711=I,aj(x)sj, 
j 
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(2.2) yk=X\ 7J I =sl+a(x)sK, 7J1=SI, 

for /=1=1, where KCII and K =I={t}. 

Letf(y,7J) = 1: M f M (y) TJM be the standard expansion of 
f 10 the case (1.1.1), y = y(x) is essentially the change of 
variables only on the body (Proposition 4.6), and so we have 
only to prove in other cases, where b( U) = b( V) and E = 1 
hold. 

Case (1.1.2): We have 6.(ylx) = 1 +aa(axl)-I. 
Since the top of f(Y(x,s), 7J(x,s»)6.(ylx) is equal to 
PI,(h,(y(X,s»)6.(ylx») on the body b(U), the following 
equalities hold: 

{f(y(x,s),7J(X,s»)6. (~) dx ds 

= r Pdf I, (Xl +a(x),x2, ... ,xP) 
Jb(u) 

X (1 + aa(axl)-I(x»)]dx 

= PI, r {h,(X)+ah,(aXI)-I(x).a(x) 
Jb(u) 

+ h, (x) . aa(axl) -I(X) 

+ ah, (axl)-I(x) . a(x)aa(axl)-I(x)}dx. (7.3) 

Since a(x)2 = 0, we have a(x)· aa(axl)-I(x) = 0 by 
Proposition 3.10. Moreover by Proposition 4.7 we have 

r (ah,(aXI)-I(x).a(x) 
Jb(u) 

+h,(X) .aa(axl)-I(x»)dx 

= r a(h, (x)a(x»)(axl)-I dx = O. 
Jb(U) 

Thus (7.3) is equal to 

PI, r h, (x)dx 
Jb(U) 

= r h, (x)dx = r h, (y)dy. 
Jb(U) Jb(V) 

Case (1.2): We have 

6.(ylx) = 1 +u(g(1),g(K»)aa(axl )-I(x)sK. 
Noting the grade of aa(axl) -I(X)SK is zero, we can calcu­
late as follows: 

{f(y(x,s),7J(X,s»)6. (~) dx ds 

= r r {fM(X) + afM(aXI)-I(x)· a(x)sK}sM 
Ju M 

X (1 + u(g(1),g(K»)aa(ax l ) -1(X)SK)dx ds 

= {{h, (x)s/'+ah(axl)-I(x) .a(x)sK{K 

+ u(g( 1),g(K»)h (x)sKaa(ax l ) -I (x)sK}dx ds 

= PI, r {h,(X)+EI·ah(axl)-I(x)'a(x) 
Jb(u) 

+ EI ' u(g(1),g(K»)h(x)aa(ax l )-I(x)}dx, (7.4) 

where K = II - K and SKSK = EIS /,. By Proposition 3.10 
we have 
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a(h . a)(axl)-I(x) 

=u(g(l),g(1) -g(K»)ah(aXI)-I(X) ·a(x) 

+ hex) • aa(axl)-I(x), 

= u(g(K),g(1»)[ ah(axl)-I(x) . a(x) 

+ o1g(1 ),g(K»)h (x)aa(ax l ) -I(X)]. 

Hence by Proposition 4.7 we see that (7.4) is equal to 

r h, (x)dx = r h, (y)dy. 
Jb(U) Jb(Vl 

Case (2.1): LetM = (a; (x»), then 6. (ylx) = (detM)-1 
and 71/, = (detM)s/, from Definitions 3.3 and 3.9 of Ref. 4. 
Hence 

{f(y(x,s),7J(X,s»)6. (~) dx ds 

= {h' (x)7J/'(detM)-ldxds 

= {h' (x)s/'dx ds = Lf(y,7J)dY d7J. 

Case (2.2): First suppose lEK and let K' =K - {t}. 
Then we have 

6.(ylx) = [1 +u(g(1),g(K'»)a(x)sK']-1 

= 1 - u(g(1),g(K'»)a(x)sK' 

and the following equalities: 

{f(y(x,s),7J(X,s»6. (~) dx ds 

= r {rfM(X)SM + r (fM(X)SM Ju lEAl leM 

+ fM(X)a(x)sKsM,)} 

X [1 - u(g(1),g(K'»)a(X)SK']dx ds 

= { {h, (X)S/, + h' (x)a(x)sKsK 

- o1g(1),g(K'»)h, (x)sK'a(x)sK'}dx ds, (7.5) 

whereM' =M - {t},K=II -K,andK' =11 -K'.Since 
the grade of a(x)sK' is zero we have 

sK'a(x)sK' = a(x)sK'sK' = u(g(K'),g(1»)a(X)SKS K, 

and (7.5) becomes 

r h, (x)dx = r h, (y)dy. 
Jb(U) Jb(Vl 

Next suppose lEtK, Then 6. (ylx) = 1 and 

{f(y(x,s),7J(X,S»)6. (~) dx ds 

= r {rfM(X)sM + r (fM(X)SM Ju lEAl leM 

+ fM(X)a(x)sKsM')}dX ds 

= r h, (x)dx = r h, (y)dy. 
Jb(U) Jb(Vl 

Y. Kobayashi and S. Nagamachi 2255 



                                                                                                                                    

The proof is complete. 
Proposition 7.5: Let/and h be Gr+ I-functions and as­

sume that h has a compact support and a grade a. Then we 
have 

Lf(X) .ah(axi )-I(x)4dt 

= - o18'(i),a)L a/(axi) -I. h(x)dx dt. (7.6) 

Proof: When i is even, the equality 

aCfh)(axi)-1 =/. ah(axi)-I + oig(i),a)a/(axi) -I. h 
(7.7) 

holds. Since the top of.fh has a compact support, the in­
tegral of the left-hand side of (7.7) is zero and (7.6) follows. 

Next let ibe odd. By the additivity ofintegration we may 
supposethat/(x) = a(x)t M andh(x) = b(x)t K

• IfiEMnK 
then the tops of the both integrands in (7.6) are zero. If 
ieMnK then the right-hand side of (7.7) is zero by the proof 
of Proposition 6.8, and (7.6) follows. 

VIII. CONCLUDING REMARKS FOR FURTHER STUDIES 

In the present paper we have developed differential and 
integral calculus on generalized superspaces, whiclt will be a 
basis for deeper analysis of superfields. Except for Sec. II, we 
restrict the base field F to be the real field. An important and 
pressing problem is to extend our theory to the complex case. 

Let A be the algebra of supemumbers over R and let Ac 
= A 18 R C. No difficulty arises when we only extend the 

range of a function/eA U to Ac, where U is a domain in the 
real superspace X over A. A function geA g is right differen­
tiable at xoeX with respect to Xi if there is a constant aeAc 
such that 
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The integral of g is also defined in the same manner as we did 
in Secs. IV and VII. 

To extend the domain U to a domain in complex super­
space is not quite trivial. We need to introduce a suitable 
involution in the algebra of complex supemumbers. This 
will be discussed as one of the main themes of our next paper. 

In this paper integration is only defined for functions 
with compact support. For further studies of superfields it is 
important to consider integration for rapidly decreasing 
functions. It will be also treated in another paper. 14 

The consistency of integration proved in Sec. VII makes 
it possible to define integration for differential forms on 
(generalized) supermanifolds. We have a plan to write a 
paper about supermanifolds and differential forms on them. 
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It is demonstrated that the Liouville equation and the Cheng equation (describing a chemical 
reaction) are free from movable critical manifolds and possess the Painleve property. The 
associated linearizing transformations and general solutions follow naturally from the Painleve 
analysis. 

I. INTRODUCTION 

In recent times, the Painleve property for partial differ­
ential equations (POE's) has drawn much attentionl-7 ei­
ther in the original sense of Ablowitz, Ramani, and Segurl or 
in the generalized form of Weiss, Tabor, and Carnevale.4 In 
the latter approach, a POE is said to possess the Painleve 
property if its solution can be expressed as a single-valued 
expansion about a noncharacteristic singular manifold4 

fP(x,t) = O. In the present note, we discuss the Painleve 
property and Backlund transformations for the Liouvilles 

and Cheng9 equations. Consequently, the linearizing trans­
formations and the general solutions are shown to follow 
automatically. 

II. THE LIOUVILLE EQUATION 

First, we consider the Liouville equationS 

Uxt -e" = O. (1) 

Under the transformation 

U = log V, (2) 

(1) becomes 

VVxt - VxVt - V 3 =0. (3) 

We now look for solutions of (3) in the form 
00 

V = fP a L Jj fl'J, ( 4) 
J=O 

where Jj and fI' are analytic functions of (x,t) in a neighbor­
hood of the singularity manifold fI'(x,t) = 0, and a is a nega­
tive integer, to be determined. Inserting V z V cIP a in (3), by 
leading-order analysis, we find that a = - 2 and 

Vo = 2fPxfPt. (5) 

Substituting (4) in (3) and equating the coefficient of fl'J - 6 

to zero, we get 

(6) 

and so the resonance values arej = - 1, 2. The resonance 
j = - 1 corresponds to the arbitrariness of the manifold 
fI' = O. Atj = 1, we find that 

VI = - 2fPxt. (7) 

Also, we observe that atj = 2 the resulting equation is satis­
fied identically and so V2 is arbitrary. Thus ( 1) possesses the 
Painleve property. 

By cutting off the series (4) at the constant level term 

( Jj = 0, j> 3), we find the Backlund transformation in the 
form 

V = (2fPxfl'JfI' 2) - (2fPxt/fI') + V2, 

where both Vand V2 satisfy (3) and 

fl'xfl'; V 2x + fI' !fI't V2t 

+ (2fPxfl'tfl'xt - fI' !fI'tt - fI' ;tfl'xx) V2 

(8) 

- fl'tfl'xxfl'xtt - fl'xtfl'xxfl'tt - fl'xfl'tfl'xxtt = 0, (9) 

fl'xfl't V 2xt - 2fPxtfl't V 2x - fl'xfl'tt V 2x 

- 2fPxfl'xt Vlt - fl'tfl'xx Vlt 

+ (fI'xxfl'tt + 2f1'xxtfl't - 4rp!t + 2fPxfl'xtt) V2 

- 3f1'xfl't V~ + 2fPx,fI'xxtt - 2fPxx,fI'x" = 0, (10) 

and 

(11 ) 
hold. 

When we consider the vacuum solution4 V2 = 0, it easi­
ly can be shown that the admissible solution to (9 )-( 11) is 
given by 

fl'x, = O. 

Consequently by (2), (8) becomes 

U = log(2fPxfl',/fI' 2), 

(12) 

(13) 

where fI' satisfies the linearized wave equation (12). From 
( 12) and (13), we infer that the transformation (13) maps 
the solution of the linearized wave equation to a solution of 
the Liouville equation. Moreover, the general solution to 
(12) is fI'(x,t) =g(x) + h(t), whereg and h are arbitrary 
functions of x and t, respectively, and so (13) becomes 

U = log(2gxht/(g + h)2), (14) 

which is the known general solution of the Liouville equa­
tion lO (1). 

A similar analysis can be performed for the Dodd-Bul­
lough (DB) equation Uxt = e" - e - 2", which can be rewrit­
tenas VVxt - Vx Vt - V 3 + 1 = 0, using (2). The dominant 
behavior is given by a = - 2 and Vo = 2fPxfl't' The reson­
ances are againj = - 1,2 and we find that the DB equation 
possesses the Painleve property. However, we notice that it 
does not admit the linearizing transformation in the sense 
discussed earlier, due to the constant term on the left-hand 
side. 
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III. A CHEMICAL REACTION EQUATION 

Next, we consider the Cheng equation9 

Ux = - auv, Vt = bux, (15) 

where a and b are constants, corresponding to the dynamics 
of the photosensitive molecules when the light beam passes 
through them. We expand 

00 00 

U = L Ujcpj-I, V = L Vjcpj-I (16) 
j=O j=O 

and find from the leading-order analysis that 

Uo = (l/ab)cpo Vo = (1la)cpx' (17) 

We further find that resonances occurin (16) at j = - 1, 1. 
Substituting (16) in (15), and equating the coefficients of 
(cp - I, cp - I) to zero, we obtain two equations, the first one 
being 

(CPxt1ab) + CPxUI + (cpt1b)vI = 0, (18) 

while the second equation is identically zero. This implies 
that either the function U I or VI is arbitrary. Thus the system 
(15) possesses the Painleve property. 

As in the previous example, we find the Backlund trans­
formation in the form 

U = (1lab)(cpt1cp) + U I, v = (l/a)(cpx1cp) + VI' 

(19) 

where (u,v) and (UIV I ) satisfy (15) and 

~ (:; + CPxUI + :t VI) = 0, (20) 

which is identically satisfied because of ( 18). Now, consid­
ering the vacuum solutions U I = Oandv i = 0, from (20), we 
arrive at exactly the same linearized wave equation (12). 
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This allows us to write the general traveling wave solutions 
of (15) from (19) in the form 

1 ( ht ) 1 ( gx ) 
U = -;;;; g(x) + h(t) , V = -;; g(x) + h(t) , 

(21) 

where g(x) and h(!) are arbitrary functions discussed in 
Sec. II. Solution (21) is indeed the general solution derived 
by Cheng9 from his analysis for ( 15). 

Here, we have constructed the linearizing transforma­
tions and solutions of ( 1) and (15) in a rather simple and 
straightforward manner, from the Painleve analysis. 
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The cohomology problem ofthe overall local symmetry group oftheories with external gravity, 
including diffeomorphisms, local Lorentz, and gauge transformations, is studied, in order to 
determine all possible anomalies. To this end the nontrivial cohomology classes of the coupled 
system of two coboundary operators are classified in the abstract. Using this result and a technical 
assumption the nontrivial cohomology classes of the coboundary operator associated with 
diffeomorphisms are determined. These possible anomalies split in any dimension into two 
distinct families. Both are calculated (the second only in four dimensions). Using known results 
about gauge and local Lorentz anomalies, the possible anomalies of the overall local symmetry 
group are determined. 

I. INTRODUCTION 

The recent rise of interest in anomalies has produced a 
better knowledge of the geometrical and algebraic origins of 
chiral anomalies 1 and has permitted us to assimilate the 
known gravitational anomalies2

-4 partly to Lorentz gauge 
anomaliess and partly to Weyl anomalies. 6 

Unfortunately we do not have yet a general argument 
that suggests that these are the only possible anomalies. 

In this paper we tackle the problem of finding all possi­
ble anomalies of the group of diffeomorphisms in a theory 
including (external) gravity. We use cohomological (or 
consistency) methods,7-1O so that possible anomalies are 
represented by nontrivial cohomology classes of the co­
boundary operator corresponding to general coordinate 
transformations. This problem has been recently investigat­
ed also by Bandelloni. 11 

Before we tum to the results of this paper we must clear­
ly specify our program. For the sake of manageability the 
differential space the coboundary operator acts upon· has 
been restricted in this paper to be the space F of local func­
tionals, which are integrated polynomials of the connec­
tions, gauge fields, matter fields, vielbeins, and inverse viel­
beins (see the exact definition at the beginning of Sec. IV). 
This space includes all known actions and anomalies, while 
it excludes Bardeen-Zumino-type actions. 5 

In this way we are able to solve completely the cohomo­
logy problem, i.e., to find all the nontrivial cohomology 
classes in the space F. Of course we cannot exclude the exis­
tence of other nontrivial cohomology classes not contained 
inFo 

With the above limitation in mind, our results are speci­
fied by Theorem 4.1, which holds in any space-time dimen­
sion and gives the first family of nontrivial cohomology 
classes, and by (5.40), i.e., the second family. The latter is 
calculated in four dimensions. 

These results are quite general since we include in our 
analysis all fields appearing in a theory with gravity, i.e., the 
vielbeins, inverse vielbeins, connections, gauge fields, and 
matter fields; moreover, they are valid also in the presence of 
torsion and for nonmetric connections. The only limitation 

concerns the fact that we have assumed the conventional 
point of view of a field theory defined on a chart rather than 
globally defined in some manifold, therefore we have not 
worried about the objects we have used being globally de­
fined. 

The previous results, however, must be considered as an 
intermediate step in our program. Indeed, (1) we must ver­
ify whether we can eliminate the nontrivial cocycles we have 
found by means of Bardeen-Zumino-type counterterms, as 
is the case for Eq. (5.40) and for the first family above; and 
(2) we must compare diffeomorphisms with other symme­
tries of the theory, since, by subtracting counterterms from 
the quantum action, we may violate other symmetries. 

In fact, in the present papers we do not limit ourselves to 
studying the cohomology of diffeomorphisms. We study the 
cohomology of the most general (local) symmetry group of 
a given theory with (external) gauge and gravitational 
fields. This is motivated by the trivial fact that the (one­
loop) Ward identities corresponding to symmetry transfor­
mations of the classical theory can be written as a unique 
Ward identity 

A 

where r is the vertex generating functional and l: is the sum 
of all functional operators generating the symmetry trans­
formations. Once the group parameters become FP ghosts 
( see Sec. II), endowed with the specific transformation laws 
that express the associativity of the overall symmetry group 
transformations, l: becomes nilpotent, and we can study the 
relevant cohomology. This cohomology accounts for the re­
lations among cocycles generated by distinct Ward identi­
ties. For the purpose of studying this coupled cohomology 
we have proved Theorem 3.1, which classifies the nontrivial 
cohomology classes of the sum of two coboundary operators 
in terms of the cocycles of each. 

It turns out that our results on diffeomorphisms togeth­
er with well-known results about Lorentz and gauge anoma­
lies are sufficient to determine the nontrivial cohomology 
classes of l:. From the latter we can extract all possible 
anomalies of a gauge theory coupled to gravity in four di-
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mensions. They are simply the usual gauge anomalies and a 
mixed U(1)-gravitational anomaly, which can take several 
different forms (see the end of Sec. VII). In particular, the 
cocycle given in Eq. (5.40), which is nontrivial in the space 
F, is not an anomaly in four dimensions since it can be can­
celed by a Bardeen-Zumino counterterm. 

The article is arranged as follows. Section II is devoted 
to definitions, notations, and conventions. In Sec. III we 
prove the above-mentioned classification theorem and ana­
lyze a few general consequences. In Sec. IV we determine the 
first family of anomalies of the diffeomorphisms; Sec. V is 
devoted to the second family. In Sec. VI we comment on the 
results found in Sees. IV and V. Finally in Sec. VII we deter­
mine the cohomology of the overall symmetry group, includ­
ing diffeomorphisms and local Lorentz and gauge transfor­
mations. 

II. NOTATIONS AND CONVENTIONS 

For any local symmetry group S of a classical theory 
with infinitesimal parameters EAa (x) (a = t, ... ,N) we shall 
introduce a coboundary operator l:s in the following way. 
Let us denote by f{),-qJ, + {jsf{), (f{),A.) the local infinitesi­
mal transformation on the generic field f{), of the theory. 
This transformation is operated by the functional operator 

Is = r {jsf{),~, Jx {jf{), 

where the summation over r is understood. Let us consider 
now the A a 's as anticommuting fields (FP ghosts) and en­
dow them with a transformation property: 
Aa (X)-+Aa (x) + {jsAa (x). Then we introduce the opera­
tor 

l:s = {jsA a(x) + l:s. i {j-

x {jAa(X) 
(2.1 ) 

There is a choice of {jsAa (x) such that 

l:~ = O. (2.2) 

This is what we refer to as the coboundary operator corre­
sponding to the symmetry S. The choice of {jsAa , which 
renders l:s nilpotent, is dictated by the geometry of the 
group S (see Ref. 9): the A a are to be assimilated to the 
Maurer-Cartan form on S and the {jsA a,s express the 
Maurer-Cartan equation. When we want to indicate expli­
citly the dependence ofl:s on theghostAa , we shall writel:~ 
instead of l:s. 

The coboundary operator l:s can be defined also when 
the symmetry S is global. In that case the FP ghosts are 
constant anticommuting parameters. 

The invariance of the classical action I under the sym­
metry Sis 

l:sI = O. (2.3) 

For the quantized theory it implies the Ward identity (WI) 

l:sr = "As + 0(fz2), (2.4) 

where r is the vertex generating functional. For the pur­
poses of this paper it is enough to limit ourselves to one-loop 
order and to the case of external ghosts. Here As is a local 
functional of the fields and their derivatives; it is linear in A a 
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and of mass dimension equal to the space-time dimension n, 
if dim A a is determined in such a way that dim l:s = O. 
Moreover, as a consequence of Eqs. (2.2) and (2.4), As 
satisfies the consistency condition 

(2.5) 

i.e., As isa cocycle ofl:s . In general, As isa sum of in de pen­
dent cocycles A~). Ifthere exists a local functional C(I) inde­
pendent of A a such that 

A~) = l:sC (i), (2.6) 

A~) can be adsorbed through a redefinition of r. If 
A~)=I=l:sC, (2.7) 

for any local functional C, the symmetry is broken at the 
quantum level. 

In quantum field theories where all fields have canonical 
dimensions > 0, As and A~), C(i), and C in Eqs. (2.5), 
(2.6), and (2.7) are integrals of local polynomials of the 
fields and their derivatives. In theories containing fields with 
vanishing canonical dimensions this fact is not as obvious. 
Anyway, in this paper, we shall investigate only the cocycles 
A~) of the relevant coboundary operator l:s in the space of 
P-functionals. For theories involving gravity, P-functionals 
will be defined at the beginning of See. IV. Here A~) is a 
coboundary if it satisfies Eq. (2.6), where C(i) is a local P­
functional independent of Aa (local action). If Eq. (2.7) 
holds for any local action C, A~) is a nontrivial cooycle 
(which we call an a-cocycle). 

It is among these a-cocycles that we must look for anom­
alies according to the program explained in the Introduc­
tion. 

As anticipated by the terms we have used, Eqs. (2.5)­
(2.7) set up a cohomological problem. Indeed a differential 
spacel2 is defined by the couple formed by the vector space of 
P-functionals and by the nilpotent operator l:s acting on.it. II 

The problem consists of determining the cohomology 
space, that is, the set of nontrivial cohomology classes, each 
being identified by a-cocycles that differ from one another by 
coboundaries. In this paper we shall be concerned with this 
problem for the coboundary operators listed below, leaving 

A 

aside the question of whether there exists a renormalized r 
that actually generates the a-cocycles. We shall comment on 
this question in Sec. VI. 

We are interested in the cohomology problem for the 
Lie algebras of the group of diffeomorphisms D with param­
eters 51 (x), the group oflocal Lorentz transformations L on 
the tangent space with parameters u: (x) and a generic 
gauge group G with parameters Aa (x). According to the 
above recipe the parameters become anticommuting ghost 
fields with transformation laws: 

{jDS/=Spaps/, (2.8) 

{jLU~ = - u~u~, (2.9) 

{jGA a = - Va.BYA.BA Y, (2.10) 

where the ja.BY are the structure constants of the gauge 
group. The field transformation laws are the usual ones. We 
only write down the transformation law for D relative to the 
affine connection r~n for the sake of stating the sign conven­
tions 
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I - I I 6Dr mn =6Dr mn +am a"s, (2.11) 

where 6 D denotes the transformation of r considered as a 
covariant tensor. Then, according to Eq. (2.1), we define the 
coboundary operators 1'.D' 1:L , and1'.G and denote by AD' 
I1L' and I1G the relative cocycles. 

In theories that, classically, are simultaneously D-, L-, 
and G-invariant, the relevant coboundary operator is not 
each operator 1'. D' 1'. L , or 1'.G separately, but the sum 

1'. =1'.D +1'.L + 1'.G' (2.12) 

Thus 1'. is nilpotent, 

1'.2=0, (2.13) 

provided that the ghosts u: and A. a are considered as scalar 
fields (with weight 0) under D.The appropriate modifica­
tion of 1'. D is understood. 

The cohomology of 1'. is determined on the basis of the 
cocycles of the various operators with the addition of impor­
tant restrictive conditions (see the next section). 
_ For later use we introduce also the subgroups D A. and 
D A. of D. Here D A. is the group GL( 4R) whose infinitesimal 
parameters are obtained by specialjzing S (x) to s';(x) 
= Xl a'f', where a'f' are generic constants and 15 A. is the sub-

group SL( 4R) of D A. , whose infinite$imal parameters satisfy 
the traceless condition a~ = O. We define corre$pondingly 
two coboundary operators 1'. A. and! A by promoting a'f' to 
anticommuting (constant) ghosts with the transformation 
law 

(2.14 ) 

and the same law for!A.' Since a theory that is classically D­
invariant is also classically D A -invariant (D A. -invariant), it 
makes sense and proves useful to define a coupled cobound­
ary operator 1'.D + 1'.A. (1'.D + !A.), which is indeed nilpo­
tent provided that we postulate the following obvious cross­
transformation laws: 

1'.A.S m = x1a7 a"sm + s"a,:, 1'.Da'f' = 0, 

and the same for IA.' 

III. THE COUPLED COHOMOLOGY PROBLEM 

(2.IS) 

While studying the cohomology of !. D and that of I 
(Eq. (2.12)], we are faced with the problem of finding the a­
cocycles of a coboundary operator that is the sum of two 
coboundary operators in terms of the cocycles of the latter. 
Therefore, in this sectiOn, we solve this problem in general. 

Let Sand R be two sy~metries and1'.s and1'.R be the 
relative coboundary operators. Let us define the mixed co­
boundary operator 1'.s + i R, (Is + 1'.R )2 = O. The cocy­
clesof1'.s +1'.R havetheforml1s + I1R' wherel1s (I1R) is 
a cocycle of1'.s (1'.R)' Indeed the consistency condition 

(1'.s +1'.R )(l1s + I1R) = 0 (3.1) 

implies, in particular,!. S 118 = 0 and 1'. R 11 R = O. Given I1s, 
a I1R satisfying Eq. (3.1), ifit exists, is defined up to cocycles 
XR of1'.R satisfying the condition 1'.SXR = O. We remark 
that such XR's are cocycles of1'.s +1'.R' The only (up to 
coboundaries) I1R such that I1s + I1R belongs to a definite 
cohomology class of1'.s +1'.R is called the R-partner of I1s. 
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We shall say that an a cocycle of1'.s is admissible if it has 
an R-partner. 

For the sake of conciseness, let us introduce the concept 
of an S-symmetry-preserving a-cocycle of1'.R' briefly, an S­
a-cocycle of1'.R' By this we mean a cocycle I1R of1'.R that 
satisfies the following condition: 

1'.sl1R = 0 and I1R ;i:1'.RC, 

foranyCs.t.1'.sC=O, (3.2) 

S-a-cocycles and a-cocycles do not, in general, coincide. 
Now we classify all the a-cocycles of1'.s +1'.R accord­

ing to the characteristics of the cocycles I1s. 
Case (1 ). I1s is an a-cocycle of 1'. s: 1'. s I1s = 0, 

I1s;i:1'.sC, VC. 
(Ia) 1'.R I1s = O. In this case I1s is an a-cocycle of 

1'.s +1'.R· 
(Ib) 1'.R I1s ;i:0. Among all these I1s we look for lin­

ear combinations As for which an R-partner ~R exists. 
If such a ~s exists then ~s + ~R is an a-cocycle of 
1'.s + 1'.R· 
Case (2).l1s is a coboundary of1'.s: I1s = 1'.sC. In this 

case an R -partner AR certainly exists. However it may occur 
that1'.R C:: I1R + XR. It follows that (1'.5 +1'.R )XR = O. 
Th~efore I1R is a cocycle of (1'.s + 1'.R) and in particular 
1'.sl1R = O. 

(2a) XR = O. Then I1s + I1R is a coboundary of 

1'.s + I R • 

(2b) XR;i:O and XR ;i:1'.R C, VC. Then both 
I1R + I1s and XR are a-cocycles of1'.s + I R. They be­
lon~ to the same cohomology class, for I1s + I1R 
+ I1R = (1'.s + 1'.R )C. 

(2c) XR ;i:0 and XR =1'.R C for some C. 
(2cl) 1'.sC = O. Then both I1s + I1R and XR are 

coboundaries of1'.s + 1'. R . 
(2c2) 1'.sC ;i:O.l1s + I1R andXR area-cocyclesof 

1'.s +1'.R belonging to the same cohomology class. 
We summarize the results obtained as follows. 
Theorem 3.1: The nontrivial cohomology classes of 

1'.s + 1'.R are uniquely determined (I) by the lin~ combi­
nations of a-cocycles of1'.s that admit an R-partner and by 
the relative R-partners, and (2) by the S-a-cocycles of1'.R 
(with vanishing S-partners). 

The next coronary follows immediately. 
Corollary 3.2: If!.s does not have nontrivial cohomo­

logy classes, the only admissible a-cocycles of I R are the S­
a-cocycles. 

This corollary expresses, in general, the relation 
between absence of anomalies in a given WI and exactness of 
the corresponding symmetry. Otherwise stated it says that 
disregarding S-symmetry violating P-functionals and local 
actions implies only the loss of coboundaries of1'.s + 1'.R' 

Remark 3.3: In Theorem 3.1, we can reverse the role of 
Rand S. Then it is easy to realize that the nontrivial cohomo­
logy classes of1'.s +!.R fall into three different groups: the 
first is determined by the S-a-cocycles of!. R (with vanishing 
S-partners), the second by the R -a-cocycles of1'.s (with van­
ishing R-partners) and the third by a-cocycles of1'.s whose 
R -partners are a-cocycles of I R • 

Remark 3. 4: Let us particularize the above results to the 
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case when R is a subgroup of S. We denote by A ~ (x) the 
restriction of the infinitesimal parameters A a (x) of S to R. It 
is useful to consider Rand S as independent groups. Thus 
when promoting A and A R to ghost fields we shall consider 
them as independent. In the few cases we are interested in, in 
the next sections, it turns out that if we set 

l:~AR = 0, l:~RA = l:;RA, (3.3) 

we can define the coupled coboundary operator l:s + l:R' 
Now, we can apply Theorem 3.1, but, in this case, we can get 
more independent information. Indeed, if As = fAa is a co­
cycle of l: s, then A R = fAR a is a cocycle of l: Rand 

(l:s + l:R )(As + AR ) 

= (l:s + l:R) f(A +AR)a = l:; + A.Rf (A +AR)a = O. 

Therefore both As and AR are admissible. This remark will 
be used in the next section. 

IV. THE COHOMOLOGY OF DIFFEOMORPHISMS: THE 
FIRST FAMILY OF s-COCYCLES 

First of all we specify the vector space where the co­
boundary operator l: D operates. It is the vector space F of P­
functionals, that is, of integrated local polynomials of the 
vielbeins, inverse vielbeins, connection, and all the other 
fields involved and their derivatives, with canonical dimen­
sions equal to the space-time dimension n (dim sm = - 1). 

Sincel:DFCF, the couple (l:D,F) is a differential space 
in which the cohomology problem can be consistently de­
fined. We remark that Fincludes all the known actions used 
in field theories and all known anomalies. However F does 
not include Bardeen-Zumino-like actions [see Eqs. (6.3) 
and (7.3)]. This feature implies that nontrivial cohomology 
classes of l:D in F cannot be identified immediately with 
anomalies, as explained in the Introduction. However, it has 
the advantage that we can solve the cohomology problem 
completely. This is what we want to show in this and the next 
section. 

A word of caution is in order (even though it is rather 
obvious): with our procedure we miss possible nontrivial 
cohomology classes not belonging to F. 

Before proceeding we need another specification about 
locality. On a general ground, we should start from the coho­
mology of l: D in the space of P-functionals containing also 
powers of the coordinates xm. However, as is shown in Ap­
pendix A, rigid translations do not have nontrivial cohomo­
logy classes. Due to Corollary 3.2, this allows us to study the 
cohomology in the space of local P-functional F. Therefore, 
from now on we shall refer to the local cohomology. 

We shall proceed by analyzing first the cohomology of 
l: A and I A • This allows us, in general, to delimit the possible 
form of the cocycles of l: D and, in particular, to find a set of 
a-cocycles ofl: D that is present in any space-time dimension. 

This is the content of the present section and the rel­
evant results are summarized in Theorem 4.1. The remain­
ing part of the analysis is restricted to four dimensions and is 
carried out in Sec. V. 

The cohomology of l: A is analyzed in Appendix B. The 
most general admissible form of a cocycle is 
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A = fan (~~ C I, ••• I, w mkl ... kr ) (4.1) 
LlA m ~ ~ kJ,··k, anlt, .. ls ' 

r,s kl, .• k,. 
11, •• 1. 

where the wa~~::t are local polynomials of the fields and 
their derivatives of D:4 weight w where the world indices not 
appearing explicitly are understood to be saturated, and 

f=fdD x. The C t~k, are numerical coefficients not contain­
ing constant tensors. Moreover, the summations over rand s 
are finite. There exist many solutions of the consistency con­
ditions l:A AA = O. They correspond to coboundaries of l:A 
except for the case r = s = O. 

In this case 

where w is the D A -weight of ai:' (not to be confused with the 
D-weight). 

The consistency condition is 

l:A AA = l:A f am nan m 

= f( - am Pap nan m + (w - 1) a/am nan m) = 0, 

which can only be satisfied if ai:' = bi:'a. It is easy to see that if 
wi= I, AA is a coboundary, while for w = I, it is an a-cocycle. 
Therefore the a-cocycles of l:A have the form 

AA = a/fa, (4.2) 

where a is a scalar with w = 1 under D A • 

The first consequence is that IA does not have a-cocy­
cles. Therefore, from Corollary 3.2, it follows that the a­
cocycles of l: D must be D A -preserving. Of course, the same 
holds also for the a-cocycles of l: L and l:G' Moreover, since 
the operator analogous to IA in the tangent space does not 
have a-cocycles either, we are entitled from now on to re­
strict our study to P-functionals in which both world and 
tangent space indices are completely saturated. However the 
cohomology of l:A tells us much more, provided that we 
remember that DAis to be considered as a subgroup of D. 
Therefore the relevant a-cocycles are those admissible with 
respect to the cohomology l:A + l:D' 

Now we want to relate these cocycles to the a-cocycles 
of l: D in order to extract information about the latter. To this 
end let us write the generic cocycle of l: D as 
AD = SSm (x)Om (x). Then the ~ndition IA AD = 0 im­
plies 

IAom = xh/ anom + am nOn· 

As a consequence 

l:Aom = Xlal n anom + am nOn + wa/om• (4.3) 

where w is the D A -weight of om' Now let us consider the 
coupled cohomology l:A + l:D' We apply Theorem (3.1) 
with D A in the place of Sand D in the place of R. Then we 
have two sets of a-cocycles of l: A + l: D • 

( 1) The first set is determined by the a-cocycles AA of 
l:A givenbyEq. (3.2) that admit aD-partner. Let us look for 
aD-partner AD = fsmom for each ofthese AA 's: 
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= -al:ID fa+ (w-l)alfSmOm =0, (4.4) 

where Eqs. (2.15) and (4.3) have been used. We remark 
thatEq. (4.4) can be satisfied only when w = 1. For, ifw# 1, 
it implies that acting with :I D on Sa (a has D A. -weight 1), 
one gets aP-functional with weight w# 1, which is impossi­
ble (see the beginning of the next section). Therefore w = 1 
and 

(4.5) 

(2) The second set is determined by the D A. -a-cocycles 
of:ID, 

0= (:It! + :ID) fsmOm = (w -l)a:fsmOm, (4.6) 

which can only be satisfied ifw = 1. 
Conclusion: The admissible a-cocycles of:ID have D A.­

weight 1 and the admissible a-cocycles of:IA. must satisfy 
Eq. (4.5). 

Now, if SSm Om is ana-cocycle of:ID, it is an admissible 
cocycle w.r.t. :It! + :ID , due to Remark 3.4. This implies 
that its D A. -weight w is 1. On the other hand, Sx/ aiom is 
certainly a cocycle of :It! (see Remark 3.4), i.e., 

l:A. fx/a/mOm 

= - fxh/mamP'bp + (1- w) fx/a/mapP'bm = O. 

Since w = 1, 

fx/a/mamPOp = O. (4.7) 

This equation can be satisfied only if 

Om = - am 0 + ap, ap, bP,!', (4.8) 

where 0 is not itself a derivative. Again, since alSo must be an 
admissible cocycle it must satisfy Eq. (4.5). This equation 
implies, in particular, that 0 has D-weight 1. Thus we have 
proven the following theorem. 

Theorem 4.1: The most general a-cocycle of:I D has the 
form 

flD = f (ams mo + ap, ap,S mbP,!') , 

where 0 is a D-scalar density with D-weight 1 (and is not a 
derivative), and ~,p, is aDA. -tensor with D A. -weight 1 with 
explicit form to be further determined. The 0 and ~,p., define 
the first and second family of a-cocycles of:ID . 

V. THE COHOMOLOGY OF DIFFEOMORPHISMS: THE 
SECOND FAUlL Y OF s-COCYCLES 

So far the analysis has been carried out without any di­
mensional restriction. However, in order to derive the ex­
plicit form of the a-cocycles of the second family, we must 
find all the solutions of the consistency equation of the form 
sap, ap,smbP';;'. Although the method we are going to use 
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can certainly be generalized to n dimensions, in this paper we 
shall limit ourselves to four dimensions. 

It is well known that a general connection splits into a 
metric connection plus a nonmetricity tensor. However, in 
order to find a very general solution (applicable also to 
gauge theories) we forget in this section the relation between 
metric and connection and treat them as uncorrelated fields. 
We shall study the implications of this relation in the next 
section. With this proviso the only possible a-cocycles we 
find are specified by Eqs. (5.10), (5.26), and (5.40). In the 
next section we shall show that the cocycles of Eqs. (5.10) 
and (5.26) arecoboundaries (in F), whileEq. (5.40) is not. 
For the sake of simplicity we drop the cautionary adjective 
possible throughout this section. 

First let us write bP';;' in such a form as to exhibit an 
unambiguous separation between the covariant and the non­
covariant parts. To this end let us remark that any D A. -tensor 
with D A. -weight w can be written as a polynomial of r's (r 
denotes r~n) with D-covariant coefficient of D-weight w. 
For example, whenever we come across a covariant deriva­
tive D m applied to aD-tensor T with D-weight w, we intro­
duce the derivative 15m = Dm - wr~/; 15m Tis D-covariant 
with D-weight w. In conclusion, in four dimensions, we can 
write bP';;' as follows: 

b = BI + rB2 + rrB3 + rrrB4 

+ arBs + r arB6 + aarB7 , (5.1) 

where all the indices are understood (for instance, arBs 
means as, r;,s,Bs~,p,~,S,S,) and the B; (i = 1, ... ,7) are covar­
iant D-tensors of D-weight 1. Since we wish to discriminate 
between covariant and noncovariant parts, we split r as fol­
lows: r = f + T, where f is the symmetric part of rand T 
is the torsion tensor. Since Tis covariant we can absorb it in a 
redefinition of the coefficients B;. We suppose that this has 
already been done and that r appearing in Eq. (5.1) and in 
the remaining part of this section is actually f. 

Moreover, consider, for example, the term Bs. If it is 
antisymmetric in, say, SI and S3' then using the definition of 
the curvature, we can absorb this term into Bland B3 • There­
fore, in order to avoid ambiguities (and without loss of gen­
erality), we assume Bs to be completely symmetric in S I' S2' 

and S3' The same remark applies to B6 and B7• 

As a second preliminary step, let us split l:D into two 
functional operators: 

l:D = :I~ + i D • (5.2) 

Here :I~, when applied to a monomial ofthe fields and their 
derivatives with given weight (and with saturated or unsatu­
rated world indices), transforms it as l:D would if the mono­
mial were a covariant tensor with the same indices and the 

A 

same weight. Then l:D is defined by Eq. (5.2). In particular, 
we have 

A / a / l:Dr m n = am nS, 

'" / :ID am ant = 0, 

iD a/S m = - a/S p apS m, etc. 

One can prove that 
"'2 :ID = O. 
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A 

In general, unlike :I D, :I D does not commute with the oper-
ation of differentiation, except in special cases. For instance, 
it does commute with the exterior derivative d applied to 
forms without external indices (see below). 

It is also convenient to use the language of differential 
forms. Let us denote by QJ,PJ,R J, ... j-forms whose compo­
nents are polynomials of the fields and their derivatives with 
ghost number i. Then 

:IDfQl=~DfQl, :IDfQ~=~DfQ~· (5.5) 

This shows that cocycles and a~ocycles of :I D are cocycles 
anda-cocycles, respectively, of:ID and vice versa. Therefore 

~ 

from now on we shall use only :I D • 

Let us return to the cocycles of the second family: 

aD = f ap, ap2smIf,,;"2=f Q L ~DaD = O. (5.6) 

This implies that there exists a three-form Q i such that 

iDQ1=dQL (5.7a) 
A 

where d represents the exterior derivative. Applying :ID to 
this equation and using Eq. (5.4), we get iDdQi = O. As 
RCeviousl~ stated in this and the following cases, 
:IDd = d:ID. Therefore using the local Poincare lemma9 we 
can conclude that 

iDQi =dQi, 

for some Q ~. Similarly 

A 3 4 
:IDQl =dQl' 

iDQi =dQ~, 
iDQ~ =0, 

for suitable Q J . 

(5.7b) 

(5.7c) 

(5.7d) 

(5.7e) 

It is easier to solve Eqs. (5.7) with high ghost number 
than those with low ghost number. Therefore whenever pos­
sible, we try to reduce our problem of finding the a-cocycles 
of i D of the type Q 1 to the problem of finding the a-cocycles 

A 

of:I D of the type Q ~, Q ~, etc. The method essentially con-
sists in looking for a complete and reasonably simple classifi­
cation of the solutions ofEq. (5. 7a). As we shall see, a simple 
classification is provided by the solutions of 
iD(Ql-dP~) =0 and ~D(Qi -dPi) =0, which are 
specified by Theorems 5.1 and 5.4 below. What is left out 
from this classification can be determined easily through a 
direct calculation. Both theorems are divided into a part I 
and a part II. Although only the first parts are essential for 
our final results, we prove part II for reasons that will be 
clear shortly. 

First selection: Let us consider the cocycles aD of Eq. 
(5.6) that satisfy the equation 

iD(Ql-dP~) =0, (5.8) 

for some three-form P ~. Let us separate the possible P ~ 's 
into two classes A and B, according to the following distinc­
tion: a polynomial or form is class A if it contains only aas or 
higher derivatives of S, while it is class B if it contains at least 
one factor S or as. 

Theorem 5. J: 
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Part L' The cocycle aD ofEq. (5.6) is a coboundary if 
and only if Q 1 satisfies Eq. (5.8) for some class A P ~ . 

Part fL' If Q 1 satisfies Eq. (5.8) for a class B P L then 
either it is one of the coboundaries of part I or it is an a­
cocycle having the form 

(5.9) 

where KI is a noncovariant polynomial tensor. The orily ex­
aQlple, up to coboundaries, is the following: 

aiJ> = f Tr(A)Tr(dr)Tr(dr). (5.10) 

Here we have introduced the matrix notation 13 

A for the 4X4 matrix A::' = amS n
, 

r for the 4 X 4 matrix I-form r::, = rim dx/. 
Proof of part L' If P ~ is class A, then the necessary condi­

tion is obvious since aD being a coboundary means 

Ql =iDP~ +dPL 

for suitable P~ and P ~. Then Eq. (5.8) is a consequence of 
Eq. (5.4). That the condition is sufficient is proven in Ap­
pendix C. 

Proof of part fL' In order to prove the second part of the 
theorem (and for later use) it is convenient to introduce the 
following notation: for any p-form (() in an n-dimensional 
space, whose components (()i, ... i

p 
are polynomials of the field 

and their derivatives, let us call dual polynominal tensors the 
quantities 

(5.11 ) 

where £i, ... i. is the constant completely antisymmetric tensor 

(with weight 1). When a metric is defined, the (;/P+ J ••• i. are 
the components of the form dual to ((),14 with all the indices 
raised. To d(() there corresponds a dual polynomial tensor 

This correspondence is obviously one to one. 
Using the dual tensors and remembering the form of Q 1 

[Eq. (5.6)], we can rewrite Eq. (5.8) for a class B P ~ as 

~D(ap, ap,smIf,,;"2 - a/(siC~ + ams iD '('I») = 0, (5.13) 

where ~1P2 is given by Eq. (5.1) and C and D have analogous 
expressions. Due to the transformations (5.3), Eq. (5.13) 
implies in particular 

a/c~ =0. (5.14) 

It follows that 

C: =apcfP, (5.15) 

with C r antisymmetric in I and p (this is nothing but the 
Poincare lemma applied to the dual tensors). Then 

a/ (SiC~) = ap (a/siCr). (5.16) 

Therefore C: can be absorbed into D ;,,1 and we can drop it in 
Eq. (5.13). The latter implies, now, that either 

(5.17) 

or 

(5.18) 
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Arguing as above, we can absorb D '('I into ~IP2 if Eq. (5.17) 
is satisfied. IfEq. (5.18) holds, we have 

apo ap2S miDoPj'2 - al ams miDK 1_ ams miD alK 1= o. 
(5.19) 

~D(BI_KI) =0, 
(5.20) 

which means that alK I and B I - K I are invariant and covar­
iant, respectively, with weight 1. Here B I - K I identifies a 
coboundary (see part I), and B I = K I, with alK I invariant, 
represents a distinct solution, 

f al amSmK I = - f amS m aIK I, (5.21) 

which is a coboundary (already found in part I) if KI is 
covariant, since 

f alamSmK I = iD f ri:,KI, 

and is an a-cocycle if K I is noncovariant. 
Corollary 5.2: Q! is a coboundary if and only ifthe cor­

responding Q~ defined by (5.7a) satisfies the condition 

Q2 A I d 2 
3 = ~DP3 + 'P 2 , (5.22) 

for some class A P ~ and some P ~. 
A 

Equations (5.7a) and (5.8) implyd(Q~ - ~DPD =0 
for a class A P ~ . The Poincare lemma gives Eq.' (5.22). Vice 
versa, by appl~ing the exterior differential to Eq. (5.22), one 
getsdQ~ = ~DP~ = iDQ!, duetoEq. (5.7a). Then from 
Theorem 5.1, Q! is a coboundary. 

Another important limitation comes from the following 
lemma. 

Lemma 5.3: Q~ defined by Eq. (5.7a) can be written in 
a class A form, that is in a form bilinear either in aas or in 
aas and aaas. 

Let us consider the dual tensor Q ~ of Q ~. The general 
formofQ~ is 

Q ~ = SS FI + sas F2 + saas F3 + saaas F4 + saaaas Fs 

+ saaaaas F6 + asas F7 + asaas Fs + asaaas F9 

+ asaaaas FlO + aasaas FII + aasaaas F12• 

(5.23) 
Here the indices have been dropped. For example, ssFI 
stands for SiS1 Ftu. Now, as a consequence ofEqs. (5.1), 
(5.6), and (5.4), dQL is class A. 

Then, in particular, al F tu = 0, which implies, through 
the Poincare lemma, thatF~u = am F t;, whereF t; is anti­
symmetric in I,m: 

al(SiS 1Ft}) = am(aISiS i + SialS i) F~;). (5.24) 

ThereforeFI can be absorbed into F2• We can do the same for 
Fi' i = 1, ... ,10, and find that either they vanish (since 
aFI = 0, for i = 6,10, implies Fi = 0 because they have di­
mension 0), or they can be absorbed into Fl1 and F12• 

Second selection: We repeat almost step by step the 
above procedure for forms with a higher ghost number. Let 
us consider the solutions of the equation 

A 2 2 
~D(Q3 -dP 2 ) =0, (5.25) 
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for some two-form Pi, where Q~ is given by Eq. (5.7a) and 
specified by Lemma 5.3. 

Theorem 5.4: 
Part I: Q ~ identifies a coboundary if and only if it satis­

fiesEq. (5.25) foraclassAP~. 
Part n· If Q ~ satisfies Eq. (5.25) for a class B P ~, then 

either it is one of the coboundaries of part I or the problem of 
identifying Q ~ can be formally reduced to the cohomology 
problem for diffeomorphisms in two dimensions. As a result 
of this analysis we identify another nontrivial cohomology 
class in four dimensions. As a representative we may choose 

ag) = f Tr(A dr)Tr(dr). (5.26) 

Proof of part I: If Q ~ corresponds to a coboundary, then 
Eq. (5.22) holds. Since Q~ is specified by Lemma 5.3 and 
P ~ is class A, then dP i is class A, too. Arguing as in Lemma 

A 

5.3 we can prove that P~ is class A. Applying ~D to Eq. 
(5.22) we get Eq. (5.25) and the necessary condition is 
proven. The sufficiency proof is a simplified version of the 
analogous proof in part I of Theorem 5.1. 

Proofofpartn· Arguing as in part II of Theorem 5.1 we 
can write Eq. (5.25) in the form (a few details are given in 
Appendix D) 

i (a a f:mGP,p,r - a (a f:mH plr») = 0 (5.27) 
D Po P2~ m I p~ m , 

where G and H are class A polynomials. If alH ::/r = 0, then 
H can be absorbed into G; therefore it can only correspond to 
a coboundary. If 

H ::/r = ~/:,Hlr, 
then 

(5.28) 

i (a a f: mGPIP2r - a a f: mHlr) = 0 
D Po P2~ m I m~ (5.29) 

and 
A I 
~D alH r = O. (5.30) 

Equation (5.28) identifies only coboundaries (see part I) 
unless 

G~r = {)/:,Glr and Glr - H lr = O. 

In this case the solutions are determined by Eq. (5.30), 
which, in terms of differential forms, is 

A I A I 
~DdP 2 = d~DP 2 = 0, (5.31) 

provided that H Ir is the dual tensor of P ~. Equation (5.31) 
implies 

A I d 2 ~DP2 = PJ> (5.32) 

for some Pi. Equation (5.31) states a cohomology subprob­
lem, which is formally equivalent to the problem studied in 
this section in two dimensions (formally, because we are 
actually dealing with objects defined in four dimensions). 
This subproblem can be easily solved (Appendix D). If P ~ 
is a coboundary of this subproblem, i.e., if 

I A 0 d I P 2 =~DR2 + 'R I, (5.33) 

then iD (damS mp ~) = 0, since arguing as in Lemma 5.3 
one can prove that R : equals aas times a covariant coeffi­
cient. Therefore, due to part I, P ~ defines a coboundary of 
the main problem. There are two distinct a-cocycles of the 
subproblem 
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(P ~)(1) = Tr(A)Tr(dr), 

(5.34 ) 
(P ~ )(2) = Tr(A dr). 

The other a-cocycles differ from these by coboundaries. The 
first, when replaced into Eq. (5.27), is annihilated due to Eq. 
(5.28). The second corresponds to a (Pi )(2) 

= Tr(A)Tr(A dr), which cannot be set into such a form as 
to satisfy the hypotheses of part I of this theorem. Therefore 
it defines a nontrivial cohomology class of the main problem, 
a representative of which is the a-cocycle in Eq. (5.26). 

What remains: What is left out by the previous analysis 
has to be looked for among the Q !'s such that the corre­
sponding Q~ defined by Eq. (5.7b) does not vanish. 

Theorem 5.5: The tensor dual to Q ~ can be written in 
the form 

where 

E PoP,q,q"lm _ -",q,lmE- p,q,' 
i j k -e'" ijk 

(5.35) 

(5.36) 

and l!: has weight 0 and is formed only with Kronecker 8's. 
The proof ~ based on the fact that, since Q ~ is class A 

(Lemma 5.3), 1: D Q ~ also is. Using the same argument as in 
Lemma 5.3, we conclude that the dual tensor of Q~ can be 
written in the form (5.35), where E is a covariant tensor 
with weight 1 and canonical dimension 0, antisymmetric in I 
and m and can be chosen antisymmetric under the exchange 
of the group of indices (foP,) and (J'q,). Now, since the dual 
tenso~ associated with dQ ~ is 

a Ai a IV a AkEl?oP,,!,q,, 1m 
PI P2 q, q2 1 r I ] k 

+ 2a a Ai a IV AkEl?oP,,!,q,,lm 
I PI P2 ql q2 r J J k 

+ a Ai a IV Ak a El?oP,,!,q,, 1m 
PI P2 ql q2 r I I ] k , (5.37) 

and must be of class A, we have in particular alE = 0, which 
implies that E is a constant tensor, i.e., it is formed with 
Kronecker 8's and with the totally antisymmetric tensor 
E"'nl

p
• Since also the second term on the right-hand side ofEq. 

(5.37) must vanish the only possible form of E is given by 
Eq. (5.36). 

Theorem 5.5 brings our analysis to an end, since it is 
now very easy to classify all possible Q ~ 'so Up to total differ­
entials (which correspond to coboundaries, due to Theorem 
5.4), there are only three distinct possibilities: 

Q~(l) = Tr(dA)Tr(dA)Tr(A), 

Q~(2) = Tr(dA dA)Tr(A), 

Q~(3) = Tr(dA dA A). 

We have 
~ Q3(\) _ ~ Q3(2) - 0 
~D 2 - ~D 2 -, 
A 

1:DQ ~(3) =! d Tr(dAAAA). 

(5.38 ) 

If Q ~(i) U = 1,2,3) were to correspond to coboundaries, 
then from Eq. (5.Th) and Theorem 5.4 we would have 

Q 3(i)=~ P2(i)+dp3(i) 1'-123 
2 D 2 l' -", (5.39) 

for suitable P ~(i) and class A P i(i). However Eqs. (5.39) are 
not satisfied, in particular for i = 1,2 because of the clause 
thatp~(i) must be class A. ForQ~(3) we can easily determine 
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Q1(3) =! Tr(dAAAA) and Qg(3) = ~ Tr(AAAAA) and 
see that were they to correspond to a cobo~ndary, than there 
would exist a p~(3) such that Qg(3) = 1:DP~(3). No such 
P ~(3) exists. 15 

Due to Theorem 5.1 part I and Theorem 5.2 part I, Q ~(i) 
U = 1,2,3) uniquely identify the only three distinct nontri­
vial cohomology classes belonging to the second family. One 
can easily see that Qi(1) and Qi(2) correspond to the coho­
mologyclassidentifiedbya1]) [Eq. (5.10)] andal,2) [Eq. 
(5.26)], respectively, while a representative for the third 
cohomology class is 

M]) = J Tr( dA( drr - ! rrr)). (5.40) 

As one can see, only part I of Theorems (5.1) and (5.4) are 
strictly necessary to prove our result. However, part II of 
these theorems reveals the recursive character of the D­
anomalies when dimensions increase. Beside the a-cocycle of 
the Adler-Bardeen type [Eq. (5.40)], we have other factor­
ized a-cocycles that contain as factors lower-dimensional a­
cocycles [we may consider Tr(A) a zero-dimensional a-co­
cycle]. The procedure we have presented suggests a clear 
pattern to generalize the results of this paper to n dimen­
sions. 

We recall that the construction of counterterms 
throughout this section was carried out by explicitly forget­
ting the relation between metric and connection. In this way 
we have found a result applicable also to gauge theories char­
acterized by nonsemisimple Lie groups. Indeed if we replace 
r by the relevant gauge connection and A by the gauge ghost 
we can repeat almost verbatim the proof of this section. In 
this case the cocycles corresponding to ab\), al,2), and aj]) 
are true anomalies, and this result together with a suitably 
adapted version of Sec. IV provides a uniqueness proof for 
anomalies in gauge theories. 16 

VI. DISCUSSION OF THE PREVIOUS RESULTS 

Let us discuss about the candidates for a-cocycles a£) 
U= 1,2,3) ofEqs. (5.10), (5.26), and (5.40) in the light of 
the splitting 

I -I I r mn = r mn + N mn' (6.1 ) 

where f~n is a metric connection and N ~n is the nonmetri­
city tensor. When we insert the splitting (6.1) in a1]) and 
al,2) the pieces depending only on the symmetric part of f 
vanish and the remaining terms are coboundaries in F. For 
example, in al,2) one of the surviving terms is 
S tr(dAN)tr(dN): it satisfies the consistency condition and, 
as is implicit from the theorems of the previous section, it is 
trivial: it is indeed generated by Str(rN)tr(dN) [here N is 
the matrix one-form (N)~ = N~n dxm]. 

When we insert the splitting (6.1) in a j]) we obtain 
many coboundaries depending on N. For example, the term 
linear in N is 

Kj]) = Ix Tr[dA(df N +Ndf - ! Nrr 

- ! fNf- ! rrN)] 

and 
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~ .1.(3) -0 A(3) - ~ -C(3) 
~DUD - , uD - ~D , 

where 

e(3) = i Tr(r dr N + rN dr + ~ NITr} 
We are left with the term depending only on r, which 

does not vanish in this case and is nontrivial in F. 
In the previous section we have separated r into its sym­

metric part r and torsion T and shown that only the sym­
metric part enters the cocycles Aj;'), i = 1,2,3, implying that 
cocycles (of the second family) containing T must be co­
boundaries. This is more evidence of the statement that 
when we add to r~n any covariant tensor Z ~n of weight 
zero we get new cocycles from the old ones: the differences 
between the old and new cocycles are coboundaries. We can 
use this fact to split r into the Christoffel symbols plus suit­
able tensors: up to coboundaries we are therefore left with 
AiJ) constructed only with the Christoffel symbols. 

Now let us implement the additional point (1) men­
tioned in the Introduction, as far as AiJ) is concerned. It is 
easy to show that AiJ) can be canceled by a local counter­
term. Indeed we remark that it is mapped into zero by the 
Bardeen-Zumino map, which maps a-cocycles of 1: D into a­
cocycles of1:L (see Ref. 5). Indeed let us write Eq. (5.40) as 

AiJ) = f Tr(dA G(3)(n) (6.2) 

and let us consider the functional 

S(3) = f dt i Tr(HG(3)(r,»), (6.3) 

where r, = e - tHretH + e - tHdetH and His the logarithm of 
the vielbein matrix. We obtain 

(6.4) 

In fact, the cocycle (5.40) is a sort of "fossil" of the 
prehistory of the Lorentz bundle, upon which a gravitation 
theory is constructed. A Lorentz bundle is a reduced sub­
bundle of the linear frame bundle, where the "gauge" group 
is GL(4). From this point of view the a-cocycles AJ:;) 
(i = 1,2,3) are understandable. 17 

Finally let us quote the following coboundary: 

~D = f Tr(dA dnA. (6.5) 

Here A is a one-form Am dxm, where Am is any vector field 
with weight O. We shall elaborate on it as a useful illustration 
of Theorem 3.1. It is a coboundary since 

~D = i Tr(dA(R + rn)A 

= 1:D 1 Tr( (R + + rr )r) A, (6.6) 

"'-
where R is the curvature two-form. If Am = T~I' AD is a 
coboundary we may disregard. But ifA rn is an Abelian gauge 
field, the local action on the right-hand side ofEq. (6.6) is 
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not gauge invariant: removing the coboundary ~D interferes 
with gauge invariance. This is an indication of the existence 
of an a-cocycle of the coupled operation 1: D + 1:G. We shall 
clarify this point in the next section. 

VII. THE COHOMOLOGY OF ~D + ~L + ~Q 
We are now able to find all the a-cocycles of the whole 

cohomological system 1:D + 1:L + 1:G • Let us consider first 
1: D + 1: L' On the basis of Theorem 3.1, we know that the a­
cocycles of 1: D + 1: L are determined by the a-cocycles of 1: D 

that admit a Lorentz partner and by the D-a-cocycles of 1: L' 

The latter are well known because they correspond to the 
Lorentz anomalies, which are computed by understanding 
D-invariance.3-S In four dimensions there exist no D-a-cocy­
cles of 1: L (see, however, the comment on the mixed anoma­
ly at the end of this section). 

As for the a-cocycles of 1: D, those belonging to the sec­
ond family are certainly admissible because they are 1:L -

invariant. The first family requires a closer examination. Let 
us write the generic a-cocycle belonging to it as 

or 

We split the family into three sets. 
v(' 

(1st set) A~), i = 1,2, ... : 

AV(i) ~ XCi) 1:L I D =0, ~G IUD =0. 
(2nd set) zX'r/), j = 1,2, ... : 1:L 2Xj;') #0. 
Examples: 

5t' = Tr(wmwnwlw, )g"'ngl' 

Tr(wmwn )gmn Tr( VI V, )gl', 

(7.1) 

where VI = VITO is a gauge field and W = wab1:ab is the Lor­
entz connection. 

(3rd set) 3Xbk>, k = 1,2, ... : 

~ AVo ~ Vo 
~L3 k' = 0, ~G 3Ak' #0. 

Example: 5t' = Tr( Vm Vn VI V, )g"'ngl'. 

Let us consider, for example, 

1:L 2Xj;') = 1:L i alsl.,[gg"'ngl'Tr(wmwnwlw,) 

= - 4 i als/.,[gg"'ngl'Tr(amu wnw/w,). 

There exists no P-functional zXi,1) linear in u! such that 
v(1) v(1) v(I)' •• 

1:D ZAL + 1:L ZAD = O. Therefore 2AD IS not an admissI-
ble a-cocycle of 1:D w.r.t. 1:D + 1:L • One easily realizes that 
the same is true for all the a-cocycles of the second set, while 
those of the first and third set are all admissible. Therefore 
we have completely determined the a-cocycles of the opera­
tor 1:D + 1:L. 

When also 1:G is taken into account, we again apply 
Theorem 3.1, where the role of 1:s is now played by 1:D 
+ 1:L and that of 1:R by 1:G • Using the same arguments as 

above we easily find that the third set must be excluded, too, 
while we must add the diffeomorphisms and Lorentz-invar­
iance-preserving a-cocycles of 1:G, i.e., the usual and well-
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known gauge anomalies. I
•
18 Finally the nontrivial cohomo­

logy classes of :ID + :IL +:IG are determined by the 
a-cocycles of :I D belonging to the second family and to the 
first set ofthe first family, and by the usual gauge anomalies: 
the expected or, perhaps, the desired result. 

As for the a-cocycles of the first set of the first family a 
comment is in order. They can be expressed as 

x (i) ~ C'" (i) • 1 2 
lj,J,D = ~D ,I = , , ... , (7.2) 

where 

C(i) = J .Jgln.Jg.!?(i), i= 1,2, .... (7.3) 

Technically speaking, according to our definition, the 
~l:)'s are a-cocycles since C(i)'s in Eq. (7.3) are local but 
nonpolynomial functionals. However, Eq. (7.2) tells us that 
there are regularizations free from such anomalies. Never­
theless, the ~l:) are not devoid of physical interest since, as 
shown in Ref.6, they are strictly connected with Weyl anom­
alies. 

Above we did not mention the so-called mixed Lorentz 
anomaly 

XL = f Tr(du d(j)A = :IL f Tr( (j)R - + (j)(j)(j) ~, 
(7.4) 

where u = uab:Iab , because it is a coboundary exactly in the 
"-

same way as ~D [Eq. (6.5)] is. We recall that we have 
shown in Ref. 6 that they are mapped into each other by the 
Bardeen-Zumino map. Now, let us recall Eq. (6.6) and ob­
serve that 

:IG f Tr( (j)R+ (j)(j)(j) ~ 

=:IG f Tr( r( R + + rr)) A = f A Tr(RR)==~G' 
since :IGA = dA. Therefore this a-cocycles of 
:ID + :IL + :IG may appear either as a gauge anomaly or as 
a Lorentz anomaly or as a D-anomaly. We may reduce it to 
the form we wish through a simple redefinition of the vertex 
generating functional. Observe that Eq. (7.5) implies that 
the Bardeen-Zumino functional necessary in order to map 
~L and ~G into each other,5.6 is a P-functional. Finally we 
remark that in the above list of a-cocY9!es of 
:ID + :IL + :IG, this a-cocycle appears in the form ~G sim­
ply because of the order among :ID, :IL, and :IG we have 
chosen in applying Theorem (3.1).19 Needless to say, this 
order is arbitrary. 

APPENDIX A: TRANSLATIONS 

Rigid translations are the Abelian subgroup T of D ob­
tained by restricting the parameters 5 m(x) to constant val­
ues b m. We can construct the cohomology operator :IT in 
the usual way. Since the group is Abelian the "ghosts" b m do 
not transform. If the differential space is the space oflocal P­
functionals, there are a-cocycles of:I r. For, if am is any local 
expression not expressible as a total derivative, then 

:IT f b mam = 0, f b mam ::1= :IrC, 'If local C. (AI) 
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We can avoid these anomalies by enlarging the differential 
space to include all integrated polynomial expressions of the 
fields, their derivatives and the coordinates xm. Then it is 
easy to see that 

(A2) 

Of course in this way we get more cocycles of:I r but it turns 
out that they are all coboundaries. Indeed let 

(A3) 

where CmI,I, ... I. is any general local expression (it may have 
other saturated or unsaturated indices besides those written 
down), symmetric in ll .. ·ln' The consistency condition can 
be written as 

" r b mc I, I. - f b mb pac XlI Xl. "r Jx nal, ... ln X ···X - - p ml,o··ln ••• 

= n f b mb PC I I Xl, .•. x i
•. (A4) mpz··',. 

Therefore either (1) CmI, ... f• is totally symmetric in 

m,ll, ... ,ln' or (2) Cmpl, ... I.xI' ••. xl. is a derivative. 
Case (1): 

f CmII ... I.XmxI' ... xl·::I=O 

and 

" f C I, I. m - ( + 1) f b mc I, I. ~r mI, ... I.X "'x X - n mI, ... I.X "'x , 

(AS) 

which shows that the cocycle is a coboundary. 
Case (2): CmI, ... I• is an nth-order derivative and, integrat­

ing by parts repeatedly in the initial expression, we are re­
duced to Eqs. (AI) and (A2). 

The proof can be easily extended to expressions contain­
ing finite sums of terms of the type (A3). Therefore all cocy­
cles of:I r are coboundaries. 

Now let us define the coupled cohomology of:Ir and :I A 

(I:A ). If we set 

:ITa/=O, :IAbm=bPapm, I:Abm=bPapm, (A6) 

we get 
2 - 2 (:IT +:IA) = 0 and (:IT +:IA) = o. (A7) 

For D we can do the same, provided that we define 

:Irsl=bmamSI, :IDbm=O. 

Then 

(:IT + :ID)2 = O. 

(AS) 

(A9) 

By applying Corollary 3.2, we can now conclude that the 
admissible a-cocycles of :I A , I: A , and :I D lie in the restricted 
differential space of the local P-functionals. 

APPENDIX B: THE COHOMOLOGY OF ~A 

wa in Eq. (4.1) is a local polynomial whose transforma­
tion law under:IA is the following: 
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I. w mk, .. ·k, _ p q a w mk,.·.k, + p w mk, ... k, 
A anl, ... I, - x ap q anl, ... I, an apl, ... I, 

(Bl) 

Using this equation and Eq. (2.14) one can write down ex­
plicitly the consistency condition I.A aA = 0. Integrating by 
parts and differentiating twice w.r.t. a::' and aL one gets 

+ ( _ 1) (/jk w mk, ... k, _/jm w kkl ... k,)] 
W I anl, ... I, n all, ... I, • (B2) 

Let us denote by b~;,~:t' the object contained inside the 
square brackets. 

We are going to show now that the only solution of this 
equation is v = ° identically. To see this we perform on the 
field a generic finite transformation aeD A • We get 

~ ~ f cll ... I, (d t )w-l I; I; 
~ ~ k, ... k, e a ai, "'al, 

w.r.s k.u.kr 
/1 ... 1, 

X ( -I)k, ... ( -I)k, urc.kmkj ... k; 
a kj a k; vnlli .•. I ; • (B3) 

This is the same as Eq.(B2) except that the C coefficients 

have been transformed. Since Ct~k does not contain (con-
I , 

stant) tensors (we have excluded it from the beginning, in 
Sec. IV), we can conclude that terms with different r, s, and 
W must vanish separately. Likewise we can conclude that Eq. 
(4.2) implies 

urc.kmk, ... k, _ ° '"' 
IJn/l, ... I, -, v w,r,s. (B4) 

The possibility that B be a global derivative corresponds to a 
vanishing cocycle. From the form of Wb one sees that the 
most general Wa satisfying Eq. (B4) can be written as 

k 
r k ak, ... k ... k, S k k,···k, 

wakk, .•. k , _ 8kok , ... '+ ~ 8 °a + ~ /j 
/1, ••. 1, - I 1, ••• 1, ~ I 1, ••• 1 ~ Ib ~I, ... I ... I ' 

a=1 s b=l s 

(B5) 
a 

where 0, a, a are local polynomials of the fields and their 
Ir 

derivative to be determined. Substituting (B5) into Eqs. 
(B4) and (B2) we get a sUlD of terms involving these un­
known polynomials multiplied by two Kronecker 8's. It can 
vanish only if ( 1) all the cQefficients of distinct products of 

a 

/j's vanish and (2) n, a and a further factorize into 8 factors. 
b 

Case (J): The independent equations that one derives are 
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ok, ... k,_ k, ... k,(W 1) Vb 
al, ... 1 - al, ... 1 -, , 

, b ' 
(B6) 

a k, ... k k,· .. k, '"' b 
al" .. I,' = - ~I" .. I" va,. 

Equation (B5) becomes 

(B7) 

~ /jkr;;kl ... k ... k,) 
- ~ I al, ... I, . 

j= I 

(BS) 

Therefore all the solutions of the consistency condition (B2) 
pertaining to case ( 1 ) are coboundaries. When r = s = 0, the 
above treatment is meaningless. This particular case is treat­
ed in Sec. IV. 

Case (2): No new solutions from this case. 
Therefore the nontrivial cohomology classes of I.A .are 

determined by Eq. (4.2). 

APPENDIX C: PROOF OF THE SUFFICIENCY 
CONDITION 

In this Appendix we prove the sufficiency condition in 
part I of Theorem 5.1. To this end we recall Eq. (5.1) and all 
the specifications made at the beginning of Sec. V. To Eq. 
(5.1 ) we add all possible terms coming from dP ~ , for a class 
A P ~. The density of Q! - dP ~ is then 

Q=aas(BI + rCI + rrD I +arEI + rrrFI +arrGI 

+ aarHI ) + aaas(B2 + rC2 + rrD2 + arE2 ) 

+ aaaas(B3 + rC3 ) + aaaaaSB4' (Cl) 

where all Bi> Ci> etc. are D-covariant tensors with D-weight 
1. 

Now, the relevant consistency condition is 
A _ 

I.DQ= 0. (C2) 

This means, in concise form, 

aasaasx + aasaaasy + aasaaaasz + aaasaaasw = 0, 
(C3) 

whereX, Y, Z, and W depend on r, ar and on the covariant 
coefficients. It is clear that in order for Eq. (C3) to be satis­
fied, X and W must either vanish or have suitable symmetry 
properties in the indices. After inspecting their explicit form 
one can conclude that Yand Z can only vanish. Briefly 

s s 
X=O, Y=O, Z=O, W=O, (C4) 

s 
where = means equal up to symmetry properties of the 
indices. The first two equations of (C4) break down in turn 
into more independent equations according to the powers of 
r and ar. We are going to find all the solutions of these 
equations and show that they are all coboundaries. 
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To this end it is very useful to write down all the co-
A 

boundaries of l: D belonging to the second family. They can 
be written as follows: 

~1=rMI' 
~ 2 = rrNI> 
~3= rrrR I, 

~4=rrrrSI' 

~5 =arN2, 

~6=arrR2' 
~7=arrrS2' 

~8=aarR3' 

~9=ararS4' 

where M]> No Rj , Sj are covariant tensors of D-weight 1 and 
dimensions 3, 2, 1, and 0, respectively. 

Our strategy consists in identifying all the solutions of 
Eqs. (C4) corresponding to the coboundaries (CS) and 
proving that they are the only ones. For example, if we set all 
the coefficients equal to zero except G I and E2, we have a 
solution of Eqs. (C4), 

where E2~"'W;oP,n, = E2foP,n,~,.,q. This solution of Eq. (C2) 
A 

corresponds to a coboundary, precisely to l:D ~ 9' provided 
that we identify E2 with S4' Similarly we find other solutions 
ofEq. (C2) corresponding to 
A A 

l:D~ I if BI=MI, l:D~ 6 if C2 =EI =R2 
'" A 

l:D~2 if CI =2NI, l:D~7 if D2=! GI =S2' 
'" '" l:D~3 if DI =3R I, l:D~ 8 if B3 =R3, 
A '" l:D~4 if FI = 4S1> l:D ~ 10 if C3 =HI =S5' 
A A 

l:D~5 if B2=N2, l:D ~ 11 if B4 =S6' 
(C7) 

All these solutions must be contained in the most general 
solution of Eq. (C2) [or (C3) or (C4) ]. Since they can be 
multiplied by arbitrary numerical coefficients we can sub­
tract them from the latter, which, in this way, looses any 
dependence on the covariant coefficients except E I , GI , and 
HI' When one considers again Eq. (C2) with only these co­
efficients surviving, one easily sees that the only solution is 
E I = G I = HI = O. Therefore the only solutions ofEq. (C2) 
are the coboundaries (CS). 

APPENDIX D: SPECIFICATION OF THE DERIVATION OF 
(5.27) 

The derivation offormula (S.27) deserves a specifica-
A 

tion.l:DdP~ in Eq. (S.2S) can be written as follows, in terms 
of dual tensors: 

i a(rirjA.1'+riarjB .. pl'+ria a rjCl!.oP,I,+ ... ) D / ~ ~ !J ~ p~ IJ ~ p, p,~ IJ • 

(D1) 

Here we have written down explicitly only the first terms 
[seeEq. (S.23)]. Equation (S.2S) impliesalA/' = 0, conse­
quently A can be absorbed into B. In general, Eq. (S.2S) 
implies also a/Bi/' = O. That is not the case when Btl, 
= 6fR J', because i D (S iaiS j) = O. Moreover we must have 

6f'9t'R/ + alcloP,lr = O. 

Either B = C = 0 or 

B ~r = a C.Plr, 
J p J (D2) 

2270 J. Math. Phys., Vol. 27, No.9, September 1986 

. 1 A 

IQ4 = l:D ~o i = 1, ... ,11, 

where 

~ 10 = aarrs5, 

~ 11 = aaars6, 

A 

(CS) 

where Cis completely antisymmetric inp, /, r. Now we can 
apply the usual argument and, after repeated applications, 
obtain Eq. (S.27). 

The cohomology defined by Eq. (S.32) can be solved 
along the same lines as the main problem. With a theorem 
analogous to S.l we prove that P ~ is a coboundary if and 
only if it is a solution of i D (P ~ - dR : ) = 0 for some class 
A R : (we recall that P ~ is class A). The nontrivial solutions 
are contained in the set of P l's such that pi #0. Since dP~ 
must be class A we have a theorem analogous to (S.S): the 
dual tensor of dP t can be written as 

a (a ria a r j)F .. qptP,lmn 
I q~ p, p,~ IJ ' 

which implies that F is a constant tensor that can be written 
A '" F,!!,oP,lmn = (j',lmnF'!!", andF'!!" and is made of Kronecker {j's. 

IJ IJ IJ 

Therefore up the total differentials we have only two possibi-
lities: 

pi(l) = Tr(A)Tr(dA) and Pi(2) = Tr(A dA). 
(D3) 

They correspond to two distinct a-cocycles of 
Eq.(S.34). 
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A path integral constructed over a particular Riemann space is developed and applied to two­
dimensional wedge problems. This path-integral-Riemann-space (PIRS) approach recovers the 
exact solutions of the heat conduction and the corresponding electromagnetic wedge problems. A 
high-frequency asymptotic evaluation of the PIRS electromagnetic wedge solution returns the 
standard geometrical theory of diffraction (GTD) results. Ramifications of this approach and its 
relationships with known path-integral methods are examined. 

I. INTRODUCTION 

Many quantum mechanical applications of path inte­
grals defined on multiconnected spaces have appeared in the 
literature. 1-5 Similarly, using a double-sheeted Riemann sur­
face Buslaev6 established the viability of the path-integral 
approach to the scattering of electromagnetic waves from 
smooth conductors. However, in spite of the known impor­
tance of the multiconnected space description of diffraction 
phenomena (see Sommerfeld7 or Carslaw8

), the application 
of an analogous path-integral approach to electromagnetic 
diffraction problems has been neglected. It is the object of 
this paper to demonstrate the utility of a path-integral-Rie­
mann-space approach in wedge diffraction problems and to 
point out several interesting aspects of the resultant repre­
sentations of the solutions. 

In Secs. II-V, a path-integral-Riemann-space (PIRS) 
approach is developed and applied to the electromagnetic 
diffracting (perfectly conducting) wedge problem. As in 
Buslaev6 and Lee,9 the diffraction problem is first trans­
formed to its equivalent heat conduction problem. The latter 
is treated with the PIRS approach. The transform of the 
resultant expression returns the exact wedge diffraction so­
lution. A high-frequency asymptotic approximation of the 
PIRS solution is given in Sec. VI. It recovers the results given 
by Keller's geometrical theory of diffraction (GTD). 10 In 
Sec. VII, several properties of the PIRS solution to the elec­
tromagnetic and heat conduction wedge problems are de­
scribed. Relations based upon the multivaluedness of the so­
lutions are derived that demonstrate that the modification of 
free-space by the wedge leads to the diffraction effects. 
Moreover, it is shown that the half-plane propagator satisfies 
a transition condition that is characteristic of the underlying 
Riemann space and is associated with a particular Riemann­
Hilbert problem. 11 The relationships of the PIRS approach 
with analogous quantum mechanical methods are also dis­
cussed. For instance, the connection between the PIRS 
method and the constrained path-integral approach 12-16 is 
established. It indicates that a PIRS wedge analysis may 
prove useful for studies of fractional charge quantization. 
Other salient features of the PIRS approach suggest its ap­
plicability to related problems of interest involving entan­
gled polymers in molecular biology, Ising models in statisti-

cal mechanics, and soliton and instanton models in quantum 
field theory. 

II. WEDGE DIFFRACTION PROBLEM 

A. Problem configuration 

Consider in two dimensions the diffraction of the field 
due to a unit point source by a perfectly conducting wedge 
with exterior angle prr, 1 <P<2. The electric field vector is 
assumed to be parallel to the edge of the wedge (E-polarized 
field). This is equivalent to the three-dimensional diffraction 
prdblem in which a line source is parallel to the edge of a 
wedge of infinite extent. The scattered field is also E-polar­
ized and is assumed to satisfy the radiation condition at in­
finity. 

A polar coordinate system is erected whose origin is lo­
cated at the edge of the wedge. Angles measured in a coun­
terclockwise direction from the upper edge of the wedge de­
fined to be () = 0 are positive. The lower edge is defined by 
(} = prr. The physical space [0, 00 [ X [0, prr], exterior to 
the wedge, is denoted by P. The observation point is located 
at r = (r,(); the unit source c5(r-ro) is located at 
ro = (ro,(}o)' This geometry is shown in Fig. 1. 

B. The Riemann spaces P2 and P QO 

The original diffraction problem in the physical space P 
is simplified by considering diffraction in a space P2 con-

r - (r. (1) 

1< 8 12 ,- Blr 

FIG. 1. Geometry of the two-dimensional diffraction by a wedge problem. 
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structed as follows. Take two replicas of P, say P + and P _, 
and join them along the boundary I of the wedge. Then 
P2 = P +u P _U l:. The spaces P + and P _ will be called, re­
spectively, the upper and lower sheets of P2; the space P + is 
identified with the physical space P. To suggest pictorally 
the two sheets, the "edge" of P _ is drawn outside of that of 
P + as illustrated in Fig. 2(a). A function U(r) over P2 will 
be a wave function if it satisfies the Helmholtz equation 

{a + k2}U(r) =0 (2.1) 

over P + and P _ (open sets) and if the limiting values U + 

and U _ of U(r), when r approaches l: from P + and P _, are 
opposite and if the corresponding normal derivatives on l: 
toward P + and P _ are continuous: 

boundary {u+ + u_ = o. 
on l:. 

conditions anu+ = anu_. 
(2.2) 

The space P2 is a Riemann surface, and its use here is 
very similar to the device introduced by Sommerfeld7 for the 
half-plane problem and by Buslaev6 for the convex body 
case. Natural coordinates in P2 are the distance r to the ori­
gin and the polar angle fJ counted from the upper edge of the 
wedge. This angle varies from 0 to 0 = 21r/3 and the angle 

(8) 
p. 

Points of P2 - p. UP_ 

r E: [0.-[ , (J E: [0.21TB] mod 0 

(b) 

o 

, , , \ 

\ ) 
~ I 

..... -- - - - - - - - - - - -......"".' 
Q·21fB 

FIG. 2. Representations of the space P2: (a) as a two-sheeted Riemann sur­
face and (b) as its angular extent. 
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fJ = 21r/3 is identified with fJ = O. This geometry is shown in 
Fig.2(b). 

Note that the angles fJ = 0,{31r have no special proper­
ties. In fact, the effect of introducing P z may be considered as 
"erasing" the boundaries of the wedge. The boundary condi­
tions are satisfied by locating an image source on P 2 (specifi­
cally, on the 10wersheetP _) at r~ = (ro' - fJo)' The desired 
field cali then be decomposed as 

U(r) = K(r,ro) - K(r,r~) , (2.3) 

where, for example, K(r,ro) represents the field at r due to 
the source point at ro. Since reciprocity must be satisfied, 
K(r,r~) must be of the same form as K(r,ro); the former is 
obtained from the latter by a simple substitution fJo .... - fJo. 
lience, it will only be necessary to consider the function 
K(r,ro)' 

The solution of the H-polarized problem (the magnetic 
field vector parallel to the edge ofthe wedge) is simply (2.3) 
with a plus sign instead of the minus sign: 

U(r) = K(r,ro) + K(r,r~) . (2.3') 

It satisfies the P2 boundary conditions 

boundary { u+ = u_. 
.. on l:. 

conditions anu+ +anu_ =0, 
(2.2') 

Thus, it will not be necessary to consider that case explicitly. 
The space P 00 is constructed from an infinite number of 

copies of P2• It is the covering space of Pz' The polar angle fJ 
in P 00 is any real number instead of being modulo 21r. Thus, 
for any point r = (r,fJ) in Pz, there are an infinite number of 
points (preimages) inP 00 : (r,fJ + mO), m = 0, ± 1, ± 2, ... , 
whose projections from p .. onto Pz coincide with r. 

The desired solution inP2, K(r,ro), is obtained from the 
corresponding solution in p .. , K 00 (r,fJ;ro,fJo), by "folding" 
it onto P2; i.e., by summing the fields at all of the preimages: 

00 

K(r,ro) = L K .. (r,fJ + mO;ro,fJo) . (2.4) 
m= - 00 

One can interpret the image contributions as mUltiply 
reflected waves between the boundaries 0 and 0 of P2• The 
problem on P 00 corresponds to one involving a perfectly ab­
sorbing wedge. This construction was used in a similar con­
text by Deschamps 17 and by Felsen and Marcuvitz18 and for 
quantum mechanical problems by Schulman. 3-5 

III. PATH-INTEGRAL SOLUTION OF A HEAT 
CONDUCTION EQUATION 

The path integral solution of the heat conduction equa­
tion 

(3.1 ) 

which reduces to 8(x - xo) for r = 0, is reviewed briefly to 
establish notations. The points Xo and x are assumed to be in 
an n-dimensional space X ==lR". 

Let y be a path; i.e., a parametrized arc of a curve in X. It 
is a map of a segment [a,{3] ofthe real axis It into X and is 
assumed at least to be continuous. The end points are taken 
to bexo = y(a) and x = y(P). Thus, 

y: [a,{3] CR .... X: T .... y(r): (a,{3)t-+-(xo,x). 
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Let r be the set of continuous paths r joining Xo to x in time 
r. 

The path integral solution of (3.1) is l9 

GF(x,xo;r) = L F(r)~r· (3.2) 

The "value" F(r) assigned to a path rer is taken to be the 
probability of going from Xo to x in time r following the path 
r: F(r) = exp[ - E(r)], where the energy ofa particle of 
mass ~ along r is E(r) =1foydr, r=drldr being the 
velocity of that particle along r. The quantity ~ r is difficult 
to establish; it represents the measure of the path space. The 
standard method of giving a meaning to (3.2) is heuristic; 
the scheme imitates the process that leads to a Riemann inte­
gral. 

Let each r be represented by a skeleton rs constructed 
from the (N + I) points (xo,x w .. ,x N = x) in the image of r 
such that 

r.: (ro = a,rl ,r2,· .. ,rN = {3)I-+(XO,xI,x2,· .. ,xN = x) . 

A broken path r N can be constructed from these points by 
associating to each consecutive pair (rj _ 1 , r j ) mapped into 
(xj _ I' xj ) a path segment 6j r, chosen in a prescribed man­
ner. A standard choice is to make the image of [ rj _ I' rj ] by 
6j r into a straight segment described uniformly in 1'; i.e., 

6·x 
6j r: [rj_l,rj]-X: rl-+xj =-'-(r-rj_I) +xj _ l · 

6j r 

The notation 6j ( .) designates increments of ( . ) corre­
sponding to the jth step (or jth segment); e.g., 
6j r = rj - rj _ 1 • Other choices are possible. 

The heuristic definition of the path integral (3.2) is 
based on approximating each r by some r N; hence, r by r N' 

the set of broken (discrete) paths rN' The preceding con­
struction of the set of broken paths r N' which will be re­
ferred to as discretization, depends on n (N + I) real param­
eters, provided that the r/s are chosen in a systematic 
manner. For instance, let rj = a + jb.r, where 
b.r = ({3 - a)/N. One then has the correspondence 

rN-(XO,xI, ... ,XN)E Rn(N+ 1) • 

Thus, with the fixed end points Xo and x N = x, the Euclidean 
measure in Rn(N-I) can be used to define iPrN' In the limit 
asN-1X) and max 6j r-o, The definition of the path integral 
(3.2) becomes 

f F(r) iPr= lim f F(rN) ~rN' (3.3) Jr N_«> JrN 
The value F( r N) assigned to the discretized path r N is 

the product F(rN) = nf= IF(6j r) off unctions defined for 
each of the steps 6j r used to construct r N' Those functions 
represent the probability that the particle at Xj _ 1 moves to 
Xj in the time interval from rj _ 1 to rj and are defined as 
F(6j r) = 4>261'" (6j x), where 

4>q(s) = (21TU) -nl2 exp( -Is 12/2u) . 

Thus, with the coefficient AN = nf= 1 (41T6j r) - nl2 and the 
energy 

N N (6.X)2 
E(rN) = l E(6j r)=l -' -, 

j=1 j=1 46j r 

the discretization of the path integral (3.2) becomes 

GF(x,xo;r) = lim AN f exp[ -E(rN)] ~rN==lim(417"r)-nNI2f .~. fexp [ - I.E(6jr)]dXldX2 .••• dXN_I. 
N-«> JrN N_«> N - «> j= 1 (3.4) 

Now consider the polar coordinate form of the path-integral expression (3.4) when n = 2. In H2, the squared distance 
between the two points fj = (rj , (Jj) and fj _ 1 = (rj _ l , (Jj_l) is 

16j r l
2 = 1 + 1- 1 - 2rj rj _ 1 cos«(Jj - (Jj_ 1 ) 

and the measure 
N-I 

dxl,,·dxN_ 1 = n rj drj d(Jj . 
j=1 

Thus, with £ = rlN the expression (3.4) when n = 2 can be represented in H2 as 

. Nf f [ N 1+1-1] [?(rjrj _ l ) ] Nn-I (J GF(r,fo;r) = lIm (417"£) - "; exp - l exp 4., -- cos«(Jj - (Jj_l) . rj drj d j . 
N_«> R j=1 4E j=1 2£ ,=1 

As shown in Ref. 20, the exact (free-space) solution 

GF(f, fo;r) = (41Tr) -I exp[ - (,z + ro )/4r] exp[ ("oI2r)cos«(J - (Jo) ]==( 41Tr) -I exp[ - Ir - ro12/4r] 

is generated from Eq. (3.5). This result will be duplicated from the PIRS point of view in Sect. VII. 

IV. PATH-INTEGRAL SOLUTIONS ON p .. 

Returning now to the wedge problem, the propagator 
K «> (r,f 0)' which satisfies on P co the equation 

{b.+k2}K«> (f,ro) = -6(r-fo), (4.1) 

is desired. It can be generated by considering the corre­
sponding parabolic equation problem; i.e., the solution 
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G «> (r, r o;r) of the heat conduction equation 

{ar - b.}G «> (r, ro;r) = 0, 

which satisfies the initial condition 

lim G «> (r, ro;r) = S(t - ro) , 
r....o 

is related to the solution of ( 4.1) as 
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K 00 (r, ro) = L d'T ek21'G 00 (r, ro;'T) , (4.4) 

where C is a contour in the complex plane from 'T = 0 to 
infinity. The choice of the contour is independent of k (see 
Ref. 6). 

Following the scheme outlined in the previous section, 
the path-integral representation of the P 00 propagator Gao is 
constructed. It is identical to the (free-space) expression 
(3.5) except that the integrations must now be realized over 
P 00 -spaces rather than over JR2-spaces. The differences lies in 
the integration over the angle variables. In the present case, 
each angle integration must be taken over the infinite inte­
val ] - 00,00 [ rather than over the finite interval [0, 217] 
used in the free-space example. The resultant P 00 expression 
suggests that for its evaluation it would be advantageous to 
introduce a Fourier transform. 

The rotational symmetry of the problem implies that 
Goo will depend only on the angle difference «(J - (Jo): 

Gao (r, ro;'T) = Goo (r,ro,(J - (Jo;'T) . (4.5) 

Therefore, the Fourier transform of Goo is defined as 

its inverse is 

Gao (r, ro;'T) = f: 00 dA eiA
(8- 8o)GA (r, ro;'T) 

A 

=Y «(J-(Jo;A)[GA(r,rO;'T)]. (4.7) 

Thus, by considering GA instead of Goo directly, one can 
concentrate on the radial dependence of the propagator. 
Substituting the pertinent, modified version ofEq. (3.5) into 
Eq. (4.6) and decomposing the difference «(J - (Jo) into 
(J - (Jo 

= ((IN - (IN_I) + ((IN_I - (IN_2) 

+···+«(JI-(JO) 
N 

= L «(Jj - (Jj_l) 
j=1 

yields 

GA (r, ro;'T) 

= lim_l_ f .~. f Nif rj drj (4'lTE)-N 
N_oo 217 0 j= 1 

[ 
N~+~I]foofN{ 

X exp - j~1 ) 4: - ~.~ j:[ll d(Jj 

[
rjrj 1 ]} Xexp 2; cos«(Jj - (Jj_l) - iA(6j - (Jj_l) . 

(4.8) 
Note that the additional angle integration with respect to (J N 

= (J results from the integral in Eq. (4.6). Taking into ac­
count the finiteness of the propagator as r-+O, the expression 
(4.8) gives 
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'" GA (r, ro;'T) 

= (41T'T)-l exp [ - (r+~)/4r]1IAI(rrol2'T). 
(4.9) 

The steps leading from Eq. (4.8) toEq. (4.9) are described 
in detail in the Appendix. 

Inserting the "radial" propagator (4.9) into Eq. (4.7), 
one obtains the representation 

Gao (r, ro;'T) = (41T'T) -1 exp[ - (r + ~ )/4'T] 

xfOO dA eiA(8-8o)1 ("0) (4.10) 
_ 00 IAI 2'T ' 

for the solution of the heat equation (4.2) on P 00 • Conse­
quently, with Eq. (4.4) the desired solution of Eq: (4.1) on 
P 00 is 

Koo (r,ro) =foo dAeiA(8-8o ) r d'T 
- 00 Jc 4'IT'T 

xexp [k 2'T _ (r + ~)]1 A (rro). 
4'T I I 2'T 

(4.11) 

Since (see Ref. 21, 8.424.1) 

1 1'1+;00 [ 1 ( 52 + t2)] (5t)dt - exp - t- 1 --
lTi 0 2 t v t t 

=Jv(5)H~I)(t) , 
where Re v> - I, TJ >0, and Is I < It I, Eq. (4.11 ) becomes 

Koo (r, ro) = .i.foo dA eiA
(8- 8o)J1A1 (kr < )H ~l (kr> ) , 

4 - 00 

( 4.12) 

where r> is the larger of rand ro, r < the smaller. Note that 
expression (4.12) coincides with the Riemann surface fun­
damental solution defined by Stakgold (see Ref. 22, pp. 270-
271). 

v. SOLUTION OF THE WEDGE PROBLEM 

As noted in Sec. II, the propagator on P2 from the (real) 
source point ro to the observation point r, K(r, ro), associat­
ed with the wedge (diffraction) problem, is generated by 
folding the P 00 -space solution (4.12) onto the P2-space. The 
resultant expression has the form 

K(r, ro) = ! m=~ 00 f: 00 dA exp[iA«(J - (Jo + mO)] 

XJIAI(kr<)H~l(kr». (5.1) 

However, using the Poisson summation formula, 

m= - 00 m= - 00 m= - 00 

1 00 ( m) =- L ~A--, 
{3m=-oo {3 

(5.2) 

one obtains 

K(r, ro) = _1_· i exp[i
m «(J - (Jo)] 

4{3m=-oo {3 

XJ1m/f31 (kr < )H r':;/f31 (kr> ) . (5.3) 

This expression can be immediately rewritten as 
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K(r,ro) =-,_. i Em Jmlp (kr< )H~}p(kr» 
4{:J m=O 

xcos[;((~-Oo)], (5.4) 

where the term 

{
I, if m = 0, 

Em = 2, if m#O. 

Using the results of Ref. 23, it also has the integral represen­
tation 

K(r,ro) = -=..!..i H~I)(kR(a»)XfJ(a,O - Oo)da, 
161T A 

(5.5) 

where the distance R (a) = [r + ~ - 2rro cos a] 112 and 
the diffraction coefficient 

( .1,) _ 2 sin (al{3) 
XP a,." - - -----'---'--'----

{3 cos(al{3) - cos ( 7/l1{3) 

The path of integration A is shown in Fig. 3. 
Consequently, with Eq. (2.3) the total solution of the 

wedge problem is represented as 

U(r) = K(r,O;ro,Oo) - K(r,O;ro, - 00 ) 

=-,_. i Em{COS[m(O-Oo)]-cos[m(o+oo)]} 
4{3 m=O {3 {3 

XJ mlP (kr < )H ~}fJ (kr > ) 

i ~ . (mo) . (moo) =- ~ EmSm - sm--
2{3 m=O {3 {3 

X Jmlp (kr < )H ~}fJ (kr> ) 

or as 

U(r) =-=..!..i H~I)(kR(a») 
1617" A 

(5.6) 

X [XfJ (a,O - 00 ) - XP (a,O + 00 ) ]da . (5.6') 

Im(a) 

AI 
I 

I-~ -IT 0 III 
2 

12 I 
I I 

I a Plane 
I 
I 
I 
I 
I 
I 
I 
I 

IT I~ Re(a) I 2 

I 
I I 

., ( r + ro ) 
aa - COllI 2rr 

o 

FIG. 3. Path of integration A used for the wedge solution. 
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These results agree with the known solutions given, for ex­
ample, in Refs. 18,21, and 24. 

VI. HIGH-FREQUENCY APPROXIMATIONS OF THE 
WEDGE SOLUTION 

The high-frequency (short-wavelength) approximation 
to the wedge solution (5.6) in the shadow region of the 
source and its image will be generated from the P"" solution 
(4.12). The GTD results given by Kellerlo are recovered. 
The analysis is analogous to the one used by WU25 to study 
creeping waves around a circular cylinder. 

The P"" solution (4.12) can be rewritten as 

K"" (r, ro) =.!... i"" d..t cos[..t(O - 00 )] 
2 0 

XJ).(kr< )Hil)(kr». (6.1 ) 

Asymptotically for kx __ 00 the Bessel and Hankel functions 
J).(kx) and Hil)(kx) behave as 

lim J). (kx) - (2I1Tkx) 1/2 cos [kx - (..t + !>1T/2] 
Ioc_"" 

lim Hil)(kx) - (4/i)g(kx)e- i).7T/2, 
Ioc_"" 
where the function 

g(kx) = (81Tkx) -1/2 exp[i(kx + 1T14)] 

and g* (kx) is its complex conjugate. Inserting these asymp­
totic forms into (6.1) and using the relation 

i '" d..t eiA.x = 1T~(X) +.!..., 
o x 

one obtains the expression 

K"" (r, ro) -2g(kr> )g(kr < )[ 117/1+ - 117/1-] 

- 21Tig(kr> )g(kr < )[~(7/1+) + ~(7/1-)] 
- 41Tig(kr> )g* (kr < )~[ (7/1 + + 7/1_)/2] , 

(6.2) 

where the angles 7/1 ± = (0 - 00 ) += 1T = 0 - (00 ± 1T). 
InP2 the angles 0 = 00,00 ± 1Tcorrespond, respectively, 

to the directions of the source and the shadow boundaries of 
the source and its image. For a point in the shadow region of 
the fields incident on the wedge from the source and its im­
age; i.e., for OE]Oo + 1T,0- (00 + 1T) [, these singulardirec­
tions are not encountered. The asymptotic form of the P "" 
solution then reduces to 

K "" (r,ro) - 2g(kr > )g(kr < )[ 117/1 + - 117/1-]. (6.3) 

With (2.4) and (6.3) the propagator K(r, ro) in the 
shadow region has the asymptotic form 

K(r, ro) -2g(kr > )g(kr < ) 

X i [ 1 
m = - "" 7/1+ + mO 

Since 
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and 

cot(tfJ + "') _ cot(tfJ - "') = _ 2 sin", , 
2 2 cos",-costfJ 

the sum 

2 i [1 1] 
m = - 00 '" + + mn '" _ + mn 

= ~ [cot(~) - cot( ~ )] 

= ~ sin (11'//3) = X (11', 0 - (
0

) 

/3 cos(11'//3) -cos(O-Oo)//3) P 
(6.5) 

recovers the wedge diffraction coefficient and (6.4) becomes 

K(f,fo)-g(kr> )Xp(11',O-Oo)g(kr<). (6.6) 

Similarly, the image source contribution is 

K(f, f~) -g(kr> )Xp (11',0 + Oo)g(kr < ) • (6.7) 

Consequently, with (2.3) the asymptotic form of the (E­
polarized) wedge solution in the shadow region is 

U(f) -g(kr> ) [Xp(11', 0 - ( 0 ) - Xp(11', 0 + Oo)]g(kr < ) • 

(6.8) 

This expression coincides with Keller's GTD result. It repre­
sents the effects of the source and image fields interacting 
with the edge of the wedge. The presence of the additional 
terms in (6.2) indicates the need in the lit regions to account 
for the direct, geometrical optics fields in (6.8); i.e., the 
asymptotic forms of the source and image fields when f can 
be reached without interacting with the edge must be includ­
ed in (6.8). 

VII. DISCUSSION 

In order to connect the present results with those in the 
literature, several alternate representations of the PIRS solu­
tions will be considered. They reveal a variety of interesting 
properties of the PIRS approach. 

The point in P2 that lies on P _ "beneath" the point 
(r, 0) onP + is (r, n - 0). ThevalueoftheP2 wedgepropa­
gator (5.4) at that point recovers the image source contribu­
tion 

K(r, n - O;ro, ( 0 )== K(r,O;ro, - ( 0 ) • (7.1) 

Consequently, the wedge solutions (2.3) and (2.3') can be 
represented as 

U(r) = K(r, O;ro, ( 0 ) - pK(r, n - O;ro, ( 0 ) , (7.2) 

wherep = + 1 fortheE-polarizedcaseandp = - 1 for the 
H-polarized case. Their satisfaction of the P2 boundary con­
ditions (2.2) and (2.2') are easily demonstrated with this 
expression. Moreover, since K(r,O;ro'Oo) and 
K(r,n - O;roOo) represent the values of different branches 
of the P2 solution at corresponding points, the E- and H­
polarized wedge solutions are, respectively, simply a differ­
ence and a sum of those values. 

Next, consider the sum of the values of the P 00 solution 
(4.12) atthepoints (r,O+ m211'), m = 0, ± 1, ± 2, .... This 
sum includes at least one contribution from each P2 surface 
in P 00 and the term K 00 (r,O + m21T;ro,Oo) can be viewed as 
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the value of the mth branch of the P 00 solution at (r,O). As is 
readily shown, the free-space propagator KF(f, fo); i.e., the 
propagator in R2 between fo and f with no wedge present, is 
recovered. In particular, with 8.531.2 of Ref. 21 and (5.2) 
the sum 

00 

L K 00 (r, 0 + m211';ro, ( 0 ) 
m= -eXI 

XH W (kr> ) L =~ 00 e
f21TmA 

] 

=.!.... ~ ein(9-90)J (kr )H(\)(kr ) 
4 n =~ "" Inl < Inl > 

(7.3a) 

This relation illustrates the principle that a symmetric com­
bination of the branches of a multivalued solution to a parti­
cular equation such as (2.1) returns a single-valued solution 
of that equation [See Ref. 7(b), pp. 266-271]. . 

With this result in hand, let us return now to the free­
space electromagnetics problem. To account for the en­
larged path set, a Riemann space in which each sheet is a 
replica ofR2; i.e., P2=R2

, is introduced. The space P 00 then 
resembles the spiral staircase surface associated with the log­
arithm function of complex analysis, and the preimages of 
(r, 0) are the points (r, 0+ m211'),m = 0, ± 1, ± 2, .... The 
P 00 solution K"" (r, fo) remains (4.12). The folding of Koo 
ontop 2 = R2 given by (7.3a) leads to the exact solution, the 
free-space propagator KF(f, fo). Similarly, the folding of 
Goo ontoR2 = P2recovers (3.6), thefree-spaceheatconduc­
tion propagator: 

"" L G"" (r,O + m211',ro,Oo;7) 
m= - 00 

= (411'7) -I exp[ - (r + ro )/47] 

X i eim(9-90)[lml(rro)=GF(f,fo). (7.3b) 
m= - "" 27 

This PIRS description actually provides an alternate repre­
sentation of the free-space results discussed in Sec. II. 

Notice that for the scattering problem where /3 = + 1, 
P + andP _ are copies of the upper half-plane ofR2 so thatP2 

is a double covering of the upper half-plane, not R2 itself. 
Thus, even though the preimages of (r, 0) are (r,O + m211'), 
m = 0, ± 1, ± 2, ... , and the folding (7.3a) gives 
K(f,fo) = KF(r, fo), an image source is present on P _ and 
Eq. (5.6) returns the exact solution to the infinite ground 
plane problem, not the free-space propagator itself. 

Comparing the PIRS solutions of the free-space and the 
wedge problems, the modification of the ffee-space path set 
by the presence of the wedge has been modeled simply by 
constructing the P"" space from replicas of the wedge P2• 

This modification was responsible for reproducing the dif­
fraction effects. In particular, it led to the evaluation of the 
P 00 solution Koo at the resultant preimages (r,O + mn), 
m = 0, ± 1, ± 2, ... , of (t, 0), hence,to the propagator (5.4) 
and the associated image term. This path set modification 
concept has been used in a companion paper6 as the basis for 
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a path-integral derivation without discretization of the solu­
tion to the diffracting half-plane problem. 

Next, the PIRS approach will be connected to several 
standard quantum mechanical PI methods. This discussion 
is facilitated by focusing attention on the related results for 
the heat conduction version of the wedge problem. The P2-
space propagator for the heat conduction problem corre­
sponding to the original diffraction problem is 

00 

G(r, ro;1") = L Goo (r, (J + mO,ro,(Jo;1") 
m= -00 

= m ... ~ 00 f: 00 eU
<9-9

o +mOlG,t (r, ro;1") dJ... 

(7.4) 

Clearly, it is connected to the propagator K(r, ro) through 
the relation 

K(r, ro;1") = L ek2'G(r, ro;1")d1" . 

Therefore, with 8.424.1 from Ref. 21, expressions equivalent 
to (7.4), 

G(r, ro;1") 

1 00 [ m ]/'0. = - L exp i - «(J - (Jo) Gm/p(r, ro;1") 
fJm=-oo fJ 

=(41r{J1")-l exp [ - (r+ro)/4r] 

X i E".Im/p( rro)cos[!!!"«(J - (Jo)] (7.5) 
m ... O 21" fJ 

and 

G(r, ro;1") = (i141r) (e - <" + ~)/41" 1417"1") 

xL exp[;;cosa]xp(a, (J-(Jo) da, 

(7.5') 

can be extracted from the results presented in Sec. V. They 
agree with those reported in Ref. 27. These representations 
of G(r, ro;1") accommodate several PI interpretations dis­
cussed in the literature. Of course, the expressions for the 
diffraction propagator will acquire similar explanations. 

Notice, for instance, that (7.4) can be rewritten as 

G(r, ro;1") = f: 00 [1 ~ (r, ro;1")dt/J, (7.6) 

where 

[1 ~ (r, ro;1") 
00 

= L ~(t/J-[(J-(Jo+mO]) 
m= - co 

(7.7) 

and as 
00 

G(r, ro;1") = L Gm (r, ro;1") , (7.8) 
m= - 00 

where 

Gm (r, ro;1") 

(7.9) 
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The delta function that appears in Eq. (7.7) selects out the 
probability function (7.9) associated with a particular set of 
topologically equivalent configurations of the paths with 
t/J = «(J - (Jo) + mO. The resultant sum (7.8) extends over 
all the inequivalent sets contained in the original path set. 
This explanation has been advocated, for example, by Ino­
mata and Singh. 13 Another interpretation follows Schul­
man's point of view given, for example, in Ref. 3. The origi­
nal path set in P2 can also be decomposed into classes of 
homotopically equivalent paths labeled by the intersection 
number, n (r,:I), of their elements r with :I. This intersec­
tion number is defined as follows. Let :I + and :I _ be, respec­
tively, the wedge faces (J = fJ17" and (J = 0 so that 
:I = :I-t-u:I_. Let an intersection of a path r with :I+ be 
positive if r traverses :I+ in the direction from P + to P_, 
negative if from P _ to P +, and with :I_ be positive if the 
crossing is from P _ to P +, negative ifits from P + to P _. Also 
let n+ (r, C) and n_ (r, C) be the number of positive and 
negative crossings of Cby r. Then the intersection number of 
a path r connecting ro to r in P2 is 

n (r, :I) = [n (r ,:I +) + n (r, ~ _ ) ]12 

where 

nCr ,C) = n+(r, C) - n_(r, C). 

(7. lOa) 

(7. lOb) 

The function G m then represents the contribution to the pro­
pagator from those paths whose intersection number is m. 
These points of view are equivalent and coincide with the 
previous preimage description. In particular, the projection 
onto P2 of a path connecting ro to the preimage 
r m = (r, (J + mO) ofr coincides with a path r m whose inter­
section number is m. Moreover, since P2 is isomorphic to 
R2\ {oJ, the punctured disk, rm is isomorphic to a path in 
R2\ {OJ whose winding number with respect to the origin 
{OJ is m. Then mimicking Schulman,3.4 the term Gm also 
represents the contribution to the propagator from the paths 
whose winding number is m. 

In Refs. 13 and 14, the path integrals are evaluated di­
rectly using the homotopically equivalent path set decompo­
sition. This is accomplished by introducing a constraint into 
the path integral that distinguishes inequivalent homotopy 
classes. This "constrained path integral" (CPI) approach 
realizes a path integral of the form 

W,t(r,ro;1") = L exp[ -S,t(r,ro;1")] !!Pr, (7.11) 

where the action 

S,t (r, ro;1") = I (fr2 + iA8 )dt E(J..) + iA I A· r dt. 

(7.12) 

As noted in Refs. 12-16, the introduction of the linear term 
- iA f~A· r dt, where A = ( - y, x)/(x2 + r), in the ex­

ponent of (7.11) facilitates the separation of the homotopy 
classes. The path integral (7.11) is evaluated by discretiza­
tion; the desired propagator is finally generated through the 
expression S~ 00 dt/J S~ 00 dJ.. e~W,t (r, ro; 1"). Since the lin­
ear term in (7.12) is equal to -iASyd(J= -iA«(J-(Jo) 
and since the constraint and the folding schemes are analo­
gous (as noted above), it is recognized that the PIRS and the 

Richard W. Ziolkowski 2277 



                                                                                                                                    

CPI approaches are interrelated. Consequently, it may be 
possible to extend those problems (quantum mechanical 
and statistical problems, entangled polymer chains, poten­
tial interactions, etc.) to ones involving more general Rie­
mann surfaces like the ones considered here, thus accommo­
dating other physical phenomena. For instance, one obtains 
an interesting conclusion from the solution of the Ahar­
onov-Bohm problem,28 which considers quantum mechani­
cal interference effects resulting from potentials in regions 
where the field is null. Path integral solutions to that prob­
lem were considered4, 13-16 from the point of view of electron 
paths encircling a singular point in a multiply connected 
space. In particular, the solution to the Aharanov-Bohm 
problem satisfies on R2\. {o} the Schrodinger equation28 

{aT - (i1i/2}l) [a; + r- 1 a, + r- 2 (ae - ia)2]) 

x W(r, ro;1') = o(r - ro)o( 1') , (7.13) 

in the gauge A, = 0, Ae = tP/2lrr, where tP is the "flux" of A 
through any circuit containing the origin (or equivalently, 
the flux of the corresponding magnetic field through a sur­
face whose boundary is a circuit) anda = etP/21Tf1c. It can be 
represented as 

W(r, ro;1') 

= m=~ 00 f: 00 d}' exp[i(}. + a) (0 - 00 + 21rm)] 

00 

I 
m= - 00 

(7.14) 

which is a variant of the CPI expressions derived in Refs. 13-
15. The corresponding P2-space problem has the solution 

W(r, ro;1') 

= m =~ 00 f: 00 d}' exp[i(}. + a)(O - 00 + mn)] 

A 

X G;. (r, ro;ilir/2}l) . (7.15) 
Interference between the partial propagators W m and Wn 
(m i= n) of ( 7.14) produces observable interference patterns 
that depend upon the encircled flux and the topological 
winding number. 15,29,30 On the other hand, quantization of 
the flux tP encircled by the paths can be inferred from the 
total propagator (7.14) by applying the (two-dimensional) 
arguments given in Ref. 13. Letting the singular point repre­
sent a magnetic monopole with flux tP = 41rg and setting 
r = r', self-consistency requires 21ra = integerX21r = 21rn 
so that the quantization condition derived by Dirac,31 
g = n (fIc/2e) , is recovered. Similar arguments applied to 
(7.15) yield an = 21rn or g = (n/fJ) (fIc/2e) , which means 
the wedgelike solution corresponds to fractional charge 
quantization. This result is extended to more general frac­
tions simply by incorporating Riemann surfaces with more 
sheets. For instance, a Riemann surface P3 constructed from 
three copies of P would make n = 3 ({31r) and then a choice 
of{3=2wouldgiveg= (n/3) (57.5e). Thus,thePIRSap­
proach may have some applications in the analysis of quan­
tum field problems involving fractionally charged particles 
such as quarks. 

The special case of the half-plane problem ({3 = 2) 
leads to another very interesting characteristics of the P2-

2278 J. Math. Phys., Vol. 27, No.9, September 1986 

space heat conduction and wedge propagators. These half­
plane propagators, denoted explicitly by G2 andK2, have the 
forms 

G2(r, ro;1') = (81r1')-1 exp[ - (r + rv)/41'] 

X m~o Em1m12 (rrol21')CoS[ m( 
0 ~ ( 0

)] , 

(7.16) 

xcos[m«O - ( 0 )/2)] . (7.17) 

For example, with (4.9), (3.6), and the relations 8.406.1, 
8.476.4, and 8.511.4 of Ref. 21, 

QO 

exp(xcostP) = I Em 1m (x)cos(mtP) , (7.18) 
m=O 

the expression (7.16) yields the relation 

or 

1 00 A [ (0 -0 ) ] =- I EmGmI2(r,rO;1')cos m ___ 0 +mlr 
2 m=O 2 

1 A- [ (0 - () )] = - I Gm12 (r, ro;1')cos m ___ 0 

2 evenm 2 

1 A- [ (0 - (0 )] - - I Gml2 (r, ro;1')cos m ---
2 0ddm 2 

00 A-I Gm (r,ro;1')cos[m(O - ( 0 )] - G2(r,O,ro,Oo;1') 
m=O 

G2 (r,O + 21r,ro;1') = - G2 (r,O,ro;1') + GF(r,rO;1') . 
(7.19) 

This also means 

G2(r,O + 41r,ro,Oo;1') = G2(r,O,ro,lJo;1') . (7.20) 

Similarly, the half-plane propagator satisfies 

K 2(r,O+21r;ro) = -K2(r,O;ro) +KF(r,rO)' (7.21) 

K 2(r,O + 41r;ro) = K 2(r,O;ro) . (7.22) 

Treating G2 (r,O,21r;ro) and G2(r,O;ro) as the values of differ­
ent branches of G2 at corresponding points, Eq. (7.19) dem­
onstrates that the half-plane propagator itself exhibits the 
multivalued solution property: 

G2(r,O;ro) + G2 (r,O+ 21r;ro) =GF(r,rO)' (7.19') 

In the half-plane problem :2: is actually a branch line, :2: + 

being its "bottom side" and :2: _ its "top side." Equation 
(7.20) expresses the continuity of G2 during the transition 
through :2: _ from P _ to P +. On the other hand, evaluating 
(7.19) at 0 = E, O<E<I, one obtains the transition condi­
tion 

G2(r,21r + E;ro) = - G2 (r,E;ro) + GF(r,rO)' (7.23) 

for the values of G2 on opposite sides of the branch line :2:, the 
point (r,E) being inP + near:2:_ and (r,21r + E) being in P _ 
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near l: +. Equation (7.23) is also recognized as the transition 
condition for a Riemann-Hilbert problem I I forG2• The - 1 
coefficient of the transition condition indicates a square root 
behavior of G2 near the edge of the half-plane. The corre­
sponding diffraction propagator K2(r,rO) clearly also shares 
these properties. They are discussed in detail in Ref. 26. No­
tice, in particular, that requiring K2 to be bounded at r = 0 
and interpreting the K2 version of (7.23) as a Riemann­
Hilbert problem leads one to Meixner's edge condition32 

lim K2(r,rO) - C' (rI/2) . 
.......0 

This square root behavior also reinforces the choice of the 
two-sheeted P2-space for our analysis, 

Similarly, consider the value of G2 as r traverses a closed 
path in the original problem space, where (r,O) 
= (r,O mod 21T), that encloses the edge. If the path has an 

even winding number, Eq. (7.20) implies that the values of 
G2 at the coincident end points of the path are identical, 
hence that G2 returns to its original value along a double 
loop. On the other hand, if its winding number is odd, Eq. 
(7.19) returns different end-point values. The propagator 
G2 does not return to its original value along a single loop but 
to its negative modified by GF • Thus, the monodromy group 
associated with the half-plane problem is {I, ei1T = - 1}, 
which is also characteristic of the square root behavior and 
again indicates the desirability of the two-sheeted P 2-space. 

Analogous solution characteristics were utilized by Ka­
donoff and Kohmoto in their treatment33 of the two-compo­
nent spinor correlation function. There, the SMJ (Sato, 
Miwa, and Jimbo) analysis of the two-dimensional Ising 
model in terms of the solutions to a two-dimensional version 
of the Dirac equation and extensions of their analysis were 
discussed. Since the two-dimensional Dirac and Maxwell 
equations havae similar forms, the PIRS approach should 
have applications in statistical mechanics problems as well. 

In addition, because potential and heat equation prob­
lems are interrelated (probabilistic potential theory34), po­
tential problems and the techniques that have been devel­
oped to solve them may also prove to be very useful for 
analyzing the corresponding scattering problems. This con­
cept was first noted by MacDonald.3s In particular, a P"" -
type analysis of the wedge-potential problem given by Davis 
and Reitz36 leads to a solution that is readily connected to 
the corresponding wedge diffraction solution. Let 

A± (a,r/J) = (1I21Ti)(1I(r/J±a») , 

so that 

A(a, r/J) = A+ (a, r/J) - A_ (a, r/J), 

and let [1 F [R (0 - ( 0 )] be the free-space Green's function 
for a particular equation (Helmholtz, heat conduction, and 
Laplace operators in two or three dimensions). The P"" -
space propagator in any of the corresponding (straight) 
wedge problems can then be represented in the form 

2279 

K"" (r,ro) = L [1 F[R(O - ( 0 ) ]A(a,O - Oo)da; 

(7.24) 
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hence, the associated P2-space result is 

K(r,ro) 

= m=~ "" 1 [1 A [R(O - ( 0 ) ]A(a,O - 00 + mfl)da 

=~ r YF[R(O-Oo)]Xp(a,O-Oo)da. (7.25) 
41T JA 

On the other hand, numerical solutions to general potential 
problems have been constructed based upon path-integral 
concepts. Generalizations of these schemes to the PIRS 
point of view would allow solution, for instance, of the 
curved diffracting wedge problem (see Ref. 37, for exam­
ple). A coordinate net could be constructed in a P2-space 
corresponding to the exterior of the wedge, and the paths 
and their contributions to the path integral could then be 
computed numerically in a manner similar to the, general 
potential problem approach. Such a numerical scheme 
would greatly extend the applicability of the PIRS tech­
nique. 

Finally, Schulman38 has remarked that the use of the 
Riemann surface in connection with path integrals is "an 
embarrassment to purists." On the contrary, as demonstrat­
ed in this paper, the PIRS approach is natural and essential 
for problems in which boundary surfaces or constraints are 
present. The RS removes the boundaries or constraints thus 
allowing the PI to be calculated over a path set having no 
special restrictions. The RS can then be viewed as containing 
the PI's original path set information, hence, as arising from 
a purely path integral context. 
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FIG. 4. Deformation of the modified Bessel's function contour. 
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APPENDIX: DERIVATION OF THE RADIAL PORTION OF 
THE p 00 PROPAGATOR 

To generate Eq. (4.9) from Eq. (4.8), first consider the 
integrations over the angle variables. A typical one has the 
form 

f;.. (x) = f: 00 dy exp(x cosy - iAy) , (AI) 

where x and A are real nunibers. On the other hand, the 
modified Bessel's function is given by 6.22.3 in Ref. 39 as 

1 Joo + iTT 
I;.. (x) =-. dwexp[xcoshw-Aw]. 

2'TT'l 00 -ITT 

(A2) 

As shown in Fig. 4, the contour of integration is taken to be 

- itr + 00-+ - irr-+itr-+itr + 00. 

Assuming that A and x are non-negative, the contours 
parallel to the real axis can be deformed to the ones shown in 
Fig. 4. The contribution from the arcs at infinity are zero 
leaving only an integral along the imaginary axis. A change 
of variables then gives f;.. (x) = 2rrI;.. (x). Thus, Eq. (4.8) 
becomes 

A • 1 -Nfoof [ N 1+1-1] (rlro) (rNrN_ I ) N-I G;.. (r,ro;1') = bm -(1£) .. , exp - L 11;"1 -- ... 11;"1 II rJ drj . 
N-",2rr 0 j=1 4£ 1£ 2E j=1 

(A3) 

The non-negativity of the order of the modified Bessel's function has been assured by restricting A to its absolute value. 
Since for Re(1J) > -1 and Re(S') >0 (see Ref. 21, 6.633.4), 

r'" 1 (a2 +b 2
) (ab) Jo exp( - S'x2)If} (ax)If} (bx)x dx = 2S exp 4S If} 2i ' (A4) 

it is readily shown that the jth integration in (A3) yields 

ai ~ I exp[. - ro ] r'" exp [ _ (j ~ 1) --.!L]II;"I (rj + I rj )11;"1 (r~ro )rJ drj 
] ](2a) Jo ] (2a) a ]a 

ai-I ( ja) [- ro + ro + ( j ) 1+ 1]1 [ro rj + I ja] 
= -j- j + 1 exp j{2a) j(j + 1)(2a) j + 1 (2a) 1;"1 ja .-;;-. (j + 1) 

ai [ - ~ ] [( j 1+ I )] [rj + I ro ] 
= j+ 1 exp (j+ 1)(2a) exp j+ 1 (2a) 11;"1 (j+ l)a ' (AS) 

where a = 1£. Therefore, becauseNa = 2NE=21', Eq. (A3) becomes 

A • 1 (-r){a
N

-
I (-~) [(N-l)~] (rNro)} G;..(r,ro;1') = bm ---a-Nexp -- --exp -- exp 11;"1 --

N_", 2rr 2a N 2Na 2Na Na 

(A6) 

A physical explanation of the restriction that A be non-nega­
tive is now apparent. It corresponds precisely to the physical 
property that the propagator (A6) be finite as r-+o; i.e., 1_;.. 
is proportional to K;.. , which becomes infinite as its argu­
ment nears zero. Note that a generalization of this procedure 
was developed in Ref. 40 and was used in a similar fashion in 
13. 
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Coherent states defined with respect to an irreducible ray representation u: g-+ug , geG, of an 
arbitrary locally compact separable group G are examined. It is shown that the following 
conditions (a)-(d) are equivalent: (a) U admits coherent states, (b) U is square integrable, (c) 
the W*-system implemented by U is integrable, and (d) U is a subrepresentation ofthe left 
regular c-representation, where c is the respective multiplier of u. Furthermore, the group 
theoretical background of what is called the "P-representation of observables" associated with 
coherent states is investigated: It is shown that the P-representation (which corresponds to a 
covariant semispectral measure) fulfills a certain maximality requirement. The P­
representation can be used to represent the quantum system in question on the Hilbert space 
L 2 (G,dg) of square-integrable functions (with respect to Haar measure dg) on the kinematical 
groupG. 

I. INTRODUCTION 

Depending on the particular situation, different ap­
proaches have been used to introduce coherent states in a 
quantum system: For a harmonic oscillator, e.g., coherent 
states la) can equivalently be defined (1) as states that mini­
mize the uncertainty relation, (2) as eigenstates of the de­
struction operator a, (3) as states that obey the classical 
motion equation (alx(t)a) =A sin (wI + qJ), or (4) as 
states created from the ground state 10) by a unitary opera­
tor: {exp[aa* - a*a]}IO) = la). In systems other than the 
harmonic oscillator it is eventually possible to generalize 
some of the above notions. Of course, different generaliza­
tions need not lead to the same class of states. 

If the system in question is characterized by a represen­
tation of a kinematical group, a variant of approach (4) 
above turns out to be particularly useful: Let G denote the 
respective kinematical group and consider a unitary repre­
sentation u: g-+ug , gEG, on a Hilbert space K. Then for 
every fixed vector soEiJr coherent states Ig) can be defined 
as Ig) = ugso, geG. The arbitrary vector 50 is sometimes 
called a fiducial vector (cf. Ref. 1, p. 21). 

Such coherent states were introduced for the first time 
by Perelomov.2 There G is a Lie group and U is a proper 
unitary representation of G. In the present paper a slightly 
extended frame will be used: The kinematical group G will be 
an arbitrary separable locally compact group and u: g-+ug , 

geG, will be an irreducible Borel ray representation of G on a 
separable Hilbert space JY. This means that the representa­
tion property 

Ug1 0Ug2 = Ug1g2 ' gl' g2eG , 

is replaced by 

Ug1 0Ug2 = c( gl' g2~Uglg2' gl' g2eG , 

where c( gl,g2)' gl' g2eG, is a complex number of modulus 
1. The mapping 

def 

c: G XG-+.'T = {zeC! Izl = 1} 

is called the multiplier of u. The representation U is assumed 
to be Borel in the sense that G3g-+(slugs )eC is a Borel 

measurable function for every sEiJr. Ray representations are 
necessary in quantum mechanics, since states there are not 
given by vectors of the Hilbert space, but instead by Hilbert 
space rays C '11, l1EiJr. 

The unitaries ug , gEG, transform the vectors sEiJr gen­
erating the states. Similarly, one can find symmetries of the 
algebra of observables Pii (JY), which consists of all bound­
ed linear operators on the Hilbert space JY. Every unitary 
ug , geG, implements a symmetry (an automorphism) of 

deC 
Pii (JY) defined by ag = ugxu;, geG, xePii (JY). Converse-

ly, every automorphism K of Pii (JY) is implemented by a 
unitary v, K(X) = vxv*, xePii (JY). On the level of the auto­
morphisms a g the multipliers cancel so that the representa­
tion property 

aglOag2 = a g1g2 , gl' g2eG , 

holds. Here U can be chosen Borel if and only if the mappings 
{G3g-ag (x)}, xePii (JY), are continuous with respect to 
the u-weak (equivalently the weak, strong, u-strong) topol­
ogyon Pii (JY). Thus U is irreducible, i.e., describes an ele­
mentary quantum system, if and only if a is ergodic, that is, if 

ag(x)=x, VgeG, 

implies x = c . 1, ceC (see Ref. 3, 67.2). 
This algebraic approach can be extended considerably: 

Instead of Pii (JY) one can take an arbitrary W*-algebra...-«'. 
...-«' can again support a representation a of a kinematical 
group G. The triple (...-«',G,a) is then called a W*-system. 
The W*-formalism is broad enough to comprehend both 
quantum systems and classical systems. In the latter case...-«' 
is given as the commutative algebra L '" (0) of functions on 
the phase space 0 of classical mechanics. Similarly as above 
a (transitive, i.e., elementary) group representation on the 
phase space 0 implements an (ergodic) representation a on 
L", (0). Note that the W*-formalism can also describe infi­
nite systems and systems with both classical and quantum 
properties. A comprehensive review of the algebraic formal­
ism from the physical point of view is given by Primas,4 a 
short introduction into its group theoretical aspects can be 
found in Chap. 1 of Ref. 5. 
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C*- and W*-algebras: A C *-algebra is a *-algebra that is 
*-isomorphic to a norm-closed algebra of operators on a Hil­
bert space. A W*-algebra is a *-algebra that is *-isomorphic 
to a *-algebra fill!; f!lj (JY) of operators on a Hilbert space 
JY fulfilling fill = (fiJi')', where the commutant Y' of a set 
of operators Y on JY is defined as 

def 

Y' = {xef!lj (JY) Ixy = yx , VyeY}. 

Every W*-algebra is a C *-algebra but not conversely. 
W· -algebras can be characterized intrinsically: A C· -alge­
bra""" is a W·-algebra iff it is the dual of a Banach space 
""" • ' where""" • is called the predual of""". 

Every W *-algebra""" contains a unit element 1. A state 
won""" is a positive linear and normalized [w ( 1) = 1] map­
ping w: "",,-C. A state w on """ is called normal (or 0'­

weakly continuous) if there is an element a~. such that 
w(x) = x(a) holds for all operators x~. Equivalently, w 
is normal iff sUPp w(xp ) = w(supp xp ) holds for every 
bounded increasing net (xp){Jel of positive operators from 

""" . 
If a physical system is described by the "algebra of ob-

servables" """, then its respective classical properties corre­
spond to nontrivial elements of the center 

def 

!l' (""") = {x~ Ixy = yx, V~}. 

If no classical properties exist, i.e., if !l' (""") = C . 1, then 
""" is called a/actor. 

The definition of coherent states as given by Perelomov2 

incorporates another important ingredient. It is required 
that the integral f Gig) (gldg exists (cf. Ref. 2 and Ref. 1, 
p. 5). Here dg denotes the left-invariant Haar measure on the 
group G. Existence of f Gig) (gldg means that there is an 
operator xef!lj (JY), such that 

(5 Ixs) = L (5 Ig)( gls )dg 

holds for all seJY. Irreducibility of u then implies that 
f Gig) (gldg = x is a multiple of the identity operator 1. Ap­
propriate normalization (of the Haar measure or the fiducial 
vector so) then results in 

Llg) (gldg = 1 . (1) 

The resolution of unity (1) is sometimes referred to as the 
completeness property of the coherent states Ig), geG. 

If G is not compact, i.e., the Haar measure dg is not 
finite, condition (1) is a severe restriction. On the Hilbert 
space level it implies that there exist nonvanishing vectors 5 
and 17 such that 

(2) 

exists. An irreducible ray representation with this property 
is called square integrable. In the context of coherent states 
square-integrable proper unitary representations have been 
studied, e.g., in Refs. 6 and 7. Note that condition (1) is not 
so much a restriction for the fiducial state (this may be the 
case, too), but a restriction for the unitary ray representation 
u. 
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On the algebraic level (1) is equivalent to the existence 
of an atomic projection pef!lj (JY), namely p = Iso) (sol, 
such that 

L ag(p)dg< 00 • (3) 

Incidentally, existence of the integral (3) in the weak sense is 
equivalent to the existence of the supremum 
SUPK fK ag(p)dg, whereKrunsoverall compact subsets of 
G. Since a is ergodic, f G a g ( p )dg is a multiple of the identi­
tyoperator 1. If (3) holds for some atomic projection p, the 
ergodic W*-system (f!lj(JY),G,{ag(.) = ug ' u:lgeG}) is 
called integrable. It is the ergodicity of a, which then implies 
(see Ref. 8, Lemma 1.4) that 

rta :- {yef!lj (JY) IL ag (y*y)dg< oo} 
is O'.:'weakly dense in f!lj (JY), which is the usual definition of 
integrability of a W *-system as given in Ref. 9. Conversely, if 
rta is dense in f!lj (JY), it contains an atomic projectionp (cf. 
the proof of Theorem 2) such that 

r ag ( p )dg = r ag ( p*p )dg < 00 J; JG 
holds true. 

Thus coherent states do exist with respect to an irreduci­
ble ray representation u if and only if the associated W*­
system (f!lj (JY),G,{ag ( • ) = ug • u:lgEG}) is integrable. 
Assume now this to be the case and setp = 150><501. Then 
for every bounded (Borel-measurable) function m: G-+C on 
the group G there exists an operator tpp (m)ef!lj (JY) 

tpp(m):- Lag(p)m(g)dg=Llg)(glm(g)dg . (4) 

The operator tpp (m) is then said to admit a diagonal repre­
sentation or P-representation (cf. Ref. 1, p. 13). Such a rep­
resentation has been used, e.g., for certain Hamiltonians (cf. 
Ref. 1, p. 69), but may incorporate much more general ob­
servables,s for example, position and momentum operators 
(if G is the group R2n

, neN) or spin operators [if G is the 
rotation group SO ( 3 ) ] . A large part of the theory of integra­
ble systems can then be done on the level of functions on the 
kinematical group. It is worth remarking that m: G-+C need 
not be a bounded function and correspondingly tpp (m) need 
not be a bounded operator (cf. Ref. 10, Chap. II). 

tpp maps functions on G into operators on the Hilbert 
space JY. This paper aims at giving a precise group-theoreti­
cal sense to tpp (Sec. II) and at studying its properties (Sec. 
III). Section IV will be devoted to the question under which 
circumstances an irreducible ray representation implements 
an integrable W*-system, i.e., admits coherent states. In the 
final section it will be shown that the quantum and classical 
theories of a certain kinematical group G can be represented 
on one and the same Hilbert space L 2 (G,dg). 

II. COVARIANT EMBEDDINGS OF Loo (G) INTO W*­
SYSTEMS 

def 
In the following L 00 (G) = L 00 (G,dg) will denote the 

W*-algebra of all essentially bounded Borel measurable 
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complex-valued functions on a separable locally compact 
group G. The action Ad A of G on L 00 (G) is defined as 

def 
(AdA( g)m)(s) = m(g-Is) , g,sEG. 

More precisely, the elements of L 00 (G) are classes of func­
tions differing only on a dg-null set. The norm II [m] II of such 
a class of functions [m] is defined as the infimum 

def 

II [m] II = inf{lInlisup InE[m]} , 

where 

IInlisup = supremum In(g) I· 
/lEG 

L", (G) is a W*-algebra with the predual LI(G,dg) of all 
integrable Borel measurable function on G. 

Covariant embeddings of L co (G) into a W*-system.s:· Let 
(vR,G,a) be a W*-system. Then a (positive, normalized) 
covariant embedding of Loo (G) into (vR,G,a) is a mapping 
X: Loo (G)_vR with the properties 

(i)xislinear: x(m +An) =x(m) +Ax(n), m,nELoo (G), AEC, 
def 

(ii) Xispositive: x(m)~O if mELoo (G)+ = {mELoo (G)lm~O}, 

(iii) X is normalized: X( 1) = I , 

(iv) X is covariant: agu-(m») = X(Ad A ( g)m), mEL 00 (G), gEG. 

A covariant embeddingx: Loo (G)-vR is called normal (or 
u-weakly continuous) if for every normal state \{I on vR, the 
state \{loX on L .. (G) is normal. 

A covariant normal embedding X: L "" (G)-vR is essen­
tially the same as a covariant semispectral measure.6 In the 
latter case not all elements from Lao (G) are considered but 
just characteristic functions of Borel subsets of G. Covariant 
semispectral measures cannot just be used for introducing 
and studying observables, S but also for the discussion of their 
measurement. 11.12 

Observation 1: Consider an ergodic W*-system 
(vR,G,a) and a positive operator xEvR such that 
SG ag(x)dg= 1. Then 

f/J,,: L"" (G)-vR , 

f/J,,: m-L ag(x)m(g)dg, mEL"" (G), 

is a normal covariant embedding of Loo (G) into (vR,G,a) 
(Ref. S, Lemma 11.1). 

Observation 2: An ergodic W*-system (vR,G,a) admits 
a normal covariant embeddingx: L QO (G)-vR if and only if 
(vR,G,a) is integrable (Ref. 5, Theorem 11.2). 

The particular normal covariant embedding 

f/Jp: m-L Ig)( glm( g)dg = L ag(p)m( g)dg, 

mELoo (G) 

(p = le)(el, e is the neutral element of G) 

has been introduced at the end of Sec. I. Of course, it can 
happen that coherent states IgI) and Ig2),gl #g2' are identi­
cal or differ just by a complex number of modulus 1. Accord­
ingly, the closed subgroup 

de( 

H= {hEGlah(p) =p}={hEGIC·lh) =C'le)} 

may be nontrivial, i.e., H ;t:{e}. The integrability condition 
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( 1) then implies that H is a compact subgroup of G and 
furthermore 

f/Jp(Adp(h)m) = f/Jp (m), mELoo (G), hEll, 

def 
where (Ad p (h) m) (s) = m (sh), S,hEG. If dh denotes a nor· 

malized Haar measure on the compact group H, the relation 

f/Jp {L (Adp(h)m)dh } = L f/Jp(Adp(h)m)dh 

=f/Jp(m) , mEL 00 (G) , 

holds. Sa (Adp(h)m)dh can be considered as a function on 
the left coset space G I H and consequently lpp: L"" (G) 
_ffI (K) can then be replaced by a covariant mapping (cf. 
Refs. 2 and 6) 

ipp: L"" (GIH)-ffl(K) , 
def 

ipp (fn) = f/Jp(t(m»), mELco (G IH) , 

def 

t(m)(s) = mesH) . 

Here L"" (G I H) is defined with respect to the unique G­
invariant measure class on G I H. 

A normal covariant embedding X: L QO (G)-vR may be 
trivial, i.e., X(L co (G») = C . 1. However, to be of interest, 
X(L 00 (G») should exhaust the elements of vR as much as 
possible. To give a precise definition of this,.consider two 
normal covariant embeddings XI and X2 of Lco (G) into a 
W*-system (vR ,G,a). Then X I is said to be contained in X 2' 

XI ~X2' ifXl(Loo (G)+)~X2(Loo (G)+) holds. A normal ca­
variant embedding X: L"" (G)_vR is called maximal if 
X ~ f/J implies X(L 00 (G) +) = f/J (L 00 (G) +), for every other 
normal covariant embedding f/J. Maximality is opposed to 
triviality and the question arises which position is held in this 
hierarchy by the normal covariant embeddings associated to 
coherent states (see Sec. III). Existence of maximal embed-
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dings in arbitrary ergodic W*-systems is settled by the fol­
lowing observation. 

Observation 3: (See Ref. 5, Theorem 11.7.) Let 
(vII,G,a) be an ergodic W*-system. Then the following con­
ditions are equivalent: (i) (vII,G,a) is integrable, (ii) there 
exists a normal covariant embedding of L 00 (G) into 
(vii ,G,a ), and (iii) there exists a maximal normal covariant 
embedding of Loo (G) into (vII,G,a). 

Obseroation 4: (See Ref. 5, Theorem 11.6.) Let X t and X 2 
be normal covariant embeddings of L 00 (G) into an ergodic 
W*-system (vII,G,a) such that Xt(L oo (G)+) 
= X2(L oo (G)+). Then there exists an element goEG, such 
thatXt(m) = X2(Adp( go)m), 'fImELoo (G). 

III. COVARIANT EMBEDDINGS ASSOCIATED WITH 
COHERENT STATES 

The main result of this chapter is Theorem 4, stating 
that normal covariant embeddings of the form 
m-f G m{s) Is) (slds, mELoo (G), are maximal with respect 
to the ordering ~ introduced in Sec. II. For the proof of this 
fact the following lemmas are needed. 

Lemma 1: A normal covariant embedding X of L 00 (G) 
into an ergodic W*-system (vII,G,a) is of the form 'Px for a 
suitable positive operator xevll if and only if there exists a 
constant N> 0 such that 

11x(/)1I<{LI( g)dg}'N 

holds for all positive elementsl from {L t {G)nL 00 (G)}. For 
'Px this constant N can be chosen to be IIxli. 

The proof of this lemma is given in the Appendix. 
Lemma 2: Let U: g_ug, geG, be an irreducible ray rep­

resentation on a Hilbert space !It' and consider the represen­
tation 

def 

ag ( .) = Ug . U;, geG, 

on ~ (!It'). Let furthermore XE~ (!It') + be a positive oper­
ator such that f G ag (x)dg = 1. Then the associated normal 
covariant embedding 

'Px: 1-1 ag(x)/{g)dg, feL .. (G), 

is extremal within the set of all normal covariant embeddings 
of L 00 (G) into (~(!It'),G,a) if and only if x is a mUltiple of 
an atomic projection. 

Proof: Ifx is not a multiple of an atomic projection, 'Px is 
clearly not extremal even within covariant embeddings of 
the form 'Py,ye~(!It')+, fG age y)dg = 1. Conversely, let 
x be the mUltiple of an atomic projection, f G a g (x )dg = 1, 
and suppose 'Px =AXt + (l -A)X2' AE{O,I), where X;, 
i = 1,2, are normal covariant embeddings: 

O<AXt (I) <'Px (I), 'fI/E{L I(G)nL oo (G)} + 

=>lIxI{/)II< ~ lI'Px {/)II< II~II {LI( g)dg } . 

From Lemma 1 it is now inferred that X I (and similarly X 2) 
is of the formXI = 'Px, {X2 = 'Px, j, wherext andx2 areposi­
tive operators from ~ (!It') such that f Gag {x; )dg = 1, 
i= 1,2: 
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=>'Px =A'Px, + (1-A)'Px" 

=> L \f!(ag(x-Axt - (l-A)x2)/(g) =0, 

'fI\f!evII., 'fIfeL 00 (G) , 

=>x =Ax l + (l-A)X2' 

Since x is a multiple of an atomic projection p, x = I'p, one 
infers that x; = pX; P = 1'; p, I';ER+, i = 1,2. Then 

L ag{x)dg= L ag(x;)dg, i= 1,2, 

implies x =XI =X2 and X = XI = X2' Q.E.D. 
Theorem 1: Let u: g-ug, geG, be an irreducible ray 

representation on a Hilbert space !It' and consider the repre­
sentation ag{.) = ug .u;, geG, on ~(!It'). Let 
XE~ (!It') + be a multiple of an atomic projection such that 
f G a g {x )dg = 1. Then the associated covariant etnbedding 
'Px: L 00 (G)_~ (!It') is maximal, i.e., every normal covar­
iant embedding X with the property 'P x (L .. (G) +) 
~X(Loo (G)+) fulfills 'Px(L .. (G)+) = X(Loo (G)+). Fur­
thermore, the latter identity implies that there exists an ele­
mentgoEG, such thatx = 'Pa (b,(Bo)X)' 

so 
Proof: The normal covariant embedding 'Px is extremal 

within the set of all covariant embeddings of L .. (G) into 
(~(!It'),G,a) (use Lemma 2 and Ref. 5, proof of Theorem 
11.5). The maximality then follows from Ref. 5, Theorem 
11.6. Here 'PAL 00 (G) +) = X(Loo (G) +) implies (see Ref. 5, 
Theorem 11.6) that there exists an element goEG, such that 
'Px(Adp( go-I)m) = x(m), 'fImELoo (G). The last assertion 
of the theorem then follows from 

'Px(Adp( go-I)m) 

= L ag(x)m(ggo-t)dg 

g'=::-'i a. {x)l1(go)m{g')dg': 
G g Bo 

= L ag(l1{ go)ago (x»)m{ g)dg 

= 'Paso(b,(go)x) (m), 'fImEL .. (G) . Q.E.D. 

Remark: If x and y are multiples of atomic projections 
such that no geG exists with x = ag (11 ( g}y), the associated 
maximal normal covariant embeddings 'Px and 'Py have dif­
ferent range, 'Px(Loo (G) +)#:'Py(L oo (G) +). A simple exam­
ple, based on a commutative group of four elements, is given 
in Chap. III of Ref. 10. The maximal normal covariant em­
beddings in this system can be studied in a geometric man­
ner. Additional criteria can be found there to mark out cer­
tain maximal normal covariant embeddings and thus certain 
atomic projections or states of the system. 

On the other hand there exist systems 
(~(!It'),G,{ag{') = ug ' u;,geG}j that essentially admit 
only one tnaximal normal covariant embedding. A typical 
example is given by the spin-! irreducible ray representation 
oftbe rotation group SO(3) (see Ref. 10, Chap. III). 

Conjecture: If u: g-ug, geG, is an irreducible ray repre­
sentation on a Hilbert space !It', every maximal normal co­
variant embedding of Loo (G) into the W*-system 
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(Y6'(K),G,{ag( .) = ug ' u;, geG}) is of the form (fJx: 

m-+fG ag (x)m( g)dg, meL"" (G), where x is a multiple of 
an atomic projection. 

IV. EXISTENCE OF COHERENT STATES 

The starting point of this chapter is the observation that 
square integrability of an irreducible unitary ray representa­
tion implies the integrability of the associated W*-system 
and vice versa. Note that the concept of integrable unitary 
representations as presented in Ref. 13, 14.5 is not useful in 
the present context, since ray representations u: g-+ug, geG, 
and u: g-+d( g)ug, Id( g) I = 1, geG, implement the same 
actions on the algebra Y6' (K) and are considered as being 
equivalent. The following definition will be needed. 

Definition: Let c: G X G-+Y be a multiplier. Then the 
ray representation A C on the Hilbert space L 2 (G,dg) defined 
by 

def 

(A C( g)s(x») = c( g,g-IS)S( g-IS) , 

seL 2(G,dg) , s,geG, 

is called the left regular c-representation of G. 
Theorem 2: Consider an irreducible ray representation 

u: g-+ug, geG, on a Hilbert space K. Then U is square inte­
grable if and only if the associated W*-system 

def 
(Y6'(K),G,{ag(x) = ugxu;, xeY6'(K)lgeG}) is integra-

ble. 
Proof: :::::}: In (a) and (b) part of the proof of Ref. 14, 

Theorems 2 and 3 is mimicked. 
(a) Suppose U is square integrable, i.e., there exists vec­

tors So and 7J of norm 1 such that f G I (us 7Jlso) 12 ds < 00. 

Then the operator V"1' defined by 

def 

V"1 S = {G3s-+(us7Jls)}eL 2(G), seD( V"1) , 

has a nontrivial domain of definition D( V"1 ) and is closed. 
(b)..1. C(g)V"1s= V"1UgS, VgeG, VseD(V"1): 

(A C( g) V"1S )(s) 

= c( g,g-IS)( V"1S)( g-IS) 

=C(g,g-IS)(Ug_,s 7Jls) 

= c( g, g-IS) (ugu;Ug-1s 7Jls) 

=C(g,g-IS)(C(g,g-IS)us7Jlugs) = (us7Jlugs) 

= (V"1UgS) (s), s, geG . (5) 

Relation (5) implies the invariance ofD( V"1) under the uni­
taries Ug' geG. Since U acts irreducibly, D( V"1) is dense in 
JY. It follows from Schur's Lemma (see Ref. 14, Chap. 2) 
that V"1 is a multiple of an isometry. In particular, 
D( V"1) = K and V"1 is bounded. 

(c) Denote by p the atomic projection onto the subspace 
C· 7J, 
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L (S las (p)s )ds 

= L (S Ius pu,:s )ds 

= L (u':sl7J(u':sl7J»ds= LI(Us 7JlsWdS 

= IIV"1S 112<11V"11121Is 112 , seJY. (6) 

Therefore the operators f K as ( p )ds are bounded by 
II V"111 2 . 1 for arbitrary compact subsetsK<G and 

r as ( p )ds = sup r as ( p )ds 
JG K<G JK 

K compact 

exists. 
<=: Suppose there is a nonvanishing operator yeY6' (K) 

such thatf Gas (y*y)ds < 00. Using spectral theory, a multi­
pIe x =1= 0 of an atomic projection p can be shown to exist such 
that 

x..;;;y*y:::::} f Gas (x)ds<f Gas (y*y)ds < 00 

:::::}fG as(p)ds< 00. 

Relation (6) in (c) then implies that f G I (us 7J Is W ds < 00, 

where 7J is a unit vector in JY such that pK = C . 7J and 
seJY is arbitrary. Q.E.D. 

The above proof contains even more: One gets the fol­
lowing theorem, which slightly generalizes a well-known re­
sult on square-integrable (proper) representations of locally 
compact groups (see Ref. 13, 14.1, and Ref. 14, Theorem 2). 

Theorem 3: Let u: g-+ug, geG, be a square-integrable 
irreducible ray representation on the Hilbert space K with 
associated multiplier c. Then the representation U is unitarily 
equivalent to a subrepresentation of the left regular c-repre­
sentation A C of G. 

Proof: The operator V"1 introduced in part (b) of the 
proof of Theorem 1 defines (by appropriate normalization) 
the isometry that, through relation (2), implements the 
equivalence between the unitary representation U and r..1. cr , 
where r is given as the projection with range V"1 K. Note that 
V"1K is A c-invariant by (2). [Remark: Theorem 2 can also 
be derived from Ref. 5, the proof of Lemma 111.5.] 

Of course the converse of theorem 2 is also true. It is 
formulated in Theorem 4. 

Theorem 4: Let c: G X G-+Ybe a multiplier and consid­
er an irreducible ray representation U of the locally compact 
group G on a Hilbert space K, which is unitarily equivalent 
to a subrepresentation of the left regular c-representation A c. 
Then U is square integrable. 

Proof: Let r be a A C -invariant projection in Y6' (L 2 (G») 
such that U and r..1. Cr are unitarily equivalent and denote by 
M: m-+M m' meL "" (G), the multiplication representation 
ofL"" (G) onL 2(G). Then m-+rMmr, meL"" (G), is a nor­
mal covariant embedding of L "" (G) into 

(rY6'(L 2(G»)r,G,{ag(.) :: r..1.C(g)r.r..1.C(g)*rlgeGD 

~(Y6' (K),G,{ag ( .) :: ug . u;lgeG D 
and therefore (Y6' (K) ,G,a) is integrable (see Ref. 5, Lemma 
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11.2). Thus U is square integrable (Theorem 1). Q.E.D. 
Rephrased, the above theorems say that a unitary group 

representation u with multiplier c admits coherent states Ig), 
geG, with f Gig) < gldg < 00 if and only if U is a subrepresen­
tation of the left regular c-representation. If the group G is 
compact, this is always the case; if G is noncompact, this 
condition is fulfilled only in very particular situations. Irre­
ducible ray representations of the GaliIei group, for example, 
never do admit coherent states in this sense. 

v. PHASE SPACE REPRESENTATIONS ASSOCIATED 
WITH COHERENT STATES 

In this chapter u: g __ ug, gEG, will denote a square inte­
grable irreducible ray representation on a Hilbert space :Jr 
with associated multiplier c, and (tB (:Jr) ,G, {ag = ug 
. u;lgeG}) will be the integrable ergodic W*-system imple­
mented by u. 

Consider a normal covariant embedding X: L 00 (G) 
--tB (:Jr) of Loo (G) into (tB (:Jr),G,a). Here X is a positive 
linear map and therefore completely positive since L 00 (G) is 
a commutative algebra (see Ref. 15, Theorem 4). It is there­
fore possible to use and to generalize Stinespring's theorem 
(see Ref. 15, Theorem 1). Accordingly, there exists a Hil­
bert space %, an isometry V::Jr --%, a faithful *-represen­
tation 1r: L 00 (G)--tB (%) and a unitary ray representation 
w: g __ WgEtB (%), gEG (whose associated multiplier is the 
same as that one of u), such that 

(i) the linear subspace generated by 1r (Loo (G»)V:Jr is 
densein%, 

(ii) x(m) = V*1r(m) V, mELoo (G), 

(iii) Wg V = VUg , geG, (7) 

(iv) wg1r(m)w; = 1r(AdA( g)m), mELoo (G). 

Proof: Considering the proof of Ref. 5, Theorem 111.2, 
there is just one point that is not obvious at first sight, namely 
thatg--wg,geG, is Borel: Every SE% is approximated by a 
norm-bounded sequence (s n ) neN of vectors that are linear 
combinations of vectors in 1r(Loo (G»)V:Jr. For every gEG 
one has 

1 (s IWgs) - (Sn Iwgsn ) 1 

=!I(S-Snlwg(S+Sn» + (S+Snlwg(s-sn»1 

<lIs-snll IIwgll lis +Sn II 

<lIs-s .. II(l\sl\+l\s .. l\) -- o. 
n~oo 

Since the pointwise limit of Borel functions is Borel (see Ref. 
16, 2.1.4) and since a linear combination of Borel functions 
is Borel, it is therefore sufficient to show that 
{g __ (1r(m) Vslwg1r(n) V1J) y,gEG} isaBorelfunctionfor 
arbitrary m,nEL"" (G), S,1JE:J1'. Using the properties (7) 
(ii)-(7) (iv) one gets 

{g--(1r(m) Vslwg1r(n) V1J)y} 

= {g--<x(m AdA( g)n)*sI Ug1J)K}' 

That the latter function is Borel follows from the separability 
of % and the assumptions by use of Ref. 16, E.2 and 
R~ QRn 
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If X is extremal within the set of all normal covariant 
embeddings of Loo (G) into (tB (:Jr),G,a), then 1r(Loo (G»), 
= 1r(L"" (G») (see Ref. 5, Theorem 111.2). This is now just 
the case if X = f/Jx' where x is a multiple of an atomic projec­
tion with f Gag (x)dg = 1 (Lemma 2). Using Ref. 17,2.8.3 
and Ref. 18, 111.1.4, one infers from the maximal commuta­
tivity of 1r(L "" (G») in tB (%) that 1r can be supposed to be 
the multiplication representation 

m--MmEtB(L 2(G»), mEL"" (G) , 
(8) 

def 

(Mm \fI)( g) = m( g)\fI( g), geG, \fIEL 2(G) , 

ofL"" (G) ontheHilbertspaceL 2(G). Furthermore Ref. 19, 
Theorem 6 implies thatg--wg , geG, can be assumed to be the 
left regular c-representation A C (cf. Theorem 7). This re­
proves Theorem 3 of Sec. IV, and gives in addition a struc­
tural result concerning normal covariant embeddings. 

Theorem 5: Let U: G--tB (:Jr) be a square-integrable 
irreducible representation, x be a mUltiple of an atomic pro­
jection with f Gag (x)dg = I, andf/Jx :L"" (G) __ tB (:Jr) the 
associated normal covariant embedding. Then there exists 
an isometry V: :Jr --tB (L 2 (G») such that 

(i) A C( g) V = Vug , geG, 

(ii) V*MmV=f/Jx(m), mELoo (G). 

Remark: The proof given above puts qJx: Loo (G) 
-tB (:Jr) into the context of arbitrary normal embeddings. 
The fact that f/Jx is extremal (Lemma 2) then leads to the 
particular structure given in Theorem 5. Theorem 5(ii) 
could also be shown to hold using the techniques of the proof 
of Theorem 2. The isometry Vis just given as the (appropri­
ately normalized) operator V1J introduced there. 

def 
In the sequel, /3 g (Y) = A C( g)YA C( g) *, YEtB(L 2( G»), 

geG, will denote the action on tB (L 2 (G») implemented by 
the left regular c-representation. The fixed point algebra 
tB(L 2(G)f is defined as 

def 

tB(L 2(G)f = {YEtB(L 2(G»)1 /3g (y) = y, VgeG}. 

Theorem 6: Let c(r) denote the central support in 
def 

tB (L 2 (G) f ofthe projection r = VV *EtB (L 2 (G) f. Then 

there exists a unique (surjective u-weakly continuous) 
*-isomorphismJ: tB (:Jr)-{c(r) (tB(L 2(G)f)'c(r)} with 
the property 

V*J( Y) V = Y, yetB (:Jr) . 

Furthermore, J is covariant, i.e., /3g(J(y»)=J(ag(y»), 
geG, holds for each element ye~ (:Jr). 

Proof: The subspace c(r)L 2( G) is generated by 
{c(r)tB(L 2(G)fc(r)}V:Jr (see Ref. 20, 3.9); therefore 
Ref. 21,1.3.1 implies that to eachYEtB(:Jr) there exists a 
unique operator J( Y)E{c(r) (&8(L 2(G)f)'c(r)} with the 
property V*J( y) V = y. Here 

J: tB (:Jr) __ {c(r)(tB(L 2(G)f)'c(r)} 

is a u-weakly continuous surjective *-isomorphism. Covar­
iance follows from the uniqueness property by using that 
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and 

V*{:Jg(J( y»)V 

= V*A C( g)J( y)A C( g)*V 

= ug V*J( y) Vu; = ug yu; = a g (y) ,ye.@ (JY) . 

Q.E.D. 

Similarly asA c, a unitary ray representation pC is defined 
on the Hilbert space L 2 (G), 

(pC( g)t )(s) 
deC 

= 6.( g)'/2C(sg,g-')t(sg) , teL 2(G) , geG. 

Here A C( gO) andpC( g) commute for arbitrary elements go, 
geG, i.e.,pC( g)e.@(L 2(G)f, VgeG. The multiplier oU cisc 
itself. The associated mUltiplier T of pC is given by 

Theorem 7: The fixed point algebra .@(L2(G)f is gen­
erated by the unitaries {pc ( g) IgeG}. Its commutant 
{.@ (L 2 (G) f}' is generated by the left regular c-representa­
tion {A C( g)lgeG}. 

Proof The duality theory of W*_systems22
-

24 is used; 
flt (G) denotes the W*-algebra generated by the right regu­
lar representation {p ( g) IgeG}. The maximal commutative 
subalgebra {M m I meL .. (G)} ~ '@(L 2 (G») implements a 
coaction /): .@(L 2 (G»)_.@(L 2(G»)®flt(G) (see Ref. 22, 
pp. 25-27 and Ref. 23, p. 1438) with the properties 

(i) /)(p( g» =p( g) ® p( g), geG, 

(ii) /)(Mm) = Mm ® 1, meL", (G) , 

(iii) /)(y) =y® 1 
implies y = M m for suitable meL '" (G) , 

(iv) 5('@(L 2(G)f) ~ .@(L 2(G)f ® flt(G) . 

Therefore /j( pC ( g) ) = pc ( g) ® p ( g), geG, holds, and since 

deC 

(.@(L 2(G)f)6 = {ye.@(L 2(G)fl/j(y) =y® I} 

= .@(L 2 (G)fn{Mm lmeL", (G)} 

=C·l, 

the first assertion of the theorem is now immediate from Ref. 
19, Lemma 7. The second assertion is proved in a similar 
way. Q.E.D. 

Since a is an ergodic representation, r is an atomic pro­
jection in .@(L 2(G)f and consequently, c(r) is an atomic 
projection in the center .,q' (.@(L 2(G)f) of .@(L 2(G)f. 
Thus there is a correspondence (not necessarily one-to-one) 
between square-integrable irreducible ray representations of a 
fixed multiplier c and the atomic projections in the center of 
the W*-algebra generated by the left regular c-representation 
(cf. Ref. 13, Chap. 15). 

If .@(L2(G)f is a factor, the only atomic projection in 
the center of{.@(L 2 (G) f}' is the unit operator 1. In this 
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situation, the covariant *-isomorphism J: .@(JY) 
_{.@(L 2(G)f}' is unital and the W*-system 

(.@ (JY),G,a)~ ({.@(L 2(G)f}',G,{:J) 

is thus represented on the Hilbert space L 2 (G). This is, for 
example, the case if G is an Abelian group and a is a faithful 
representation (see Ref. 5, Lemma 111.3). Incidentally, a 
square integrable irreducible ray representation u of an Abe­
lian group G with associated multiplier c and fulfilling that a 
is faitlJ!ul exists if and only if the group homomorphism 
s: G-G defined by 

is an isomorphism (in particular surjective) (see Ref. 5, 
Theorem 111.7). Here", < . , . ) describes the duality between 
G and its dual group G. 

The most simple example is given by G = a2n, 
n = 1,2, ... , and 

deC 

= exp{iA(a,b2 - a2b,)}, ai,bieRn, i = 1,2. 

Here A is a fixed positive real number corresponding to 
Planck's constant. Since R2n can also be regarded as a phase 
space in the sense of classical mechanics, the representation J 
on L 2 (R2n) is then referred to as a phase space representation 
of the Weyl relations. Theorem 6 can be regarded as a gener­
alization of this phase space representation formalism, 
where R2n is. replaced by an arbitrary locally compact kine­
matical group. 

Apart from the trivial case G = {e}, K = C, the repre­
sentation J is highly reducible. Here J(.@(JY») 
= (.@(L 2(G)f)' and its commutant .@(L2(G)f are 
(anti- ) isomorphic, i.e., "equally large." A closer look shows 
that J is just the standard representation of .@ (JY) (cf. Ref. 
25, Chap. 2.5.4). Tp.e standard representation J: .@(JY) 
_.@(L 2(G») has the nice property that every state cu on 
.@(JY) can be expressed by a vector teL 2(G), 
cu(y) = <tIJ(y)t),ye.@(JY). 

Note that not only the respective quantum theories of a 
certain kinematical group G [with .@ (JY) as "algebra of 
observables"] are represented on the Hilbert space L 2 (G), 
but also the respective classical theories: The algebra of ob­
servables is then given as the commutative algebra L", (G) 

[or L", (G IH) ~L", (G), where H is a closed subgroup of 
G], which is represented on L 2(G) by the multiplication 
representation (7) ("Koopman-formalism"). This may 
considerably simplify the investigation of limits (such as 
~) where a quantum theory goes into a classical theory. 
More generally, the emergence of classical observables could 
be discussed in such a framework. 

APPENDIX: PROOF OF LEMMA 1 

~: Let x be a positive operator from vii such that 
f a a g(x)dg=l and let fi'x(m)=Saag(x)m(g)dg, 
meL", (G), be the associated normal covariant embedding. 
Then the desired inequality follows from 
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II Lag (x)f( g)dgll 

= :~.I(qJ, Lag(x)f(g)dg) I 
11"'11<1 

= sup Ii qJ(ag (x»)f( g)dgl 
11"'11<1 G 

< sup IIqJlI· IIxll . i f( g)dg 
11"'11<1 G 

= IIxli' Lf( g)dg, VfE{L I(G)nL"" (G)} + • 

¢:: Consider a fundamental system (Kn ) neN of compact 
neighborhoods of the neutral element eEG and continuous 
positive functions (kn ) neN with the properties 

(i) L kn (g)ll( g-I)dg = 1, 

(ii) support (kn ) r;.Kn , nEN 

(ll is the modular function of G). 
It will be shown first that the set of operators (x( k n ) )neN 

is norm-bounded: Since ll: G---+lR+ is continuous, one can 
find an NEEN such that Ill( g) - 11 <€ holds for all geKn' 
n>NE: 

~IL kn (g)dg - L kn (g)ll( g-I)dgl 

= IL kn (g)ll( g-I)(ll( g) - l)dgl 

<L kn(g)ll(g-I)lll(g) -lldg 

<{L kn (g)ll( g-I)dg } . €, n>NE 

~11x(kn )II<N. L kn (g)dg<N(1 + €), Vn>NE 

~(IIX(kn ) IDnEN is bounded by a positive number dER+ . 
def 

Since J( d = {yEJll II yll <d} is u-weakly compact 

and second countable, there exists a subsequence 
(X(kn(J) »)jeN converging u-weakly to a positive operator 
xEJI d' Due to Ref. 5, Proof of Lemma 11.2, and Ref. 25, 
Theorem 2.7.11, one has fG ag(x)dg<1. For 
fE{L I(G)nL"" (G)} and arbitrary qJEJI., the following 
holds: 

I (qJ, 1 ag(x)f( g)dg) - (qJ, 1 ag(x(kn(j) Hf( g)dg) I 
= 11 {qJ(ag(x») - qJ(ag(x(kn(j) »)}f( g)dgl 

<i IqJ(ag(x»)-qJ(ag(x(kn(J»»llf(g)ldg.---+ o. 
G ~"" 
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In the last step Lebesgue's dominated convergence theorem 
has been used. Thus f/Jx (f) converges u-weakly to 

(k'(l» 

f/Jx (f) for allfE{L 1 (G)nL"" (G)}. In the proof of Ref. 5, 
Theorem 11.3 it is shown that f/JX(k.) (m) converges u-weakly 
to x(m) for mEL"" (G) if n---+(X). The same is true for the 
subsequence n(j), jEN. Therefore x(f) = f/Jx (f), 
VfE{L I(G)nL"" (G)}, holds true. 

{L 1 (G)nL "" (G)} is u-weakly dense in L"" (G). If m is 
an arbitrary element of L "" (G), approximated u-weakly by 
a net (fp ){JeI,/pe{L I(G)nL"" (G)},PEl (where I is an in­
dex set), it follows from the u-weak continuity of f/Jx and X 
that 

f/Jx(m) = lim f/Jx(fp) =limX(/P) =x(m) 
p p 

=}f/Jx(m) =x(m), VmEL"" (G). Q.E.D. 

I J. R. Klauder and B. S. Skagerstam, Coherent States. Applications in Phys­
ics and Mathematical Physics (World Scientific, Singapore, 1984). 

2A. M. Perelomov, Commun. Math.Phys. 26, 222 {1972). 
3S. K. Berberian, Lectures in Functional Analysis and Operator Theory 
(Springer, New York, 1974). 

4H. Primas, Chemistry, Quantum Mechanics and Reductionism. Perspec­
tives in Theoretical Chemistry (Springer, Berlin, 1983), 2nd corrected edi­
tion. 

sA. Amann, "Observables in W*-algebraic quantum mechanics," to ap­
pear in Fortschr. Phys. 

6H. Scutaru, Lett. Math. Phys. 2, 101 (1977). 
7H. Moscovici and A. Verona, Ann. Inst. H. Poincare 29, 139 (1978). 
8D. DeSchreye and H. H. Zettl, "Notes on integrable W*-dynamical sys­
tems," preprint, Kath. Universiteit Leuven, 1983. 

9A. Connes and M. Takesaki, T6hOkuMath. J. 29, 473 (1977). 
lOA. Amann, thesis ETH no. 7517, Ziirich, 1984. 
II E. B. Davies, Quantum Theory 0/ Open Systems (Academic, London, 

1976). 
12 A. S. Holevo, Probabilistic and Statistical ASpects 0/ Quantum Theory 

(North·Holland, Amsterdam, 1982). 
13J. Dixmier, C··Algebras (North-Holland, Amsterdam, 1977). 
14M. Dufto and C. C. Moore, J. Funct. Anal. 21, 209 (1976). 
ISW. F. Stinespring, Proc. Am. Math. Soc. 6, 211 (1955). 
16D. L. Cohn, Measure Theory (Birkhiiuser, Boston, 1980). 
17G. K. Pedersen, C*·Algebras and Their Automorphism Groups (Aca· 

demic, London, 1979). 
18M. Takesaki, Theory o/Operator Algebras (Springer, New York, 1979), 

Vol. I. 
19y. Nakagami and C. E. Sutherland, Pac. J. Math. 83, 221 (1979). 
20S. Stratila and L. Zsido, Lectures on von Neumann Algebras (Editura Aca­

demiei, Bucuresti and Abacus Press, Tunbridge Wells, 1975). 
21W. B. Arveson, Acta Math. 123, 142 (1969). 
22y' Nakagami and M. Takesaki, Duality/or Crossed Products 0/ von Neu· 

mann Algebras, Lecture Notes in Mathematics, Vol. 731 (Springer, Berlin, 
1979). 

23S. Stratila, D. Voiculescu, and L. Zsido, Rev. Roumaine Math. Pures 
Appl. 21, 1411 (1976). 

24S. Stratila, D. Voiculescu, and L. Zsido, Rev. Roumaine Math. Pures 
Appl. 22, 83 (1977). 

250. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statisti­
cal Mechanics (Springer, New York, 1979), Vol. 1. 

Anton Amann 2289 



                                                                                                                                    

Evolution loops 
Bogdan Mielnika) 

Departamento de Ffsica. CINVESTA V, Apdo.Postal14-740. 07000. Mexico. D. F.. Mexico 

(Received 2 December 1985; accepted for publication 5 February 1986) 

The problem of manipulating Schrodinger's particle by time-dependent external fields is 
discussed. New solutions ofthe evolution problem, called evolution loops, are found. They 
correspond to the "particle memory" in the sense of Brewer and Hahn [Sci. Am. 251( 12),50 
( 1984) ]. A technique of generating the unitary operations by perturbing the evolution loops is 
outlined. 

I. INTRODUCTION 

There is a certain asymmetry in the present-day dynam­
ic theories, which seem to favor the theory of closed systems. 
When speaking about nondissipative dynamics, one usually 
has in mind a system with a fixed Hamiltonian. Its evolution 
is represented by a given one-parameter group of transfor­
mations (time translations). In cases of extreme simplifica­
tion, an image of the dynamics is obtained just by consider­
ing discrete iterations of one single mapping. I

- 3 In these 
pictures, the data representing the external world are fixed 
and the effort of the theory is centered around resolving the 
actual evolution problem. The question about the compara­
tive behavior in alternative universes is left untouched. Yet, 
if the physical theories were at all created, it is only because 
the physical systems are open. The real universe is a place 
where the external conditions can be changed and experi­
ments can be performed. An idea thus arises that a nontrivial 
dynamic theory should not deal with a one-parameter trans­
formation group, but with a wider family of transformations 
that are available to the experimenter. 4-9 

II. THE PROBLEM OF MANIPULATION 

The most obvious picture of an open, dissipation free 
system is obtained by postulating the existence of a certain 
manifold of pure states A and a certain variety B of the exter­
nal conditions available, and by assuming that the external 
conditions be B generate some "tendencies to evolve" on A 
(see Ref. 8). 

Definition 1: A simple open system is a pair of general­
ized differential manifolds A and B, of dimension finite or 
not, called the manifold of states and the manifold of the 
external conditions together with a mapping b-Xn' which 
to each be B assigns an integrable vector field Xb on A. The 
fieldXb is interpreted as the evolution law for the states ae A 
under the influence of the external condition be B. In what 
follows, we shall say that B controls A (B_A) or that B is a 
manifold of generators for A: 

a) On leave of absence from the Institute of Theoretical Physics. Warsaw 
University. Warsaw. Poland. 

A-B 

external 
condi_ 
tions 

(The above concept of a dynamic system is close, though not 
identical, to that in terms of categories. 10) 

Definition 1 suggests a certain new question in a dynam­
ic theory. In the traditional approach to dynamics one knows 
the external conditions and one asks what will be the motion 
of the system? The question we would like to ask is the in­
verse one. Given a certain transformationg: A_A in a space 
of physically interesting states, can this transformation be 
accomplished dynamically? If so, which method should be 
applied? These questions correspond to a "Rubik's cube 
view" of the dynamic system as opposed to the "one-param­
eter scheme," see also Refs. 5, 8, and 11. 

Below, we shall take merely first steps in collecting some 
operational answers. They will concern the evolution pro­
cesses of a nonrelativistic particle in time-dependent exter­
nal fields. Our models will not depart from the Schrodinger 
wave mechanics. Yet, they have been investigated little in 
the past, because of the difficulty of applying the Baker­
Campbell-Hausdortfformula. Hence, it might be of interest 
that the problem of the evolution ofSchrodinger's particle in 
time-dependent external fields also has its exact solutions. 
They tum out to be a natural starting point for convenient 
manipulation procedures. All the results presented below 
are purely heuristic. They are obtained by following Schro­
dinger's quantum mechanics with variable fields "to the let­
ter." The problem of the applicability limits, as well as the 
questions of essential self-adjointness and strong conver­
gence, are open. 

III. THE SIMPLEST EVOLUTION LOOPS (ONE SPACE 
DIMENSION) 

What kind of evolution operations of the SchrOdinger's 
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wave packet can be induced by an arbitrary time-dependent 
potential V(q,t)? The corresponding differential equation 

.!!U(t,to) = - iH(t) U(t,to) , U(to,to) = 1, (3.1) 
dt 

with H(t) = !p2 + V(q,t), q = x, p = (1/i) (d Idx) (put 
m = Ii = 1), has been traditionally treated in the framework 
of the formalism of the "chronological products" (see Ref. 
12). Yet, due to the recent development of algebraic and 
computer techniques,I3-17 some competitive methods be­
come relevant. Below, we shall study U(t,to) in light ofthe 
following simple lemma,18 which states that any unitary U: 
L 2 (R)---+L 2(lR) is determined up to a phase factor by the 
corresponding transformation of q and p: q---+UqU*, 
p---+UpU*. 

Lemma 1: If U1 and U2 are two unitary operators in 
L 2(R) and UlqUr = U2qUr, UlPUr = U2PUr, then 
U2 = eiaUI(aER). 

Proof' 

UlqUr = U2qUr~UrU2 = UrU2q 

and 

UIPUr = U2pUr~pUrU2 = UrU2P· 

Since L 2 (R) is an irreducible representation space of the 
Heisenberg algebra, the operator that commutes with both q 
andp must be a number; hence, UrU2 = eia (aER). 

An interesting subclass of exact solutions of (3.1) ap­
pears if V(q,t) is permitted to oscillate fast. The simplest one 
of them is obtained by taking in (3.1) a strong external po­
tential (1/ €) V( q) (0 < E - 0) and by letting it act during a 
short time interval [to,to + E). The corresponding evolution 
operator is 

UE = U(to,to + €) 

= exp{ - iE[p2/2 + (lIE) V(q)]} 

= exp{ - i[E( p2/2) + V(q)]} (3.2) 

and for E-D it becomes 

(3.3 ) 

The operator (3.3) might be interpreted as the exact 
solution of the evolution problem (3.1) obtained for the ~­
like pulse of the external potential: 

V(q,t) = ~(t - to) V(q). (3.4) 

Now, by considering the evolution processes generated 
by many different "shocks" separated by intervals of free 
evolution, one arrives at the following class of the evolution 
operators: 

(3.5) 

where T I, .•• , Tn >0, n = 1,2, .... The operators (3.5) repre­
sent what might be called "the solutions of the evolution 
problem in pulsating fields." The mechanism of Trotter for­
mulas suggests that they can approximate any U(t,to)' A 
question now arises: How rich is the class (3.5)? What evo­
lution processes can be generated just by multiple potential 
pulses? It turns out that the answer depends on a special 
phenomenon that can occur for the operator sequences 
(3.5). 
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A. "The echo" 

One of the seldom studied aspects of a dynamic theory is 
thfl existence of nontrivial sequences of dynamic events that 
"rotate the space of states around itself" yielding the identi­
ty transformation (see also Ref. 5). Any such sequence will 
be called an "evolution loop." One of most striking examples 
of this phenomena is the spin echo. We shall show that, in 
agreement with predictions of Brewer and Hahn,19 the 
"echo" is not exclusive for the spin degrees but can also oc­
curin L 2 (R) . One of the proofs is due to the following simple 
identity l8: 

e-iTr/2e-i(I/T)q'12 ••• e-iTP'12e-i(i/T)tj12 = 1. (3.6) 

I 12 terms I 

Note, that all signs here are identical. The formula (3.6) 
means that, after applying six pulses of the oscillator-shaped 
potential intertwined with six intervals of the free evolution, 
each nonrelativistic charged particle returns to its initial 
state. This can be visualized by the "evolution loop": 

I 
T 

I 
'l" 

I 
T 

I 
T 

I 
T 

I 
T 

The numbers at the vertices symbolize the intensity of the 
oscillator-shaped pulses, while the sides correspond to the 
intervals of the free evolution. A consequence of (3.6) is the 
"inversion formula": 

e - i(i/T)tj/2e - iTp'12 ••• e - iTP'/2
e 

- i(iIT)tj/2 = e iTr12. (3.7) 
L..-. ___ 11 terms------I 

This means that, under the influence of an "evolution 
sandwich" composed of six pulses of the oscillator poten­
tional and five "rest intervals," all nonrelativistic particles 
are induced to "go back in time," by performing the oper­
ation e

iTr12
, which is inverse to the free evolution (seethe 

diagram below). This provides an analog in L 2 (R) of the 
"rotating dye experiment" of Brewer and Hahnl9: 

r----------------------, 
I 2 I 
I I q I 
ITT I 
I I 
I I 
I I 

------.. 
iT T T TTl 

I I L ______________________ J 

It turns out that (3.7) is only one of many methods to 
achieve e

iTr12
• Some alternative prescriptions are worth 

studying. The most useful of them arise by considering se-
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quences of opposite oscillator pulses, one attractive and one 
repulsive; the typical element of the process being 

r-;----I 
+ a.!. I 

2 I 
I 
I 
I 
I 
I 

t I 
I 
I 

2 I 
I -a:9: I 
I 2 I L _____ ,.j 

(3.8) 

---.. 

The structure of this operation can be examined with the 
help of Lemma 1. In agreement with the identity 

2 

eaABe-aA =B +!!... [A,B] + ~ [A, [A,B ]] + ... , 
I! 2! 

(3.9) 

the operators eiarf/2 and e - iTp'l2 generate the following linear 
transformations of q and p: 

eiarf/2~) e-
1aq

'/2 = (_! ~)~), (3.10) 

e-iTp'/2~)elrp'12 = (~ -~)~). (3.11) 

Hence, the operator U in (3.8) corresponds to the trans­
formation matrix 

u = C ~) (~ -r)( 1 0)(1 
1 -a 1 0 

_ (1 + ra, - (t + r + atr») 
- ra2, 1 - or - a2tr . 

(3.12) 

In view of Lemma 1, the matrix u determines U with the 
accuracy up to a phase factor. The cases of special interest 
areu" = I(n = 1,2, ... ). Then by Lemma 1, U"mustbepro­
portional to 1. (We shall write U"==I, without worrying 
about the phase factor.) Now, the identity u" = I can hold if 
the roots of the characteristic polynomial 

Du (A.) = A. 2 - A. Tr u + I = A. 2 - (2 - a2tr)A. + I 
= A. 2 - KA. + 1, (3.13) 

are simultaneously roots of unity: 

11. 1•2 = (K~~)/2e.J "Jr, K=2-a2tr. (3.14) 
" 

The matrix (3.12) is nondegenerate and the numbers 
11. 1,2 both have the absolute value 1, if - 2 < K < 2=:>a2tr < 4. 
In addition, they become roots of unity for a sequence of 
values K = 0 - 1,1, ... ; in general K"r = 2cos 21T1 In (n>3, 
o < 21 < n ). Each of these values generates a certain "closed 
loop of the evolution operations." Some examples are for 
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K = 0, 11. 1,2 = ± i, 
[e - itp'/2

e 
=F i(2ItT) '12q'l2 

X e - irp'/2e ± i(21tT) "'rfI2] 4= 1; 

for K = 1, 11. 1,2 = -! ± i/3/2, 
[ e - itp'/2

e 
=F i( JltT) '12rf 12 

Xe- iTP'12e± i(JltT)'12rfl2p=1; 

and a general case, where K = 2 cos 21T1 In, 
[ e - itp' 12 e =F 1(2 sin (1T11 n) 1.[iT)q'12 

X e - iTP'12
e 

=F /(2 sin(1Tlln)/.[iT)q'I2] " 

(3.15) 

(3.16) 

(3.17) 

For t = r, the formula (3.16) defines an evolution loop 
that is a changing-sign alternative of that of the formula 
(3.6): 

_ff 
T 

ff 
T 

IT 
T 

_ff 
T 

_ff 
T 

.Jf" 
T 

The sign-changing sequences of shocks are of special 
interest, as they provide source-free pulses in three dimen­
sions. Some other cases of such loops are represented in Figs. 
1 and 2. 

Each of the loop formulas (3.15)-(3.18) yields simulta­
neously a method of inverting the free evolution by a se­
quence of sign-changing pulses of the q2/2 potential. The 
simplest such prescription is derived from (3.16): 

e =F i(,f3ltT)q'l2
e 

- itp'12e ± i(,f3ltT)rfI2
e - iTP'/2 ... =eITP'12, 

L...-______ 11 terms (3.18 ) 

while the general one is 

[4n-lterms; 0= ±2sin(1Tlln)]. (3.19) 

What is special about the formulas (3.4) and (3.19) is 
that they are operator identities, i.e., kinds of universal pre­
scriptions, which can be engineered ''in blind." When ap-

-t 

FIG. I. One of the loops of the fonnula (3.16). 

Bogdan Mielnik 2292 



                                                                                                                                    

+ -+ 
iT 

_l. T T l. 
T T 

2T 2T 

~ _l. 
T T T 

2T 

I + -.,.. 
FIG. 2. A loop of formula (3.1S) for t = 21'. 

plied to a free Schrooinger's particle, they permit us to stop 
the free evolution and restore the particle state from the past 
without actually knowing what this state was and which is 
the present state ofthe particle (see also Refs. 20 and 21). 
Due to a simple mathematical mechanism 18 the existence of 
such effects in L 2 (R) is essential for the possibility of gener­
ating arbitrary unitary operations (see also Sec. V). 

B. Question of "time economy" 

The prescriptions quoted above suffer some "time dis­
advantage." The simplest method of achieving eio//2( 1" > 0) 
read from (3.16) requires six potential shocks and five inter­
vals of the free evolution of the length 21" + 31> 21". Hence, 
in order to "rejuvenate" the system for a time 1", one should 
have to work at least twice as long. Is that iimitation neces­
sary? To check this, consider the unitary operator corre­
sponding to three arbitrary pulses of rl /2 potential and two 
arbitrary intervals of the free evolution: 
U = e - icej'/2e - iPp'/2e - ;bq2/2e - iap2/2e - iaq'12 

aab{Jc , (3.20) 

2293 

,..----------.., 

a 
b 

------- ----------
a fJ 

cI 
I 

I 
I 
I 

~ ________ _l • 

The corresponding transformation matrix for q, p is 

u = (! ~) (~ -7) 
X G ~) (~ -'J e ~) 
(

I - ab - ac - pc - apbc, 
= a + b + c - a(b + c)a + , 

-{3(a + b)c + a{3abc 

-a-p+apb) 
l-aa-{3a+ . 
-{3b+a{3ab 

(3.21) 
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Demanding that 

u = (~ ~), TER, (3.22) 

one obtains four equations for a, 13, a, b, c, which yield 

(

a=pr, b=1"r, c=ar) 
(3.23) 

r = (a + 13 + 1")/ap1". 

If this holds, then by Lemma 1 
e - iarq'12e - ;PP'/z

e 
- irrq'12e - iaP'12

e 
- ;prq'12_eirp'12, 

r = (a + 13 + 1")/ap1". (3.24) 

One thus sees that the operations e i
o//2 , with 1" positive 

or negative, can be generated always at the expense of two 
arbitrarily short time intervals a,/3 > O. If 1" > 0, the formula 
(3.24) represents the "retrospection operation" achieved by 
three pulses of the attractive oscillator potential. If 
- a - 13 < 1" < 0, (3.24) does not mean the inversion, but 

"slowing down" of the natural tum of the evolution, and is 
achieved by two negative and one positive pulse. If 
1" < - a - 13, (3.24) yields the acceleration of the free evo­
lution, engineered by two positive and one negative pulse: 

evolution 
inversion 

T>. 

r>o 

b-Tr 

evolution 
slowing 

«. 
-a-PST 

r,$O 

--vAv---

evolution 
acceleration 

T<~-f3 r >0 

Denoting 1" = y, these three prescriptions are reduced to 
the "circular identity" 

e - iyp'12e - iarq'12e - iPP'12e - iyq'12e - iap'/2e - ;prej'12==1, 

r = (a + 13 + y)/apy, 

visualized by the evolution loop: 

sr 

'Y 

'Yr 

ar 

Its existence implies l8 the following lemma. 

(3.25) 

Lemma 2: The dynamic operations associated with the 
pulsating fields can generate any unitary operation in L 2(R) 
within an arbitrarily short time. 

Our results, until now, are exact solutions of the evolu­
tion problem (3.1). However, SchrOdinger's quantum me­
chanics is only an approximate scheme. It neglects the elec­
trodynamic effects of quickly changing potentials, as well as 
the possibility of pair creation. Hence, our solutions are for-
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mal. A question arises: can the same effects be achieved by 
slowly changing fields? Can the system be induced to per­
form eiTP' /2 ('T' > 0) as a result of a "soft persuasion" instead 
of "brutal force"? As far as the quadratic potentials are con­
sidered, this leads to an old but unsolved problem. 

IV. EVOLUTION IN TIME-DEPENDENT QUADRATIC 
POTENTIALS. CONTINUOUS LOOPS 

How does Schrodinger's particle evolve in the presence 
ofa time-dependent HamiltonianH(t) = p2/2 + r(t)q2/2? 
The corresponding evolution operator U(t) obeys the differ­
ential equation 

- = - i l!.- + r(t) ~ U(t), U(O) = 1, dU ( 2 2) 
dt 2 2 

(4.1 ) 

which can be viewed as a limiting case ofthe Baker-Camp­
bell-Hausdorff composition problem for a sequence of ex­
ponentials e-iA'e-iA' ••• e- iAn, where Aj (j= 1, ... ,n) are 
quadratic forms in q,p. One of the most elegant solutions of 
this last, discrete problem is due to the correspondence 
between the unitary operators e - iA (with A quadratic in q,p ) 
and the Lorentz rotations in the three-dimensional Min­
kowski space (Plebanski).22 A profound study of the qua­
dratic exponents is found in Wolf. 23 The above discrete re­
sults allow us to predict that the solution of the continuous 
problem (4.1) should be of the form 

UU) = exp( - i[a P; + b pq; qp + C ~2]), (4.2) 

where a = a(t), b = bet), and c = c(t) are three real func­
tions. However, the problem of finding (4.2) amounts to a 
continuous composition of the pseudo-Euclidean rota­
tions.24,25 One might thus think that Eq. (4.1) is not effec­
tively solvable. Yet, this is not always the case. 
A. Iterative solution 

One of the algorithms used to solve Eq. (4.1) stems 
from Lemma 1. It assures that the operator U(t) in (4.1) is 

The iterative solution is 

It yields 

defined by the corresponding transformation of q,p. Due to 
(4.2) this transformation is linear, and since it conserves the 
commutator [q,p] = i, it must be given by a certain unimo­
dular matrix u(t): 

U(t)~)U(t)* 

= U(t)~) = ~~:~ - ~~:~)~), (4.3) 

with 

F(t)G(t) + p(t) T(t) = Det u (t) = 1. (4.4) 

Differentiating now both sides of (4.3) with respect to t 
and then using (4.1) and its conjugate, one sees 

d~~t) ~) 

= -i[H(t)'U(t)~)] 

= - iu(t) [(P; + r(t) ~) ,~)] 

= U(t)( -P) = u(t)r(t/q) 
r(t)q \p 

with 

nt)=(O 
r(t) 

Henceforth 

-1) 
O' 

du(t) = u(t)nt), u(O) = 1, 
dt 

or equivalently 

u(t) = 1 + f u(t')rU')dt'. 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

-f f' f' (t - t)r(t) (t) - tz)r(tz) (tz - t3)r(t3)dt3 ... dt) + ... , 
pet) = - G'(t), 

( 4.11) 

(4.12) 

T(t} = f F(t')dt'. (4.13) 
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The trace invariant that decides about the algebraic properties of u (t) henceforth is 

Tr uCt) = 2 - t l' yCtI)dtl + 1'1" (t - tl + t2)yCtI ) Ctl - t2 )yCt2)dt2 dtl 

(4.14) 

B. The loop criterion 

Now, letg: R--+R be a bounded, piecewise continuous, periodic function of period 1. Then choose as yct) in (4.1) the 
function of period T: yct) = agCt In. Can y(t) generate the loops in [O,nT]? Consider the evolution matrix u( n. Its trace, 
due to (4.14), becomes 

+00 
Tru(n =2+ L Rnan=R(a), a=aT2, 

n=l 

where 

RI = - L g(s)ds 

As Det u (n = 1, the only nontrivial invariant of u (n 
is (4.15 )=}the algebraic properties of the unimodular matrix 
u(T) depend exclusively upon the function R(a) of 
a = aT2. We shall callitthe loopfunction. (Asg(s) is bound­
ed in [0,1], theR(a) is an entire function of a.) A classifica­
tion of the motions according to the value of R (a) follows. If 
IR(a)1 <2, the matrix u(n has two different complex 
eigenvalues, both of absolute value 1. Hence, the mUltiple 
repetitions of the evolution transformation induced by one 
period of yct) yield a confined trajectory in the q,p space 
("stability domain"). In addition, the real numbers ani for 
which R (ani) = 2 cos (21T1 In) (n = 3,4, ... , ° < 21< n) rep­
resent such special values of a = aT2 for which u( nn = 1, 
and hence, the operation induced by n oscillations of y( t) is 
an evolution loop. The values of a with IR (a) 1 = 2 corre­
spond to a degenerate u(n. If IR(a)1 >2, u(n acquires 
two real roots..t, 1/..t (..t ;6 0), and since one of them has the 
absolute value> 1, the Heisenberg motion trajectory in q,p 
space is deconfined (in the classical limit it means the decon­
finement of almost all classical phase space trajectories). 

Suppose now, that Rl = - S~g(s)ds ;60. Then 
R (0) = 2 implies thatR (a) intersects ( - 2,2) for lal small 
enough withaR I <0. Hence, the potential V(q,t) = y(t)q21 
2 = agCt Inq2/2, with small 101. causes the confined mo­
tions and evolution loops when the sign(a) assures that the 
attractive impulses of y( t) in [0, T] "prevail" over the repul­
sive ones. Less obvious cases 'of confinement, similar to the 
loops of Sec. III are obtained for yU) with vanishing time 
average: 

iT y(t)dt = O¢? L g(s)ds = 0. ( 4.17) 

Then Rl = 0, and after putting ¢(s) = Sgg(~)d~, R2 
reduces to 

( 4.18) 
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(4.15) 

( 4.16) 

This means that for sufficiently small lal ;60, 
R(a)r;;;;,r,2 -IR2Ia2=}IR(a)1 <2. Thus we have the follow­
inglemma. 

Lemma 3: If (4.17) holds, then for lal;60 small 
enough, the potential V(q,t) = yU)q2/2 = agU Inq2/2 
generates the confined motions and evolution loops in 
[O,nT] (n = 1,2,3, ... ). 

What is curious about this lemma is that, if (4.17) 
holds, then in any [O,nT] the function yU) provides as 
much attractive as repulsive impulses to the particle. One 
might think that they cannot alter the motion "in average." 
Yet, this is not the case. If R (aT2) takes one of the critical 
values, the free motion is effectively blocked. Instead of "dis­
solving," Schrodinger's wave is trapped into a kind of "peri­
odic dance." 

Displacement Lemma: A certain general property of the 
periodic loops is worth noticing. Suppose y( t) has a period r, 
and the potential V(q,t) = yU)q2/2 generates an evolution 
loop in [O,r]. Then take anyoe(O,r) and decompose the 
evolution operator U(O,r) into U(O,r) = U(O,O')U(O',r). 
The loop identity U(O,r)=l means U(O,O')U(O',r)==1. 
MUltiplying both sides by U(O,O') -I from the left and by 
U(O,O') from the right, and using U(O,O') = U( r,r + 0') 

(caused by the periodicity of y), one has 

l=U(O',T) U(O,O') = U(O',T) U( T,T + 0') = U(O',T + 0'). 

Hence, we have the following lemma. 
Lemma 4: If a periodic y( t) with a period r generates an 

evolution loop in [0, r ], then yU) generates also a loop in 
any other interval [0', T + 0'] . SchrOdinger's particle injected 
into the pulsating field y(t)q2/2, in no matter which time 
moment, always returns to its initial state after the time T. 

Lemma 4': If a periodic function y(t) with a period r 
produces an evolution loop in the time interval [0, r ] , so does 
y(t + 0') (oeR). 
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C. Sinusoidally generated loops 
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Can the harmonic oscillations of y(t) produce the evo­
lution loops? Evaluating (4.16) for g(t) = sin 217't, one ob­
tains in place of R (a) a certain new special function S (a) of 
a = a T2, which yields a classification of "sinusoidally gener­
ated" motions (see Fig. 3): 

1 1 8r -75 Sea) = 2 ____ a 2 + a 4 +... (419) 
2 (217')2 614417'6 .. 

Consistent with Lemma 3, for lal belonging to finite 
range of small amplitudes 0< lal ~ 17·2=:}IS(a) I <2, the 
potential a sin (217't IT) q2/2 creates the confined motions. 
The confinement interval ( - 17.2, 17.2) is densely populat­
ed by the critical values ani: S(anl) =2cos(217'lln) 
(n = 3,4, ... ,0 <2i<n) and whenever a coincides with one of 
them, the evolution closes up after n periods of y( t). The 
particularly simple forms of cyclic motions with periods 3 T, 
4T, and 6T occur for Sea) = - 1, Sea) = 0, Sea) = I 
(ae: ± 14.8, ae: ± 12, ae: ± 8.4). If a#anl but 
aE( - 17.2,17.2), the cyclic motion is desynchronized but 
remains trapped. 

If lal crosses 17.2 the picture changes. For 
17.2 ~ lal ~ 148, Sea) < - 2 and y(t) generates unlimited 
trajectories ("resonance band"). The confined and cyclic 
motions reappear in a narrow interval 148 ~ lal ~ 149.7, 
where Sea) changes sign again. Due to farther increasingly 
sharp oscillations of S (a) around zero (computer materials; 
unpublished), the region lal > 149.7 is composed of a se­
quence of growing "resonance bands" encrusted with 
quickly shrinking confinement intervals. The question of 
whether this continues as lal---+oo is open. 

A curious property of the "sinusoidal loops" follows 
from Lemma 4'. IfyCt) = a sin(217't IT) generates a loop in 
[0,7"], 7"= nT, n=I,2, ... , then the function 
y(t +!T) = - y(t) must be loop generating, too. Hence, 
both potentials y(t)q2/2 and - y(t)q2/2 create the loops in 
the same time interval [0,7"]. However, they can be viewed as 
the same electromagnetic ~eld applied to two particles with 
identical masses and opposite charges. This exhibits a cer­
tain operational difference between the variable quadratic 
field YCt)q2/2 and the potential of the harmonic oscillator 
(w2/2 )q2 [with the time-independent Hamiltonian 
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lal 

180 

deconfined --- FIG. 3. The loop function S(a) obtained by an 
explicit numerical integration of (4.7). 

Ho = !p2 + (w2/2)q2]. The harmonic oscillator also pro­
duces loops (the operator e - itHo returns to 1 for any t = nT, 
T = 217'1 w). However, this holds only for Schrodinger's par­
ticle with a given charge. When the charge changes the sign, 
the loop effect disappears. Hence, the oscillating field 
V(q,t) = yCt)q2/2 [y(t) = a sin wt], with a in the confine­
ment domain, is operationally superior over w2q2/2, as it is 
able to trap both negative and positive charges. 

Returning to the traditional units with V(x,t) 
= ea sin (217't IT)x2/2, one has to put a = eaT 1m (e, mbe­

ing the charge and the mass of SchrOdinger's particle), and 
henceforth, our main range of confined motions is character­
ized by a special relation between the chargelmass ratio, the 
period and the amplitUde of y(t): 

I (elm)aT2
1 ~ 17.2. (4.20) 

If the particle in question is SchrOdinger's electron, 
(elm) e: (4.77/9.03) lOt8 cm3/2 g-t/2 sec-t, and ifyoscil­
lates with a frequency of short radio waves (Te: 10-7 sec), 
the lowest-range amplitudes a generating the loops corre­
spond to the quadratic potentials (a sin (217't IT»)x2 12, whose 
maxima at the distance x = 1 meter from the center of the 
operation x = 0 are of the order of magnitude 
:::::a 10 V ~ 17.2 X 10 V. Similar evaluation can be done for 
the subsequent confinement intervals. 

The phenomena that occur out of the confinement do­
main present a separate problem. It is possible that they cor­
respond to a new type of resonance, which appears in the 
semiclassical theory, and represents the response of the par­
ticle to coherent fields instead of single quanta. 

D. The loops for V(q,t) = (8 sln(21Tnln t )(qa/2), 
n= 1,2,3, ... 

Consider now the same interval [O,T] but a new modu­
lating function y n (t) = a sin (2n17't IT). The corresponding 
evolution operator U(O,T) is U(O,T In)n, where U(O,T In) 
is the unitary operator generated by one oscillation period of 
Yn (t) (in the interval [O,T In]), The same relation exists 
between the corresponding transformation matrices, 

u(O,T) = u(O,T In)n, (4.21) 
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and since they are 2 X 2 and unimodular, the trace of the nth 
power 

S" (a) = Tr[u(O,T)] = Tr[u(O,T In)"] 

can be easily expressed in terms of 

Tr[u(O,T In)] = S [aCT In)2] = S(aln2) , 
giving the following formulas for the "higher-order loop 
functions" S" (a): 

SI(a) =S(a), 

S2(a) = S(aI4)2 - 2, 

S3(a) = S(aI9) [S(aI9)2 - 3], 

S4(a) = [S(aI16)2 - 2]2 - 2, 

.. (4.22) 

The points a, where each of them intersects the values 
- 1,0,1, ... ,2 cos (217'1 Ik), ... , define the evolution loops of the 

oscillation moods r" (t). 
E. Simuitaneou8 loop effecm 

In turn, take the modulating function r( t) composed of 
two oscillation moods, 

r"m (t) = a sin(217'nt IT) + b sin(217'mt IT), (4.23) 

and consider the evolution operator in [O,T] generated by 
the corresponding variable potential rm" (t)q2/2. The trace 
of the associated evolution matrix now will be a function of 
two dimensionless variables, which is most convenient to 
choose as a = aT2/n,{3 = bT2/m, 

Tr[u(O,TO)] =S"m(a,{3). (4.24) 

The structure of this function for n odd and m even 
suggests some new manipulation possibilities. Indeed, con­
sider the loop function S(a,{3) =Sda,{3). A few first 
terms of ( 4.14) yield 

S(a,{3) = 2 - (1/8~)(a2 +{32) 

+2 

.. ~ 
+2 

2297 

+ (23~ _ 3.52)3-12-1117'-6a4 

+ (2s~ _ 3.52)3-12-1317'-6{34 

- (65 - ~)3-22-817'-6a2{32 + .... 
(4.25) 

a 
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-3 so 

-30 

FIG. 4. The behavior of S(a, /3) for low amplitUdes. 

The behavior of Sea, {3) for low amplitudes, in 
D={(a,{3): lal, 1{31<148}, is of interest. For {3=0, 
S(a,{3) reduces to S(a,O) = Sea), while for a = ° it be­
comes S(O, {3) = S2(2{3) = S( {312)2 - 2. Since 
Sea) < - 2 and S2(2{3) >2 for lal ~ 17.2, 1{31 >2.17.2, 
hence, on every circle a2+{32=p2 (2.17.2<p<148), 
S(a,{3) has to accept all the values in [ - 2,2]=>the curve 
SK defined by S(a,{3) =K(IKI <2) intersect every circle 
a2+{32=p2 (2.17.2<p<148). However, if K-2, the 
equation Sea, {3) = K has an obvious solution in form of a 
closed, almost circular curve S~ in the vicinity of (0,0) ap­
proximately given by a2 + {3 2 ~ (2 - K) 8~. Hence, S K 

must have another branch. In fact, this is confirmed by the 
computer picture of S( a, {3) (Fig. 4) and the corresponding 
picture of the curves S K (Fig. 5). As one can see, for 
- 2 < K < 2, the SKis composed of three disjoint branches: 

S ~ (the one surrounding a = {3 = 0), and the S K_ and S K+ , 

whose arms escape from the computation region in the direc­
tion of{3' as negative and positive, respectively. This decom­
position implies the existence of oscillation patterns able to 

+2 

+2 

FIG. 5. The map of curves S(a,/J) = const de­
termined by a straightforward numerical inte­
gration of the matrix equation (4.7) with 
y(t) = a sin 2111 + 2,8 sin 41rt . 
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trap simultaneously four different Schrodinger's particles 
with different charge/mass ratios. Indeed, choose one of the 
valuesK = Knl = 2 cos (217'1 /n)E( - 2,2). Then, take a point 
(a, 13) E S~ uS":.- and draw the straight line through (a, 13) 
and the coordinate center (0,0). It will intersect SK in four 
points: (a,p), (a',p') ES~ uS K

_, and (ao' 130)' 
(ao,[3o)E S~. They determine four possible values of the 
charge/mass ratio corresponding to four SchrOdinger's par­
ticles simultaneously trapped in a synchronized loop mo­
tion. If one expresses the amplitudes in the traditional units: 
a = a(m/e) l/T2, b = p(m/e) l/T2, the four possible 
charge/mass ratios of trapped particles are 

elm, - e/ Am, - e/ Am, e/ A'm, (4.26) 

where A,A,A' are defined as three positive proportionality 
coefficients between the four two-vectors on the a, 13 plane: 

(a,p) = -A(a',p') = -A(ab,pb) = A'(ao, 130)' 
(4.27) 

Now, if K __ 2, S~ shrinks to (0,0), whereas the SK± 
remain at a finite distance from it; henceforth, A and A' 
become arbitrarily large. In particular, by resolving the 
equations, 

S(a, 13) = S - - , - - = 2 cos - . (
a 13) 217'1 
A A n 

(4.28) 

With A = 1838.3 ± 1.0, one can find the pairs of the 
oscillation amplitudes trapping both electrons and protons 
in a synchronized cyclic motion of a period r = nT. This 
kind of effect never could be achieved by static fields. 
Neither could it be achieved as a simple resonance phenome­
non, triggered by the mere presence of some definite frequen­
cy. With all reservations about the applicability of evolution 
equations with c-number external potentials, this leads to an 
idea about the existence of more involved response phenom­
ena, induced by softly changing, coherent fields and consist­
ing in a combinatorial reaction to the simultaneous presence 
of many distinct oscillation moods. 

Our techniques, until now, yielded continuous analogs 
of the loop formulas of Sec. III. A technique of achieving the 
free evolution regress ei

",p2
/2 (r > 0) as a solution of (4.1) 

with continuous y( t) is also provided. 26 The use of the evolu­
tion loops to generate arbitrary unitary operations in L 2 (R) 
is now worth discussion. 

V. PRECESSION 

The evolution loops occupy a special place in the manip­
ulation theory, since they produce precession phenomena. 
Suppose a one-parameter family of unitary operations 
{Ut : tE [0, r]} is an evolution loop: U'" = Uo = 1. After al­
tering slightly the external potential, the loop, in general, 
will not close: the gap U'" U 0- 1 = U'" will measure what we 
call the "precession of the operator orbit" (Fig. 6). 

The so-defined precession is one of purest cases of the 
"interaction scheme." Indeed, if the free motion of a system 
is perturbed, the evolution operator splits: the "interaction 
part" is always accompanied by the free evolution part. 
Hence, the "little operations" of the interaction scheme can­
not be truly superposed. In contrast to that, if an evolution 
loop is perturbed, a natural time interval to consider the 
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FIG. 6. Precession of the distorted loop. 

result of the operation is the finite period of the loop motion. 
If one now splits the evolution into the zero part (cyclic) and 
the interaction part, then in any [to,to + r] the zero part 
becomes the identity, and the evolution operator reduces to 
the pure interaction part. Hence, the "small operations" of 
the interaction picture can be effectively achieved. This sug­
gests the following techniques of generating the unitary 
operations: (I) enclose the particle in an evolution loop, and 
(2) perturb the loop achieving the required operation by 
adding "precession effects." 

As an example, consider the simplest loop composed of 
an interval offree evolution [0, r] and subsequent interval 
[r,r + 0'] in which the external fields induce ei

",p2/2. Now 
suppose the loop is perturbed in its free part [0, r] by an 
additional external potential V(q,t): 

The cycle then is not closed, and the evolution operator with­
in [O,r + 0'] is 

u=exp(irP;)T{exp( -ii"'H(t)dt)}. (5.1) 

As immediately seen, this operator is identical to the 
evolution operator that was thought typical for the interac­
tion picture: 

dU 
dr 

- iV(q + rp,r) U. (5.2) 

Hence, the traditional evolution operators of the inter­
action frame become genuine dynamic operations describing 
the precession effects. Assume now that the field V(q,t) is 
weak. In agreement with the continuous Baker-Campbell­
Hausdorff formula, 14-16,24 the evolution operator (5.1) and 
(5.2) is approximately 

U( r) = exp[ - iO( r)] 

~exp( - i i'" V(q + tp,t)dt ) . (5.3 ) 

How general is this operator? What "tendencies to 
evolve" can be evoked by little perturbations of the evolution 
loops of Sec. III? 
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To check the contents of (5.3) it is convenient to express 
!lCT) in terms of a fixed basis of independent, Hermitian 
forms of q andp. It turns out that the proper basis is suggest­
ed by the form ofEq. (5.2). Define (A,B) = ~(AB + BA). 
Then, consider the multiple anticommutators 

(p,(p, ... (p,tP(q) ... ), n=O,l,.... (5.4) 

Ln-.l 

When tP runs through a basis of polynomials in q, and 
n = 0,1,2, ... , the expressions (5.4) become a basis of inde­
pendent, Hermitian forms of p and q. Note now 

[i (p2/2) ,tP(q)] = ~ (PtP'(q) + tP'(q)p) = (p,tP'(q»), (5.5) 

[i (p2/2) , [i (p2/2) , ... [i (p2/2) ,tP(q)] ... ] ] 
I n I 

= (p,(p, .. ·(p,tP(n)(q) ... ). (5.6) 

Hence 

V(q + tp,t) 

= eitP'12V(q,t)e - itp'/2 

'" tn [.p2 [.p2 [.p2 ]] L "I 1-,1-, ... l-,V(q,t) ... 
n=O n. 2 2 2 

= f t: (p,(p,,,,(p, a: V(q,t») ... ). 
n=O n. aq 

(5.7) 

and 

!l( 1') ~ iT V(q + tp,t)dt 

= f .!, (p,(p,,,,(p, a: (T t nV(q,t)dt ) ... ) , 
n=O n. aq Jo 

(5.8) 

which yields the desired decomposition of the linear part 
of !l( 1') into independent anticommutators 
(p, (p, ... (p,tP(q) ) ... ). If, in particular, 

V(q,t) = y(t) V(q), (5.9) 

then 

!l(1') ~ m~o [~! [ tmy(t)dt ] 

x (P.(P'''.(P' ~;f) .. .) 
'--m .J 

f Ym(P,(P,,,,(p, dmp ... ), 
m=O dq;;j 

(5.10) 

where the coefficients y m are simply the mathematical mo­
ments ofy(t) in [0,1']. If, moreover, V(q) isa polynomial of 
order N, the series (6.10) ends up after N terms, and since 
any first N moments of y(t) in [0,1'] are arbitrary, the expo­
nent of the unitary operation (5.3) can be manipulated quite 
easily by y(t). Taking y(t) such that 

Y = _1_ [t my(t)dt = ~ (m = O, ... ,N), m, m,mo m. 0 
(5.11) 
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FIG. 7. Three effective exponents ofthe evolution induced by y(t)rjI2 as 
y(t) varies according to each plotted oscillation mood (approximation lin­
earin y). 

one can reduce (6.3) to anyone of the operators 

e - iV(q) e - i( P.V·(q» e - i( P.( P ... ·( p,V(N)(q» ... ) , , ... , . (5.12) 

[Figure 7 represents a system of three functions, yielding 
this kind of reduction for V(q) = ~q2.] 

Since the v(n)(q) are arbitrary, (5.4) is a basis, and the 
"little precession exponents" of (5.12) can be added by the 
mechanism of Trotter formulas,2s one arrives at the follow­
inglemma. 

Lemma 5: The precession of the distorted loop (5.1) 
permits us to approach any operation e - i/(q,p) with a Hermi­
tian f (q,p) as a formal solution of the evolution problem. 
(Note that the sense ofthis lemma is purely algebraic. The 
problems of the essential self-adjointness of the exponents 
and the strong convergence of the corresponding evolution 
operators remain open.) 20 

Some operational questions follow. 
The present-day techniques of intervening into the 

structute of atomic and molecular systems relies mostly on 
simple resonance effects. However, Lemma 5 suggests some 
different possibilities. 

( 1) Given a Schrodinger particle in an oscillator field 
(Ho = y,2 + (oi/2)q2) can one design an external potential 
V(q,t) transforming some eigenstates of Ho only, without 
affecting the others? (Note that this could not be done just 
by bombarding the oscillator with an incoherent photon 
beam.) 

(2) Given two different bound systems with the same 
distance between two basic energy levels, can one design an 
external potential V(q,t) that would deconfine one ofthem 
without affecting the other? 

If the answers were positive, within the applicability 
limits of quantum mechanics with the c-number V(q,t), it 
might mean that the coherent fields, interacting with the 
evolution loops, are naturally suited to become the "selective 
pincers" of the particle technologies. 

VI. LOOPS OF SOURCE-FREE FIELDS 

The evolution problem in one space dimension is still far 
from operational. The manipulation ofSchrOdinger's parti­
cle by an arbitrary V(q,t), in general, means the application 
of an electromagnetic four-potential A a with non vanishing 
sources. A more realistic scheme would be to consider the 

Bogdan Mielnik 2299 



                                                                                                                                    

wave packet manipulated by free electromagnetic fields ar­
riving from a distance. In the nonrelativistic approximation 
(consistent with SchrOdinger's quantum mechanics) this 
means the application of the harmonic potentials in Rn

, 

n> 1: 

.6.v(x,t) = 0. (6.1 ) 

A question arises: can the manipulation prescriptions of 
Secs. III-V be repeated by using only source-free fields? 

A. Loops of harmonic potentials In R2 

Consider the loops of the quadratic potentials r(t)q2/2 
inL 2(R) for which the change of sign, r(t)- - r(t), does 
not affect the loop property (i.e., both r(t)q2/2 and 
- r(t)q2/2 produce the identity operation within the same 

time interval [O,T]). Then the following potential, which is 
harmonicin H2, must generate an evolution loop in L 2 (H2) : 

V(x,y,t) = r(t)(x2/2 - y2/2). (6.2) 

Note that the required sign invariance is shared by a 
sequence of evolution loops (3.15 )-( 3.18) of Sec. III as well 
as by the sinusoidal loops (4.19) of Sec. IV. Henceforth, 
each ofthem defines a harmonic loop ofform (6.2) in R2. 

B. Harmonic loops in R3 

The loops of Sec. III permit us, as well, to build up pat­
terns oflOQp-creating harmonic pulses in R3. A simple case is 
obtained by considering a process whose repeated sequence 
consists of three consecutive pulses of the harmonic poten­
tials (x2 - y2)/2, (y2 - z2)/2, (r - x2)/2 separated by 
three rest intervals of the length r. The resulting evolution 
operation U = U(0,3r) is 

U = e - iTp'/2
e 

- ia(i' - x')/2
e 

- iTjf/2
e 

- ia( y' - i')12 

X e - iTP'12e - ia(x' - y')12, (6.3) 

and it splits into a product of three commuting "partial evo­
lution operations" describing the propagation in the x,y, and 
z directions: 

U = W(x,Px )A( y,Py )S(z,Pz) 

[ 
- iTp;;2 aix'/2 - 2iTp;;2 - iax! 12 ] 

= e e e e 

x [e - 2i-rp~12 e - iay' 12 e - iTP~12 e iay'/2 ] 

X [e-iTP~/2e-iai'12e-iT~/2eiai'12e-iT~12]. (6.4) 

Now, forget about the concrete names of the variables x, 
y, and z and consider an abstract sequence: 

W(q,p) =e-iTP'/2eia<i'/2e-2iTP'/2e-ia<i'12, (6.5) 

whereq,pcan mean any of the pairsxppj (j= 1,2,3). When 
a = 1/T, W(q,p) becomes a part of the loop of Fig. 2, and so 
W4 = [e - iTp'/2e i(1IT)<i'/2e - 2iTP'/2e - i( 1/T)<i'/2] 4:= 1. (6.6) 

Now, if A, B are any operators and A is invertible, then 

(AB)":=I::::>B(AB)" -IA =l::::>(BA)n=1. (6.7) 

Hence, the components of (6.6) inside of the square 
bracket may be cyclically permuted yielding 

W(q,p)4=I::::>A(q,p)4=S(q,p)4:=1. (6.8) 

Thus, for U defined by (6.5) and a = 1/r, 
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U 4:=1, (6.9) 

which defines one of the simplest harmonic loops in L 2 (R3
): 

2 2 
.!..!.::.!. 
T' 2 

2 2 
1.. !:.!... 
T 2 

2 2 
!...!:.! 
T 2 

The harmonic equivalents in L 2(R3
) of other loop for­

mulas (3.17) with t = 2r are similarly obtained. 

c. The simplest assymetrlc sign-Invariant loop 

The three-dimensional harmonic analog of the loop 
(3.17), used to generate the free evolution inversion e

iTp
'12, 

share the lack of "time economy" characteristic for the regu­
lar loops of Sec. III. Is there a harmonic but "time-econom­
ic" alternative to these prescriptions? To find an answer, it is 
convenient to go back to the evolution problem in L 2(R) 
(one space dimension) and to ask the following question: 
can one have a sign-invariant alternative of the inversion 
prescription (3.24)? Differently than in Sec. III, the ques­
tion is numerically nontrivial. Due to the number of de­
mands to be satisfied, the techniques of three q2/2-pulses is 
not sufficient. What one needs are at least six pulses of q2/2 
potential intertwined with six distinct intervals offree evolu­
tion, most generally leading to the following unitary oper­
ation in L 2(R): 

U= II (e-iaf/'12e-ial"12). (6.10) 
j=6,S, ... ,1 

This corresponds to the transformation matrix 

u (a l , ... ,a6 ) = (1 0) (1 - a l ) 

a l , ... ,a6 a l 1 ° 1 

... (10)(1 -a6). 

a6 1 ° 1 
(6.11 ) 

The demands that the product of the 12 unitary opera­
tions should give a loop, and that the loop property should 
not be affected by the simultaneous change of the sign of all 
a/s (j = 1, ... ,6) can be written as 

u (a., ... ,a6 ) = u ( - a l ,· .. , - a6 ) = 1, (6.12) 
a., ... ,a6 al"'" a6 

and they provide six independent algebraic equations for the 
six real pulse amplitudes a., ... ,a6. For arbitrary a\O ... ,a6 the 
solution requires computer techniques. However, for some 
special collections of the "rest intervals" a., ... ,a6 , explicit 
algebraic solutions exist. In what follows, it will be conven­
ienttoputa1 = a,a2 =p,a = r,a4 = a',as =p',a6 = r', 
a. = a, a2 = b, a3 = c, a4 = a', as = b', a6 = c' (see Fig. 8). 
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C' o 

b' b 

0' c 

FIG. 8. The general six-pulse loop. 

Then. the soluble cases are as follows. 
Case 1: If a' = a, PI = p, r' = r. then consistent with 

the required sign invariance and cyclic symmetry (6.8). it is 
plausible to assume a' = - a, b' = - b, c' = - c. After 
substituting to (6.12) it yields 

a = Er } a' = - Er. 
b = - Er =::;.b' = Er, 
c = Er c' = - Er. 
r=~(a+P+r)/aPr. E= ± 1. (6.13 ) 

henceforth. providing a generalization of the sign-invariant 
loop of Sec. III (see Fig. 9). 

This loop. however, does not allow us to achieve the 
operationeiaP'/2withinatimeshorterthana + 2{3 + 2r>a, 
thus failing to provide the reqqired "time economy." 

Case 2: Suppose a' = /3, P' = a. Then the sides of the 
loop diagram together with the cyclic and sign-in variance 

I 

FIG. 9. A generalization of the 
sign-invariant loop of Sec. III. 
Here ~= ± I and 
r = [(a + P + r)/aPrP/2. 

properties suggest c' = - a, b' = - b, a' = - c, which, 
after feeding up to (6.12) and denoting r = "'. r' = I. yields 

E.jf, 
a= = -c', 

~al(a + P) 
E= ± 1. 

b = _ E.jf,ra+7f 
ra.fi3 (.J(iT + ..flh) 

= -b', (6.14 ) 

E.jf, , 
c= = -a, 

ra.fi3 ~a + P 
:I=2a+2{3+I+",. 

This is the required sign-invariant alternative of the 
asymmetric loop of formula (3.25). In particular, taking 
a = P = r = a' = P' = ", and r' = lone obtains the sim­
plest possible sign-invariant and asymmetric loop represent­
ed in Fig. 10. 

The corresponding loop identity can be equivalently 
written as 

( . p2) (iA q2) ( . p2) ( 2iA q2) ( . p2) (iA q2) 
exp 112" =exp ,[i 2" exp -1"'2" exp - ,[i + Ii 2 exp -1"'2 exp Ii 2 

( . p2) ( iA q2) ( . p2) (2iA q2) ( . p2) ( iA q2) 
Xexp -1"'2 exp - Ii 2 exp -1"'2 exp ,[i + Ii 2 exp -1"'2 exp - ,[i 2 . 

Due to the number of demands involved, this is the sim­
plest existing assymetric, sign-invariant "inversion formula" 
in L 2 (R) based on electric potentials. By taking the numbers 
at the vertices of Fig. 10 to modulate the IS-singularities of 
r(t) in (6.2), one simultaneously obtains the simplest pre­
scription for achieving the free evolution inversion in 
L 2(R2) at the cost of IS-like harmonic pulses in an arbitrary 
short time. 

D. Harmonic time Inversion In R3 

In R3 three obvious analogs of the inversion formula 
( 6.15) are obtained by associating the pulse function r( I) of 
the loop of Fig. 10 with the three harmonic potentials x 2

/ 

2 - y2/2, Y /2 - z2/2, and zZ /2 - x2/2. In each case, the 
free evolution inversion inL 2(R3) is incomplete, leaving one 
of the propagation directions free. The corresponding evolu­
tion operators are 

r(t) (x2 - y2)/2 

(
. p;+p2) ( . p:) 

-exp II 2 Y exp - 51"'2" ' 
r(t) (y - zZ)/2 
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(6.15 ) 

-exp(it p: : p; ) exp( - 5i"'P;) . 
Hence, after executing them in sequence in the time interval 
[0, IS", ] , the complete evolution operatorin L 2 (R3 ) becomes 

U(0,15",) = ei(2t - Sr)p212, (6.16) 

and as I and ", are independent, taking I = const, ",-0, one 
arrives at the following lemma. 

Lemma 6: An arbitrarily deep regress of the free evolu­
tion in L 2 (R3

) can be achieved by harmonic pulses acting in 

A=+.l II " -T"f 

I 

-A-" --v--~---~----r It" 
TI IT 
j., )~ __ 2_ " 2 ..-r'" Tj __ ~T .If +IT 

./f +.ff " ~ T " 

I I " - oFf" JT 

FIG. 10. The loop offormula (6.15). 
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an arbitrarily short time interval. 

E. Waves trapped In continuous electric source-free 
field 

The hannonic loops described up to now are induced by 
potential shocks. To achieve them, the experimenter would 
have to possess a method of sharpening indefinitely the field 
pulses. Even if technically possible, at some moment this 
would become counterproductive, as for too strong and too 
quickly varying fields, the validity of the quantum mechani­
cal level of the theory ends up, and competitive dynamic 
phenomena are activated (the radiative corrections and 
then, the paircreation predicted by quantum field theory). 
Hence, the question arises: can the evolution loops be gener­
ated by nonsinguiar harmonic fields in R3? 

Suppose y(t)q2/2 is one of quadratic potentials generat­
ing a loop in one-space dimension, and let y(t) be of the 
particular form 

y(t) =l/J(t) -l/J(t+! T), (6.17) 

where l/J(t) is a periodic function with the period T. [This 
simply means that y(t) does not contain Fourier compo­
nents with n = 3k, k = 0,1, .... ] Then define 

X2 ( 1 )y2 V(x,t) = y(t) - + y t + - T -
2 3 2 

(6.18 ) 

Due to (6.17), V(x,t) is harmonic. Moreover, the evo­
lution operator associated with it splits into three commut­
ing parts, and, due to Lemma 4 applied for 0' = j T and 
0' = j T, they generate the simultaneous evolution loops for 
the three tensor product components of ",,(x,t). Hence, 
(6.18) generates a loop in L 2 (R3

) =L 2 (R) 
®L 2(R) ®L 2(R). Note that any y(t) = a sin (21Tnt /T) 
(n:;63k) is ofthe required form (6.17); henceforth, the fol­
lowing harmonic potential, curiously reminding the three 
phase electric current 

_ . 21Tnt X2 . 2n1T(t + !T) y2 
V(x,t) =a sm---+asm -

T 2 T 2 

. 2n1T(t + jT) r-+ a sm - , (6.19) 
T 2 

generates the loops in L 2(R3
) exactly for the values of the 

dimensionless amplitUde a = (e/m)aT2 predicted for the 
loop motion in one space dimension. As in Sec. IV the result­
ing loops have the property of trapping simultaneously 
SchrOdinger's particles with opposite charges into a syn­
chronized periodic motion. 

Now, the construction (6.18) can be repeated for the 
two-moodamplitudey(t) = a sin (21Tt /T) + b sin (41Tt /T) 
[which too, fulfills (6.17)]. The corresponding harmonic 
field (6.18) then permits us to transplant to R3 the effects 
discussed in Sec. IV. Thus, if the pair of the dimensionless 
amplitudes a = (e/m)aT 2,p = 2b(e/m) T2 fulfills the con­
ditions (4.28), the harmonic potential (6.18) grants the si­
multaneous loop motions for four types of particles with four 
different values of charge/mass. This, on a classical level, 
means the simultaneously closed phase trajectories in the 
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( 4 X 6) -dimensional phase space of four classical mass 
points. By taking the solutions of (4.28) with Aed838.3, 
one obtains a harmonic potential able to confine in a syn­
chronized cyclic motion the particles with the charge/mass 
ratios of the electron and of the proton. The problem of engi­
neering "simultaneous traps" for several kinds of particles is 
open. 

The question of how to create the electric potentials 
with the required quadratic dependence on space coordi­
nates is open. Since they are harmonic, they are in principle 
interpretable as a result of an outside influence. However, in 
R3

, much simpler manipUlations are due to the existence of 
magnetic fields. 

F. Nonsingular magnetiC loop 

Consider a charged Schrodinger particle moving in a 
homogeneous, time-dependent magnetic field H = 2y(t)n, 
where n is a unit vector and y(t) a function. The vector 
potential may be chosen as 

A ~ - y(t)rXij, r~G)' (6.20) 

and the time-dependent Hamiltonian in the dimensionless 
coordinates becomes 

H(t) = Hp + y(t)rxn]2 

= !p2 - y(t)nM + y(t)~/2, (6.21) 

where r 1 : = r - (nr)n, M = rxp. [We take a nonrelativis­
tic approximation for A a, consistent with Schrodinger's 
quantum mechanics. The particular form of (6.20) corre­
sponds to a homogeneous magnetic pulse associated with an 
axially symmetric electric field.] To illustrate the creation of 
magnetic loops, choose y( t) to be a rectangular step function 
(see Fig. 11) 

{

+a, if te[0,T/2], 

y(t) = - a, if te[T /2,T], 

0, otherwise. 

(6.22) 

Ifn = const, the corresponding Hamiltonian (6.21) is a 
sumoftwocommutingfamiliesHJ(t) = ~p2 + y(t)2!r1 and 
H 2(t) = - y(t)nMand, since f~y(t)dt = 0, the evolution 
operator within the time interval [0, T] is only due to HI (t) . 
Taking n = [0,0,1], one has 

o r---i yet) 
I I 
I I 

I I T 
I I 
I I 
o I 

I 

I I 
L-.....! -0 

FIG. 11. The modulating function (6.22). 
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(6.23) 

In tum, taking three consecutive step functions, r(t), 
r(t - T), and r(t - 2T), and associating them with the se­
quence of three mutually orthogonal pulses of the magnetic 
field in the directions ii = [0,0,1], iii = [0,1,0], and 
s= [1,0,0], 

H(t) = r(t)ii + ret - T)iii + r(t - 2T)s, (6.24) 

one obtains the following evolution operator in [0,.,-], 
r=3T: 

U(r) = UsU;;; Un 

= exp( _ iTP;)exp [ _ 2iT(P; + a2 ~2)] 

xexp - [ - iTe; + a2 ~) ]exp( - iTP;) 
x [ - iT(P; + a2 y;) ] 
xexp [ - 2iT(P; + a2 ~) ]exp( - iT

P
;) 

= W(x,Px)P(y,py)S(z,Pz)' (6.25) 

As in (6.4), forget about the names of the variables, and 
consider the algebraic elements of the process: 

A = exp [ - iT(P; + a2 ~)]. B = exp( _ iT~2) . 
(6.26) 

The typical sequences occurring in (6.25) are 

W=BA 2, P=ABA, S=A 2B, (6.27) 

and, due to the possibility of the cyclic permutations, 

(6.28) 

Henceforth, to find the loop cases of (6.25) in L 2 (a3
) it 

is enough to examine the structure of W. The corresponding 
2 X 2 matrix is 

- 1\ (cos aT, - sin aT la) 
IJ a sin aT, cos aT ' 

(6.29) 

and 

Tr{U = r(aT) = 2 cos aT - aTsin aT. (6.30) 

Henceforth, the values of a = aT that fulfill the equa­
tions 

rea) = 2 cos a - a sin a = 2 cos (21r1 In) 

(n;;;.3, O<2l<n) (6.31 ) 

define the cases for which (Un = I:::}wn==pn==sn 
==1:::}U( r)n=l, and the magnetic field (6.24) produces an 
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nth-order evolution loop in L 2 (R3 ). After plotting the even 
function rea), one sees that for every Knl = 2 cos (21r1 I 
n)e( - 2,2), Eq. (6.31) is fulfilled for an infinite sequence 
of points on the a axis. They define special sequences of 
magnetic pulses, coming from three mutually perpendicular 
directions, which can trap Schrodinger's particle together 
with its charge conjugate into a perpetual cyclic motion. 
Note that a similar confinement never could be achieved in 
R3 by using static magnetic fields. [The magnetic confine­
ment due to sinusoidal r(t) is also possible (to appear).] 

G. The validity domain 

Above, we have treated the quantum mechanics with 
time-dependent external potentials "as it is," which seems a 
legitimate task. However, the question of the applicability 
domain arises. As is clear, the discussed cyclic motions are 
only the simplest quantum mechanical models. In reality, 
the particle trapped into a loop must radiate, and, therefore, 
its motion must differ from the quantum mechanical trajec­
tory. A question is how quickly will this happen? To obtain a 
rough estimate, assume the particle is classical charge e 
trapped in a cyclic motion of period T and amplitUde I, and 
compare it with an oscillating dipole: d(t) = eTtU(t IT), ii 
being a unit vector and A. (s) a periodic function of period 1. 
The dipole would radiate the power 

1:: 2 Ie
2
/
2

1"(t)12 p(t) a'. c3 Id I a'. c3 r A. T ' 

causing the energy loss per period 

E(T)a'.+ 3 ;14 iT IA (~)r dt 

a'._1_3 e2/ 2 t IA(s)1 2dS' 
(eT) Jo 

Assuming that 

f IA(sW dsa'. 1, 

and if the length of the particle trajectory within one period 
is e: 1, the energy loss per element of trajectory (interpreted 
as the radiative self-force) is F rad a'. lr / (c T) 3. On the other 
hand, the field forces sustaining the loop are of the order of 
magnitUde F fie1d e:eal, and due to the loop condition 
(e/m)aT 2 = a, F fie1d e:aml/T2, 

F rad a'.~~~e:1O-7 ~~1O-14 sec . 
F fie1d a eT me (eT) T 

(6.32) 

Thus, for the loop frequencies comparable to those of 
the short radio waves (eTa'. 100cm), FradlFfield a'. 10- 10

, the 
radiative corrections can be neglected, whereas for the fre­
quencies a'. 1012 /sec, they would become significant. 

An intriguing question is what happens to the loop solu­
tions due to the radiation emission. The traditional quantum 
mechanical oscillator, with the constant potential, after radi­
ating quanta, settles on the lowest possible energy level 
(ground state). For the time-dependent loop potentials, the 
particle cannot fall to the ground state since there is none. 
The formation of some new, quasicyclic patterns of motion is 
henceforth probable. 
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VII. PRECESSION OF CYCLIC MOTIONS DUE TO 
SOURCE-FREE EXTERNAL FIELDS 

Following Sec. V we shall examine the harmonic loops 
perturbed by harmonic fields. Similarly as in Sec. V consider 
the simplest loop composed of an interval [0,1'] of the free 
evolution e - irp'/2 and then an interval [1',T] in which the 
harmonic fields induce ei

rp'/2. Assume now that the process 
is deformed by an additional potential V(x,t) inserted into 
the free part [0,1']. As observed in Sec. V the evolution oper­
ator in [O,T] coincides with that of the traditional interac­
tion picture. If V(X,t) is small [put V(x,t)~V(x,t)], the 
approximate expression is 

U(O,n = exp( - iO) 

~exp( - iE iT vex + tp,t)dt ) = exp( - iEf!' ). 

(7.1) 

Now, however, V(x,t) is harmonic. Henceforth, 0 is no 
I 

longer arbitrary, and the simple manipulations with mo-
ments analogous to those of Sec. V can reduce it only to one 
of the following elementary forms: 

it/J(x), i(Pk,t/J'k (x»), i( Pk,(Prot/J'kl (x))), ... , (7.2) 

where the t/J(x) are always harmonic. It might seem that the 
manipulations by harmonic V(x,t) are therefore restricted. 

However, one has to remember that 0 describes only the 
I 

most immediate dynamic effects. An exact expression for the 
exponent 0 in (7.1), known as the Magnus/ormula (also 
the continuous Baker-Campbell-Hausdorff formula) in­
volves infinite integral series of multiple commutators 
[H(tn ),[H(tn_1 ), ... [H(t2),H(tI) ] ... ]. An algorithm to 
determine its subsequent terms was given24 and an explicit 
formal solution was found in Refs. 15 and 16, 

+00 
0= L ~O, 

n=O n 

(7.3) 

O=(_i)n-I r ... rLn(tn, ... ,tl ) 

n Jo Jo 
XH(tn ) .• ·H(tl)dtn .. · dt l , (7.4) 

where H(t) means the time-dependent Hamiltonian, and 
the integration kernels are 

1 n -1- e (n - 1) -I 
Ln (tn, .. ·,tl ) = -;; ( - 1) • en ' 

en = S(tn - tn -I) + ... + S(t2 - tl)' (7.5) 

Due to the time dependence of V(x,t), there may be 

physical situations when die contribution from 0 vanishes 
I 

and higher-order terms of (7.3) become dominant. A clear 
circumstance of this kind occurs for the double loop twice 
affected by the same potential with inverted signs (see Fig. 
12). 

The resulting precession effect is then defined by 0 (a 
2 

generalized method of moments of Sec. V is available; auth-
or's notes). 
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IT 

FIG. 12. A double pulse pattern annihilatins .0. 
t 

A convenient device to check the global algebraic con­
tents of all "precession effects" is the Lie algebra G spanned 
by ;p2/2 and by the elements (7.2).Its natural embedding 
frame is the algebra .r;f of all "formal expressions"; 
.r;f: = .7/ oF, where Jf is the complex free algebra of all 
formal power series of six symbols xj , Pj (j = 1,2,3) with a 
natural topology, and of is the ideal generated by the ele­
ments: XkX i = XjXk,pkPj - PjPk,xjPk - PkXj - i/)jk 
(j,k = 1,2,3). Note now the following lemma. 

Lemma 7: The smallest Lie algebra containing;p2 /2 and 
the imaginary forms (7.2), where t/J(x) are harmonic poly­
nomials, is dense in .r;f. 

Proof: Due to (7.2), G contains any harmonic polyno­
mial iu(x), as well as any i(Pk,v,k(x»), where vex) is har­
monic. This implies 

[i(Pk,v'k),iu] =;U'kV'k =iA(uv)eG. 

Hence, for any harmonic, real polynomials ul, ... ,un and 
VI, ... ,Vn' iA(ulvl + ... + UnVn leG. However, any polyno­
mial cu(x) = ~Uj (x)vj (x), where uj (x) and Vj (x) are har­
monic (author's notes). In tum, any polynomial/ex) is of 
the form/ex) = Acu(x). Hence, every i/(x)eG. The rest of 
the proof is due to the fact that the Lie algebra containing 
;p2/2 and all polynomials if (x) must also contain all imagi­
nary polynomials of X, p. • 

This lemma means that there is no algebraic barrier that 
would prevent one from approximating any unitary oper­
ation as a sequence of harmonically induced precession ef­
fects; 

Focusing operation: Since our results do not include ef­
fective prescriptions, the existence of some exact solutions is 
worth noticing. Consider again the evolution problem in one 
space dimension. Let V(q,t) = r(t)q2/2 be any loop-creat­
ing potential [with r( t) periodic, of period T; the loop peri­
od l' = n T]. Then consider the distortion of the loop by 
VI (q,t) = / (t)q, where/ (t) is periodic, of period l' (a peri­
odically varying, homogeneous force). Once more, the evo­
lution operator will split into the cyclic part Uo (t) , as in Sec. 
V, and the "precession part" W(t): 

dW = _ i/(t) [Uo(t)*qUo(t)] Wet) 
dt 

= - if(t)[G(t)q + T(t)p] Wet), (7.6) 

where G(t) and T(t) are defined by the matrix u(t) of Sec. 
IV [see (4.4»). Note now that the time-dependent genera­
tors in (1.6) commute to a number. Henceforth, the formula 
(7.3) and (7.4) for W( 1') simplifies to 

W(1')==:exp( - i iT /(t)[G(t)q + T(t)P]dt) , (7.7) 
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where the symbol = means that we have neglected a c-num­
bet phase factor. The functions GU) and T(t) fulfill the 
differential equations (4.7) and (4.8) with the boundary 
values 

G(O) = G( T) = 1, T(O) = T( T) = 0, 

G'(O) = G'(T) = 0, T'(O) = T'(T) = 1, 
(7.8) 

and are linearly independent in [O,T]. Hence, by choosing 
suitably the functionl (I) in [0, T] one can obtain the preces­
sion (7.7) in the form ofa unitary operator with any linear 
combination of q andp in the exponent. In particular, taking 
I (I) such that 

[ I (t)G(t)dl = 0, [I (I) T(t)dt = a, (7.9) 

one achieves 

(7.10) 

In order to find thel (I) that fulfills (7.9) it is not neces­
sary to solve (4.7) and (4.8) G(t) and T(t). Put 

I (t) = - a(t h)r(t). (7.11) 

Then, due to Eqs. (4.7) and (4.8) and the boundary values 
(7.8) the integral identities (7.9) are immediately fulfilled. 
The solution (7.10) is exact and consists of a shift of the 
wave packet along theq axis. Now, consider the correspond­
ing problem in R3. Let the loop of the "three phase" harmon­
ic potential given by (6.18) be perturbed by 
VI(x,t) = - a(t h)r(t)x. The evolution operator within 
the time [0, T] will split into three commuting parts, two of 
them yielding the identity (the loop condition), while the 
third one causes the translative precession of the system: 

U(O,T)=exp( - ipx f' 1(t)T(t)dl ) = exp( - iapx)' 

(7.12) 

Thus, instead of returning to its initial form, Schro­
dinger's wave packet, after the time T, is displaced along the 
x axis, without any change of shape. Should the electron 
emerge from a hole (or slit) into a space filled with the pul­
sating field of the perturbed loop, the wave packet should 
focus again after the time T at the distance a from its source, 
and then in the time moments 2T, 3T, ... at the distances 20, 
3a, ... (a phenomenon that suggests that perhaps the quality 
of images in the electronic microscopes might be improved 
by using time-dependent lense fields) . 

VIII. THE DOCTOR FAUSTUS' DEVIL OF FINITE 
PARTICLE SYSTEMS 

Some exceptional features of the loop solutions of Secs. 
III-VII are worth discussion. As operator identities, they 
represent an arbitrary number of simultaneous (noninter­
acting) state trajectories. Given a statistical ensemble of 
Schrooinger's particles in a loop field, the whole ensemble 
must therefore perform a loop, returning to its initial state, 
after the loop period T. A similar ensemble interpretation 
holds for the free evolution inversion eiTP'-12. Given a statisti­
cal ensemble with improbable initial density distribution 
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(e.g., empty holes inside of densely populated areas), which 
is then left to evolve freely for an arbitrarily long time, the 
rnlcilbttion patterns of Sec. VI allow us to restore the past 
ensemble state with all its forgotten details. One might think 
that such effects are possible only for ensembles of noninter~ 
acting particles. However, this seems not to be the case. 

The hypothesis about a "hidden order" in a cloud of 
colliding particles was recently raised by Brewer and 
Hahn. 19 The behavior of finite particle systems in pulsating 
fields was investigated by Waniewski21 who has shown the 
existence of oscillation patterns generalizing' those of Sec. III 
and producing the operations inverse to the natural evolu­
tion of the system (interactions included). The fields used by 
Waniewski had a disadvantage of not being source-free. 
However, due to our Lemma 7, it appears that they too have 
harmonic analogs. If this is the case, we would be on the way 
to confronting some traditional images associated with ther­
modynamic irreversibility. 

It is a strong conviction of the present-day statistical 
mechanics that if a system of many interacting particles is let 
to evolve, the initial state is irreversibly lost in a labyrinth of 
collisions. It could be recovered only with the help of a myth­
ical entity called the "Maxwell's demon." This entity should 
perceive the individual particles of the system and act upon 
them selectively, enforcing their return to the initial, ther­
modynamically improbable state. On the level of quantum 
theories, the action of the demon would be additionally 
blocked by a semantic paradox: each act of perception of a 
microparticle observable destroys the microparticle state to 
a point of no return, without providing more reward than a 
single eigenvalue. Hence, the demon could not act without 
destroying what he was supposed to restore. 

Though the image is suggestive, the argument contains a 
gap. The traditional statistical mechanics tells only what 
happens to a large particle system interacting with a relative­
ly unsophisticated surrounding (thermostate, thermic isola­
tor, etc.). It does not tell what might happen to the same 
system if placed in a sequence of ordered impulses of highly 
intricate structure, interpretable as an information beam. 
What happens then, as found in Refs. 19 and 21 and our Sec. 
VI is the existence of special patterns of the field variations, 
which can restore the system to its past. These "go back" 
drifts, in their simplest form, have been known as the spin­
eco effects. However, they exist also in infinite-dimensional 
spaces of states. As they can be induced in blind, they do not 
engage the familiar antinomy of "destructive knowledge." 
In practice, there is something else that handicaps them. 
When the number of system particles grows, the complica­
tion of the required operation patterns increases sharply, and 
so does their sensitivity to the little errors. Henceforth, they 
might be of no practical importance for the present-day ex­
perimental techniques. Yet, they show that there are not one, 
but two different demonlike entities who oppose the thermo­
dynamical chaos: the Maxwell's demon and the Doctor 
Faustus' devil. While the first one acts on the principle of 
detailed insight into the system microstate (with all antino­
mies involved) the second one plays only a certain universal 
melody, without worrying about the past, present, and the 
future of the system. 

Bogdan Mielnik 2305 



                                                                                                                                    

Note added in proof" Since (4.3) is an antirepresenta­
tion, our conclusion about the deconfinement in Sec. IV B, 
strictly speaking, concerns the behavior of the Heisenberg 
trajectories in the past. However, it can be seen that it simul­
taneously implies their deconfinement in the future. 
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The dynamical structure of any reasonable stochastic version of classical mechanics is 
investigated, including the version created by Nelson [E. Nelson, Quantum Fluctuations 
(Princeton V.P., Princeton, NJ, 1985); Phys. Rev. 150, 1079 (1966)] for the description of 
quantum phenomena. Two diJerent theories result from this common structure. One of them is 
the imaginary time version of Nelson's theory, whose existence was unknown, and yields a 
radically new probabilistic interpretation of the heat equation. The existence and uniqueness of all 
the involved stochastic processes is shown under conditions suggested by the variational 
approach ofYasue [K. Yasue, J. Math. Phys. 22, 1010 (1981)]. 

I. INTRODUCTION 

Nelson's stochastic mechanics is an unorthodox ap­
proach of quantum mechanics that attempts to take serious­
ly the probabilistic concepts of this theory. It shows that, in 
spite of a frequent belief, it is possible to interpret the quan­
tum phenomena in terms of diffusion processes and there­
fore to use some physical intuition to understand these phe­
nomena. 1-

3 

Let us begin by a summary of stochastic mechanics for 
one particle of unit mass in a scalar potential V: a3 ~a. The 
key assumption of this theory is that the particle performs a 
diffusion process described by the (Ito) stochastic differen­
tial equation 

dX(t) = b (X(t),t)tit + [R dw(t) , (1.1) 

where b: R3 X R~R3 is a function with the units of a velocity, 
called the drift of the process, Ii is Planck's constant, and 
w(t) is a Wiener process on R3. Notice that this kinematical 
assumption is compatible with the Heisenberg principle 
since it says that the quadratic variation of the process on a 
time interval dt is of the order Ii dt or, using the symbolic 
notation whose meaning is specified by stochastic calculus,4 

(dX(t»)2 = lidt, (1.2) 

which is a version of the uncertainty relations. 
Now let us fix a time interval 1= [ - T 12,T 12]. It is 

shown in stochastic mechanics that to every (sufficiently 
regular) solution ,p of the Schrodinger equation on R3 X I, 

( 1.3) 

is associated a diffusion process (1.1) with drift 

b(x,t) = Ii Re V,p(x,t) + Ii 1m V,p(x,t) , (1.4) 
,p(x,t) ,p(x,t) 

in such a way that the Born interpretation is valid, 

a) Address after 30 October 1985: BiBoS Research Center, Fakultat Physik, 
Bielefeld University, D-4800 Bielefeld 1, Federal Republic of Gerrnany. 

b) Address after September 1986: University of Warwick, Mathematics In­
stitute, Coventry, England. 

P(X(t)Ed 3x) = 1,p(x,tWd 3x, Vtin [- TI2,TI2] , 

( 1.5) 

for P the probability measure of this process. 
Actually, the construction of the processes and the 

proof of their existence and uniqueness for a given initial (for 
example) density of probability l,p(x, - T /2) 12 dx is not a 
simple problem. In particular, at the quantum nodes (zeros 
of the wave function ,p) the drift (1.4 ) is manifestly singular, 
too much anyway for the standard methods of constructing 
diffusions. Recently, Carlens gave an analytical proof of ex­
istence and uniqueness of such a Markovian diffusion for 
quite general solutions of the Schrodinger equation (1.3) 
and a given (final) density 1,p(x,T /2) 12 dx. 

After this crucial mathematical result and the publica­
tion of Nelson's 1983 course on stochastic mechanics given 
in Switzerland, 1 one can wonder about the need for further 
investigations of the conceptual structure of this theory. 

Actually, in spite of its successes, stochastic mechanics 
is a singularity in the field of the physical theories, whose 
consequences, bO,th from the mathematical and physical 
points of view, are far from being understood. This is partly 
due to the unique character of this construction but also to 
the very implicit form of its key probabilistic concepts. An 
example of this last aspect is that, given a solution of the 
Schrodinger equation (1.3), we know everything explicitly 
about the associated Markovian diffusion ... , except its tran­
sition probability, even in very simple cases. 

On the other hand, the relevant diffusion processes are 
"conservative" in the sense of Nelson1

: their properties are 
invariant under time reversal. It is well known that the con­
cept of Markovian property is time symmetric, but most of 
the physical Markovian diffusions are not; in other words, 
this symmetry is not an intrinsic characteristic of the Marko­
vian diffusion. Nevertheless stochastic mechanics is a funda­
mentally time symmetric theory since it describes quantum 
phenomena. One of our key theses is that the class of Marko­
vian processes is not the most natural one to investigate sto­
chastic versions of mechanics. 

This natural class of processes was suggested by the 
variational approach of stochastic mechanics discovered by 
Y asue. 6-8 He showed that a general diffusion (not necessar­
ily Markovian) is a critical point of the action functional 
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J[XJ = E [IT/2 {l. L (X(t),DX(t),t) 
- T/2 2 

+ ~ L (X(t),D. X(t),t)} dt] 0.6) 

for L the classical Lagrangian of the system [in our case 
L(x,x,t) = H:tj2 - V(x,t), with 1·1 the Euclidean normJ if' 
and only if the following Newton equation holds: 

!(DD.X + D. DX)(t) = - VV. 0.7) 

In ( 1.6) and ( 1.7), DX andD. X, the two natural generaliza­
tions, in stochastic mechanics, of the classical notion of ve­
locity are defined as 

DX(t) =limEt[[X(t+h) -X(t»)/h J, (1.8) 
hlO 

D.X(t) = lim Et [[X(t) - X(t - h»)/h J , (1.9) 
hlO 

where Et denotes the conditional expectation givenX(t), if 
these limits exists in L !(P) Vt in J - T 12,T 12[. 

To get the result (1.7) one has to assume that the two 
boundary random variables X _ T /2 and X T /2 are fixed dur­
ing the variation of the action J[XJ, in complete analogy 
with the classical case. 

From a probabilistic point of view, however, it is a very 
unusual hypothesis. These two random variables are not in­
dependent, and such a condition seems to involve their joint 
density m = m (x, y), a probabilistic data used neither in the 
construction of stochastic mechanics, nor in the usual con­
structions of Markov processes. In spite of this, the Newton 
equation (1.7) is indeed an important relation of stochastic 
mechanics: it specifies the dynamics. Notice, however, that 
both physical and probabilistic interpretations of the sto­
chastic acceleration are quite obscure in the usual approach 
of the theory. Why is it not possible to construct a reasonable 
version of stochastic mechanics usirig another time symmet­
ric acceleration, for example, ~(DDX + D.D.X)? 

Other dynamical aspects of stochastic mechanics can be 
analyzed via a rather formal stochastic calculus of variations 
whose (1.6) and (1.7) are the basic results.9 

All this suggests that this variational approach for two 
fixed end points really has something to do with the probabi­
listic structure of the involved ditfusion processes, even if it 
seems doubtful that only Markov processes can be con­
structed from this starting point. But it is worthwhile to ob­
s~rve that several recent developments of stochastic mechan­
ics also suggest that the class of Markov process may be too 
restrictive for some purposes of this theory.! 

In this article, we introduce, in a way consistent with the 
above-mentioned variational starting point, a new class of 
stochastic processes called "Bernstein processes" associated 
with a given quantum mechanical evolution in real and in 
imaginary time (i.e., also for the heat equation with potential 
V). In both cases, only one member of this class is a Markov 
process: in real time it is the diffusion process of stochastic 
mechanics, in imaginary time it is a ditfusion (without Kill­
ing) that yields a radically new probabilistic interpretation 
of the heat equation. 
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It turns out that the constraint of two fixed end points, 
interpreted here as the knowledge of the two quantum densi­
ties I¢'(x, - T /2)1 2 dxand 1¢,(x,T /2)1 2 dxinrealtime, and 
of two nonzero densities p _ T/2 (x)dx and PTI2 (x)dx in 
imaginary time, is perfectly natural from the time symmetri­
cal point of view of any version of stochastic mechanics and 
leads to a new perspective on the involved diffusion pro­
cesses, even for the Markovian representatives. 

As a by-product of this construction, we obtain closed 
formulas for all the transition probabilities of the Markovian 
representatives. The fact that we know their closed form 
(unknown till now) will be very useful for the future proba­
bilistic investigations of this theory, and for any practical use 
of it, in theoretical physics (cf. also the Conclusion). 

An illustration of what we expect of this approach is 
given in the last section (Sec. V), justifying the title of the 
paper, where we propose a new least action principle in sto­
chastic mechanics and in the imaginary time version of it. 
This principle is compatible with all the needs of both of 
these theories and uses nothing but the parabolic equations, 
which are central in our construction. 

The program of this work is the following. 
In Sec. III we introduce the two starting kernels of our 

construction. In imaginary time, it is directly the integral 
kernel of the SchrOdinger semigroup, in real time we show 
how to associate to a given solution of the SchrOdinger equa­
tion a parabolic equation of evolution and we start from the 
kernel of this one. We use these kernels to construct a sto­
chasticprocessXt onI = [ - T 12,T 12J whosejointdensity 
of X _ T 12 and X T /2 is given. The resulting process is general­
ly not Markovian. Only one choice of joint density produces 
a Markovian diffusion process. 

We use in this part an adaptation of a mathematical 
program proposed a long time ago by Bernstein in ord~ to 
develop an idea of SchrOdinger. lO,l1 The program was real~ 
ized by Jamison and Beurling, with a contribution from For~ 
tet. It is summarized, with some of its key arguments, in the 
Appendix. 

A crucial feature of these processes (the Bernstein pro­
cesses) is that they are intrinsically time symmetrical. The 
construction proposed here implies the a priori symmetriza~ 
tion of the Markovian representative used by Nelson in sto­
chastic mechanics. 

Section IV investigates the (unique) Markovian Bern­
stein processes associated to the real and imaginary time ver­
sions of stochastic mechanics under the two fixed end-points 
constraint. In the real time situation, it is shown that the 
result of this construction is indeed the diffusion process of 
stochastic mechanics. The imaginary time case shows that it 
is also possible to associate, in a new dynamical way, time 
reversible ditfusion processes (without Killing) to an evolu­
tion under the heat equation. 

If one chooses invariant boundary densities with nodes 
(zeros), as we have to for the quantum stationary states, our 
construction has to be slightly modified because the unique­
ness of the processXt onI = [ - T 12,T 12J is lost. Actually, 
we show that it is sufficient to use the natural decomposition 
of the state space M into the disjoint domains formed by the 
nodes to get a unique stationary Bernstein process in each of 

J. C. Zambrlni 2308 



                                                                                                                                    

these domains. The uniqueness of the process on the entire 
state space follows trivially. Also notice that the same is true 
in imaginary time because in the stational); situation the two 
considered starting parabolic equations have, up to the tri­
vial time dependence, the same solutions. 

In Sec. Y, we characterize in a new variational way the 
Bernstein processes relevant for the two versions of stochas­
tic mechanics ("variational processes"). Since, in imaginary 
time, this yields a new probabilistic interpretation of the clas­
sical heat equation directly inspired by Schrodinger, the re­
sulting new theory of classical diffusing particles is called 
"(SchrOdinger's) stochastic variational dynamics." 

There is no attempt here to find the best regularity con­
ditions for the construction, mainly because our goal is to 
describe a new constructive frame for any version of stochas­
tic mechanics. Therefore all the conditions given here can be 
greatly weakened. This work has a twofold motivation. The 
first is to develop a truly consistent probabilistic extension of 
the classical variational approach of dynamics and to show 
that it is more fundamental than previously anticipated in 
stochastic mechanics since it leads to a completely different 
probabilistic construction of this theory. The second is to 
suggest, as in Sec. Y, how to use this formulation to discover 
new conceptual and technical aspects of stochastic mechan­
ics, using the comparison, henceforth possible, between the 
real and imaginary time dynamics. From our point of view, 
indeed, the fact that the dynamical structure of stochastic 
mechanics is shown not to be restricted to the real time de­
scription increases notably the reach of this theory. 

Finally, since our constructive approach brings to light 
new interesting physical features, these will be analyzed sep­
arately in another publication. 12 

II. SOME CONVENTIONS, NOTATIONS, AND 
DEFINITIONS 

The stochastic processes indexed by I, X t : O-+M, 
cu~(t)==X(t,cu)==X(t) considered here, for I a compact 
time interval [ - T 12,T 12],M the one-point compactifica­
tion of a locally compact separable metric space M, and 
o = lltel M the compact (under product topology) separa­
ble space of the functions cu: I-+M, are defined on the prob­
ability space (O,Oi, P). 

The set UI = o{Xt,tel} is the Borel sigma algebra of 0 
called the natural filtration of X t and M the state space of the 
process. For a given sigma algebra.%' = .%' (M), (M,.%' ) is a 
measurable space. We will be interested niainly in the case 
where M is the Euclidean space R", or a region A ofR", and 
.%' the associated Borel sigma algebra. When M is not speci­
fied, in the following, the result has a more general validity. 

Some sUbsigma algebras of U / , or filtrations, will be use­
ful: the past at time t, denoted by 9 t = o{X.,s<t}, the fu­
ture at time t, Y t = o{Xu,u;;>t}, and the present at time t, 
fft = 9 tn:Tt. Other relevant filtrations for the construc­
tion are introduced in the Appendix. A process Yt is said to 
be Y t adapted (for example), if, for any t in I, Yt is Y t 

measurable. The (absolute) expectation of an integrable 
random variable X on (O,U/' P) will be denoted by E[X] 
and its conditional expectation with respect to a sigma alge­
bra.%' by E[X 1.%']. For the presentfft , the short notation 
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E t [X ] is used and, if Y is another random variable, Ex•t [ Y ] 
denotes E [ Y IXt = x] . 

If X t is 9 t adapted, this process is called a 9 t martin­
gale when E [ X t 19.] = X. for s < t. For example, the usual 
Wiener process W t is a 9 t martingale. A 9 t (local) contin­
uous R"-valued semimartingale X t admits the decomposi­
tion, for tel, 

X t =X- TI2 +Bt +Mt , 

with B _ T 12 = M _ T 12 = 0, where M t is a continuous 9 t 

(local) martingale and B t a continuous 9 t -adapted process 
of bounded variation. This decomposition is unique for X t 

and 9 t given and called the Meyer canonical decomposition 
of the process. 

A particularly interesting class of 9 t semimartingales 

is the following. Assuming that I -+ L 1 (P) is continuous, 
t .......... x, 

their canonical decomposition is given by 

X(t) =x( - T) + st DX(s)ds 
2 -T/2 

+ ~{W(t) - w( - ~)}, 

where the forward derivative defined by 

DX(t) = lim E [[X(t + at) - X(t)]lt 19,] (2.1) 
allO 

is in L 1 (P) V tel, Ii is a positive constant, and w (t) is a 9 t­

Wiener process. In particular, if X t satisfies the 9 t - (Ito) 
stochastic differential equation 

dX(t) = b (X(t),t)tlt + ~ dw(t), tel, X _ T/2 = x, 
(2.2) 

forb a smooth R"XI-+R" function, then DX(t) = b (X(t),t) 
and the process is a Markovian diffusion process, namely, it 
has the property that for any t in I, Ae9" and BeY" 
P(AB Ifft ) = P(A Ifft ) • P(B Ifft ). Intuitively, the drift 
b depends only on the present information, contained infft • 

Notice however that the above-mentioned class of semi mar­
tingales is larger: DX(t) is generally past dependent and, in 
this case, X t is not Markovian. 

An analogous canonical decomposition may be written 
with respect to the decreasing filtration Y t and an associat­
ed Y t martingale. In the restrictive (smooth) Markovian 
case, if one imposes that the same process X t satisfies the Y t 

-Ito stochastic differential equation 

dX(t) = b. (X(t),t )dt + ~ dw. (1), tel, XT/2 = Y, 

(2.3) 

then using the (general) backward derivative 

D.X(t) = lim E [[X(t) - X(t - at)]lt IY.] , (2.4) 
allO 

we get D.X(t) = b. (X(t),t) for w. (t) an Y t martingale. 
We will also use, in the same Markovian case, for any Coo 
function, f M XI-+M the forward and backward deriva­
tives 
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Df(X(t),t) = (~+ b (X(t),t) . v +.! A)f(X(t),t) at 2 
(2.5) 

and 

D",f(X(t),t) = (:t + b",(X(t),t). V - ~ A )f(X(t),t). 

(2.6) 

These formulas follow from a Taylor expansion of f and 
the use of the given f!Jl, and Y, stochastic differential equa­
tions. Actually they are valid in a wider context. For exam­
ple, if the underlying diffusion process is not Markovian, and 

dX(t) = b(t)dt +..JK dw(t), where bet) is simply (lJJ ,­

adapted and Sllb(t)ldt< 00 a.s., they are still true. Their 
conditions of validity are the ones of Ito's formula. 4 

Finally, most of the time, under an integral sign, we will 
denote simply by dx the volume element dX 1 '" dxn , when 
M=Rn. 

A number of equations, in this article, hold only almost 
everywhere, but it will be clear from the .context. 

III. BERNSTEIN PROCESSES IN TERMS OF THE 
SCHRODINGER AND HEAT EQUATIONS 

Consider the following equation of M Xl = Rn 

X [ - T /2, T /2] : 

arf If 
uft at = -""2 Arf + Vrf, (3.1) 

with some initial condition rf(x, - T /2) = rf _ T12 (x), 
where Ii is a given positive constant and V: M-+R a smooth 
(real) potential. If a = - I, this is the heat equation, if 
a = i, this is the Schrodinger equation. It is well known that 
the heat equation, which is parabolic, is easy to analyze in 
probabilistic terms, in contrast with the Schrodinger equa­
tion. Nevertheless suppose that we know a (sufficiently re­
gular) solution ofthis last equation in L 2(M), 

rf(x,t)=e(R + is)(x,'}/1i • (3.2) 

Then we will associate to this particular quantum dynamics 
another parabolic equation on M X I, 

arp * If 
-liar = -""2 Arp'" + tJrp "', (3.3) 

where the, generally time-dependent, modified potential tJ is 
defined in terms of this solution of Schrodinger and of the 
physical potential Vby 

tJ=(VR)2+IiAR-V. (3.4) 

From now on, we will parallel as far as possible the con­
struction of time reversible stochastic processes associated to 
the two starting equations, using directly (3.1) when 
a = - 1 and via (3.3) when a = i. In spite ofthese appar­
ently unrelated starting points, both cases will correspond to 
the realization of an essentially unique stochastic dynamical 
structure. Therefore, for the sake of symmetry, the two con­
sidered parabolic equations are, respectively, rewritten as 

a() '" 1i2 

-li--= --A()'" + V()"'=H()'" (3.5) at 2 
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arp '" If -Ii -- = - - Arp '" + tJrp *=Jlt"rp '" 
at 2 

(3.6) 

[note (3.6)=(3.3)]. All the functions considered in the 
construction will be real. Since our motivation comes from 
theoretical physics, we will refer to the heat equation (3.5) 
as an imaginary time SchrOdinger equation. In this context, 
it would be preferable to denote the parameters of the Schro­
dinger equation and ofEq. (3.5) in a different way, but we 
will conform here with the physicist's custom. 

We need to impose some regUlarity conditions on the 
potentials of Eqs. (3.5) and (3.6) sufficient to assure, in 
particular, that the kernels of the semigroups associated to 
(3.5) and (3.6) are strictly positive. 

Theorem 3.1: Let V be a real-valued function, Holder 
continuous almost everywhere on M = an bounded from be­
low and such that the Hamiltonian H = - (If /2) A + V is 
essentially self-adjoint. Then the fundamental solution 
h(s,x,t,y) of the parabolic equation (3.5) satisfies the fol­
lowing properties. 

For a given initial condition () '!. T /2 (x) in the space 
B(M) of the continuous bounded functions on M equipped 
with the norm II () '" II = SUPxeM I () * (x) I the classical solution 
of(3.5) [(3.6)] onMXIisgivenby 

(T,+T/2()'!.T12) = JM()'!.T12(x)h ( - ~ ,x,t,y)dx, 

where T,: B(M)-+B(M) is a homogeneous and strongly 
continuous contraction semigroup whose infinitesimal gen­
erator is H. Here T, is called the Schrodinger semigroup. 
The domain ~ (H) is defined as the set 

{geB(M) such that s-lim[ (Tt - 1)/t]g exists}. 
tlO 

Moreover, (a) h(s,x,t,y)=h(x,t - s,y) can be chosen to be 
jointly continuous in x, y, and (t - s); (b) h(s,x,t,y) is 

strictly positive, and h (s,x,t, y) -+0 ; 
Iyl~oo 

(c) lim f h(s,x,s + As,y) dy = I, 
aslO Js.(X) 

for SE (x) the sphere of center x and radius E; 

(dt) lim _1_ f (y - x)h(s,x,s + As,y) dy = 0; 
aslO As JM 

(d2) lim _1_ f (y - x)2h(s,x,s + As, y) dy = IiI, 
aslO As JM 

where, in dimension > I, (y - X)2 means (y - x) 

® ( y - x) and I is an identity matrix on M; (d3) there is a 
~ > 0 such that 

JM I y - xI2+ IJh(s,x,s + As,y) dy = o(As) ; 

(e) lim-l_[I_ f h(s,x,s+As,y)dY]=V(X); 
aslO As JM 

and (f) in (d 1) and (d2) the region of integration M can be 
replaced by SE (x). The analog is true for the integral kernel 
k(s,x,t,y) ofthe semigroup Ut associated to Eq. (3.6), and 
the modified potential tJ. We sketch only some of these clas­
sical arguments in this case. 

The integral representation of the solution is well 
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known. Notice that the Holder continuity of {} is necessary 
for the existence and continuity of af) * !at and Af) * . 

(b) Since {} is real and bounded from below, the strict 
positivity of k follows from the Feynman-Kac (integral) 
representation of the semigroup Ut , valid under our hypoth­
esis, 

k(s,x,t,y) =Ey,t[exp - f t?(w(r),r)dr] q(s,x,t,y), 

where q is the transition identity of the n-dimensional Wie­
ner process w( r), namely the (strictly positive) fundamen­
tal solution for the heat equation (on M = Rn), 

q(s,x,t,y) = (21T(t-S»)-nIZ exp( -ly-xI2/2(t-s») 

and Ey,t is the conditional expectation of the Wiener process 
w( r), knowing w(t) = y, 

(a) The joint continuity of k follows from the continuity 
oft?, 

Choosing (s,x) = (0,0) for notational simplicity, we 
check that ( c ). is true for a bounded modified potential 
W(x,r) I <;;a. The general case of a bounded below potential 
t? is obtained via a sequence of such potentials, 

_<1 ( ) _ {{}(x,r), if W(x,r) I <;;n , N 
Vn x,r - . ne , 

n, otherwIse, 

such that t?(x,r) = limn_co {}n (x,r). 
It was shown by Kac13 that, in these conditions, the 

function K( y,t) = k(O,O,y,t) satisfies the integral equation 
(M=Rn) 

K( y,t) + f fM q( r ,x,t,y){}(x,r)K(x,r) dx dr 

= q(O,O,y,t) . 

Now, by (b) and the bound on t?, 

K(x,r) <;;exp(ar)e -x'/2r /(21Tr)n/2 , 

and therefore, using this in the integral equation 

r K(y,t) dy 
)s.(O) 

i iti -x'/2r 
<;; q( r ,x,t, y)aear e . dx dr dy 

S.(O) 0 M (21Tr)nI2 

+ r q(O,O, y,t) dy. 
)s.(O) 

The first term reduces to 

a(~t _~) r e-y'IZt dy 
a a )s.(O) (21Tt)" 

and then vanishes at limllo. Since 

lim r q(O,O, y,t) dy = 1 , 
tlO )S.(O) 

the property (c) is satisfied by the kernel k. 
For (d3) we consider 

lim r I y - xI 4k(0,x,t, y) dy. 
110 )M 

The right-hand side of the integral equation shows that we 
need to evaluate 
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fM I y - xI 4q(0,x,t, y) dy. 

This is 3t 2" and therefore vanishes at limllo ' For the second 
term of the right-hand side in the integral equation we ob­
serve that 

If) y _x1 4 f fM q(r,x,t,y)t?(x,r)K(x,r) dyl 

<;; ly-xl4 q(r,x,t,y)aear e dxdrdy i iti -x'/2r 

M () M (21Tr),,/2 

-a(~-~) r ly- xl4 e-y'llt dy. 
a a)M (21Tt)"IZ 

Since this is also zero at limtlo , (d3) is true for B = 2. 
Properties (d 1 ), (d2), and (e) are immediat~ conse­

quences from the fact that (3.6) may be interpreted as the 
di1fusion equation for a stochastic process with zero drift, 
diffusion matrix IiI and Killing rate {}. In (d 1) and (d2) the 
region of integration is all of M, but taking into account the 

. relation (d3) it may be replaced by the sphere s~ (x) of cen­
ter x and radius E. This is the content of (0. For example, 

0= lim _1_ r (y - x)k(s,x,s + As, y) dy 
.1.10 As )M 

= lim _1_ r (y - x)k(s,x,s + As,y) dy 
.1$10 As )s.(X) 

+ lim _1_ r (y _ x)k(s,x,s + As,y) dy, 
.1$10 As Js.(X) 

where S€ (x) is the complement of the sphere. But since, by 
(d3) for a <2 + B, 

lim_l_ r ly-xlak(s,x,s+As,y)dy 
.1$10 As Js.(X) 

<;; 1 lim_l_ 
~+8-a AtlO At 

x r I y - xl2+ 8k(s,x,s + As,y) dy = 0, Js.(X) 
(dl) can be replaced by the "truncated rate" on S£ (x). 

Remark i: All the results of the Theorem 3.1 are also 
true if f) ~ T 12(x) [tp ~ T /2 (x)] are continuous functions in 
L 2(M), namely if the semigroups Tt , Ut are considered on 
this Hilbert space, and, actually, under much more general 
conditions. 14 

In imaginary time, the hypothesis V bounded below is 
natural since this function is given. The analogous condition 
on t? in real time, that is, for a given solution of the Schro­
dinger equation, seems hard to control since it involves the 
given physical potential V and this particular solution. 
Moreover, the explicit form of {} [Eq. (3.4)] suggests that 
our condition is almost never satisfied. This is not the case. 

Lemma 3.1. i: Let t/J(x,t) = e(R + is){x,t)11I be a given re­
gular solution of the starting SchrOdinger equation (3.1) 
(for q = i). If the potential V and as / at are bounded from 
below, {} is bounded from below. 

Proof: The substitution of t/J = e(R + is)lh in the Schro-
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dinger equation yields the coupled nonlinear partial differ­
ential equations on M X I 

aR Ii 
-= -VR·VS--SVS (3.7) 
at 2' 

as = _..!.. (VS)2 +..!.. (VR)2 +.! M - V. (3.8) 
~ 2 2 2 

In particular, in using Eq. (3.8), the modified potential {} 
reduces to 

{} = V + 2 as + (VS)2 , 
at 

and then the conclusion holds. 

(3.9) 

o 
From the physical point of view, the constraint als 

bounded from below is a natural sufficient condition in the 
following sense. Ifthis is true and p(x,t)=I,,(x,t) 12, then 

fM a,Spdx> - 00 • 

But using Eq. (8), this is 

fJ - ! (VS)2+ ! (VR)2+ ~ M - V}pdX> - 00, 

and since p(x,t) = e2R
(x,t), it may be seen that 

l .!M ·pdx =1 -(VR)2pdx. 
M2 M 

Therefore our constraint simplifies to 

fM {~ (VS)2 + ! (VR)2 + V} pdx< 00 • (3.10) 

This is a finite energy condition. In particular, 

fM {~ (VS)2 + + (VR)2} p dx=f)V"1
2

dX< 00 

(3.11) 

is independent of time and therefore is true on I = [ - T 12, 
T12] if IIV"-T/2I1~ < 00. Under this condition, Carlen 
proved the existence of the processes of stochastic mechanics 
along the constructive lines proposed originally by Nelson.s 

Now, assuming that we are in the conditions of the 
Theorem 3.1, let us define the strictly positive functions of 
six variables for - T 12,s < t, T 12 and x, y, z in the state 
space (M,fA), 

h( .t. ) _ h(s,x,t,y)h(t,y,u,z) 
sox, ,y,u, z - , 

h(s,x,u, z) 
(3.12) 

and for AefA, 

H(s,x;t, A;u, z) 

= i h(s,x;t,y;u, z) dy== L h(s,x;t,dy;u, z) , 

and similarly for the kernel of the semigroup Ut , 

k( t ) 
k(s,x,t,y)k(t,y,u,z) 

sox; ,y,u, z = , 
k(s,x,u, z) 

K(s,x;t, A;u, z) = i k(s,x,t,dy;u, z) . (3.13 ) 

Such a function, for example K, has three important proper­
ties. 

(Kl) Vx, zeM and - T /2,s < t < u< T 12, the map-
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ping A t-+ K(s,x;t, A,u, z) is a probability measure on fA, 
since, by the semigroup property of U

" 
i.e., the Chapman­

Kolmogorov equation, 

fM k(s,x;t,dy;u, z) 

= 1 r k(s,x,t,dy)k(t,y,u, z) = 1 . 
k(s,x,u, z) JM 

(K2) For any fixed A in fA, the mapping 
(x, z) t-+ K(s,x;t, A;u, z) is fAX fA measurablesincetheim­
age of (x, z) is a product of continuous functions. 

(K3) For any A,Bin fA, - T 12,s<t<u <v,T 12, 

L K(s,w;t, A;u,y)K(s,w;u,dy;v, z) 

= i K(s,w;t,dx;v,z)K(t,x;u,B;v, z) . 

It is evident in using the above-mentioned definition of K. 
Actually, since (K3) is valid V A,BefA, it says simply that 

(K3') k(s,w;t,x;u,y) . k(s,w;u,y;v, z) 

= k(s,w;t,x;v, z)k(t,x;u,y;v,z) . 

These three properties define a reciprocal transition prob­
ability function K in the sense of Jamison. IS 

Interpreting this function K as an analogy of the transi­
tion of probability for a Markov process, one can construct a 
stochasticprocessXt , tel = [ - T 12,T 12] for which a joint 
probability of X _ T/2 andXT / 2 will play the role of the initial 
distribution. The story of this idea is very interesting and 
quite old. It is therefore surprising that it was never exploited 
in mathematical physics. We summarize this story, and the 
relevant characteristics of such processes, the Bernstein pro­
cesses, in the Appendix and we use the same conventions. 
For the moment, we simply observe that, by definition, Xu is 
a Bernstein process on I if, for any bounded Borel measura­
bleg, - T 12,t<u <v<T 12, 

E [g(Xu) I&" tUYv] = E [g(Xu) IX" Xv] , 

for &" I the past at time t and Y v the future at time v. In 
general, such a process is not Markovian. 

In the next theorem the function K may be replaced by 
H = H(s,x;t,B;u, y). 

Theorem 3.2: Let M a locally compact metric space, 
K = K (s,x;t,B;u, y) as before, and m = m (x, y) a probabil­
ity measure on fAx fA. Then there is a unique probability 
measure Pm such that with respect to ( 0,0'1' Pm ), Xt, tel, is 
a Bernstein process and 

(l)Pm (X_ T/2eB .. X T /2eBE ) =m(BsXBE) ' 

whereBs , BEEfA (where we useS for "start," E for "end"); 
and 

(2) V - TI2<s<!<u,TI2, BefA, 

Pm (XteB IX .. X,,) = K(s, Xs;t, B;u, Xu) . 

Furthermore the probability Pm (C) of the cylinder event 

C = {X _ T/2eBS , X" eBI, ... ,xt.eB. ' X T/2eBE} 

is given by 
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(3) i dm(X,y)i K( - I.. ,x;t .. dx1; I.. ,y) 
BsxBE B, 2 2 

or equivalently by 

... i. K( - ~ ,x;tn,dxn; ~ ,y). 

In other words, the finite-dimensional distribution density of 
X, is given by 

Pm (dxl,tl,dx2,t2,· .. ,dxn,tn) 

= r dm(x,y)k (- I.. ,x;t1,dx1; I.. ,y) 
JMXM 2 2 

... k (tn_1;Xn_ dn,dxn; ~ ,y), 

or, equivalently, by 

r dm(x,y)k (_ T ,x;t1,dx1;t2,x2) 
JMXM 2 

... k ( - I.. ,x·t dx . I.. y). 2 ,n' n' 2 ' 

The proof of this theorem is given in the Appendix. 
In Jamison's construction of Bernstein processes14 one 

shows how to construct these processes starting from a given 
Markov process. From the point of view of a physical dy­
namics, it is not the relevant way. The choice of our starting 
kernels hand k is precisely dictated by a dynamical point of 
view (cf. Secs. IV and V). However, most of the critical steps 
of his original constructions may be adapted to this new pur­
pose. 

For example, the next theorem shows that there is only 
one possible choice of joint density m = m(x, y) for X _ T/2 
and X T /2 such that the Bernstein process constructed in 
Theorem 3.2 is a Markov process. 

Theorem 3.3: Let (M,f%] ) be the state space, 
k = k(s,x,t,y) the strictly positive f%] X f%] (x,y)-measura­
ble kernel of the given semigroup U" K = K(s,x,t, A,u, y) as 
in Theorem 3.2, m = m(x,y) a probability measure on 
f%] X f%] , and X" tel, the Bernstein process for this m. Then 
X" tel, is a Markovian diffusion process ¢:> there are two real 
and nonzero bounded functions of the same sign on M, 
tp *- T /2 and lPT /2 such that 

m(BsXBE ) 

= lsxBE lP~T/2(x)k( - ~ ,x,~ ,y) 

X lPT/2 (y) dx dy, Bs,BE in f%] • 

Remarks: (1) The analogous result is true for the pro-
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cess Z, associated to the SchrOdinger semigroup T,. 
(2) In Sec. IV we shall consider mechanical stationary 

states for which this result will be used on connected do­
mains A of the original state space M and with appropriate 
boundary conditions for the kernels k. On some of these 
domains, tp *- T/2 and lPT/2 both will be negative. 

(3) No constructive way to find lP~T/2 and lPT/2 is 
given here (cf. Theorem 3.4). 

Proof: We give the proof for the process in real time X,. 
(i) ¢:: the substitution of this particular m in the finite­

dimensional distribution density of X, given in Theorem 3.2 
yields, after simplifications, 

Pm (dXl,tl,dx2,t2' ... ,dxntn ) 

= r lP ~ T/2 (x)k (- I.. ,dx,t1,dX1) 
JBsXBE 2 

... k (tn _ pdxn _ 1 ,tn ,dxn ) 

X k (tn,xn, ~ ,dY)lPT/2 (y) . (3.14) 

On the other hand, let us define on M Xl the backward evo­
lution of lPr /2' 

lP(X,s)=IM k(S,x, ~,y)tpT/2(y)dY. (3.15) 

Notice that, for - T /2<s < t<T /2, we also have 

lP(x,s) = IM k(s,x,t,z)lP(z,t) dz. (3.16) 

Indeed, by the semigroup property of k, 

IM k (s,x, ~ ,y)lPT/2 (y) dy 

= fM fM k(s,x,t, z)k (t, z, ~ ,y) dz tpT/2 (y) dy 

= IM k(s,x,I, z)lP(z,t) dz. 

Let us also define for Bef%]. - T /2<s<t<T /2 andx,yeM, 

P(s,x,t,B) = _1_ r k(s,x,t,y)lP( y,t) dy 
lP(x,s) JB 

and the associated density 

p(s,x,t, y) = k(s,x,I, y)[lP( y,/)/tp(x,s») . (3.17) 

We claim that P is the (forward) transition probability of a 
Markov process. Indeed, p is a non-negative-valued function 
by hypothesis on k and on tpT /2' 

Moreover P(S,x,I, . ) is a probability on f%] , since, using 
(3.15) and (3.17), 

r p(s,x,t,y) dy = _1_ r k(s,x,I,y)lP( y,/) dy = 1 . 
JM lP(x,s) JM 
Notice that, since k is strictly positive, the result of the back­
ward evolution of lPT/2' given by (3.15), has the sign of 
lPT /2' (This is true, as a matter off act, even if lPT /2 has zeros, 
but we shall consider this case separately.) 

Now pes, . ,t,B) is f%] -measurable for fixed s < t, Bef%] • 
since p is a product of continuous functions. 

The Chapman-Kolmogorov equation for P is a direct 
consequence of the semigroup property of k. 
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Finally, given that k is an integral kernel, Pis normal in 
the sense of Dynkin, 16 

P(s,x,s,B) = XB (x) , 

for any s in I, B in f!lJ • 

Therefore P has all the properties of a transition prob­
ability. On the other hand, using (3.15) for the integration 
with respect to yin (3.14), and after substitution of the 
transition densities p given by (3.17), the finite-dimensional 
distribution of X, reduces to 

Pm (dXI,tl,dx2,t2,· .. ,dxn,tn) 

= fMP(dX, - ~)p( - ~ ,x,t!JdX1)P(tI,xI,t2,dX2 ) 

... P(tn-I,xn-I ,tn,dxn ) (3.18) 

for the initial distribution 

p( x, - ~) dX=qJ !. T 12 (x)qJ (x, - ~) dx . (3.19) 

This is nothing but the finite-dimensional distribution for a 
Markov process X, with transition probability P(s,x,t,B) 
and initial distribution p(dx, - T /2)==p(x, - T /2)dx. 
Consequently, a version of the Bernstein process construct­
ed with the particular joint density m of the hypothesis is 
indeed Markovian. 

In the same way, starting from the definition on M Xl, 

qJ*(y,t)=fMqJ!..T12(X)k( - ~ ,x,t,y)dX, 

- T/2<t<T/2, x,yeM, (3.20) 

one verifies that for Aef!lJ, - T /2<s < t< T /2, 

P.(s,A,t,y) = 1 lqJ*(x,s)k(s,x,t,y)dX 
qJ*(y,t) A 

is the backward transition of a Markov process, with density 

P.(s,x,t,y) = [qJ*(x,s)/qJ*(y,t)]k(s,x,t,y). (3.21) 

This enables us to express also the finite-dimensional distri­
bution of X, as 

Pm (dx l ,tl ,dx2,t2,· .. , dxn,tn ) 

= fM p. (t !Jdx l,t2,x2)P. (t2,dx2,t3,x3) 

... P.(tn,dXn, ~ ,y)p(dY , ~), (3.22) 

for the final distribution 

p~, ~) dY==qJ *~, ~) qJT12 (y) dy. (3.23 ) 

A necessary condition that P is indeed the transition prob­
ability of a diffusion process is the fulfillment of 

lim r p(s,x,s+~,y)dy=O, 'o'E>O, 'o'xeM. 
b.sW Js.(X) 

In order to evaluate this Lindeberg-type expression, we in­
troduce Eq. (3.17), 

lim r k(s,x,s + ~,y) qJ( y,s + ~) dy. 
b.sW Js.(X) qJ(x,s) 
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In the hypothesis on {} of the Theorem 3.1, qJ is of class C 2. If 
we assume, for simplicity, that its derivatives are bounded 
there is a Z in ]x, y [ and T in ]s,s + h [ such that 

qJ( y,s +~) 

= qJ(x,s) + (y - x)VqJ(x,s) + ~ aqJ (x,s) 
as 

1 1 a2 

+ - (y - X)2V2qJ(Z,s) + - ~2 ,1' (X,T) , 
2 2 as-

so we need to evaluate 

lim r k(s,x,s + ~,y) dy + VqJ * (x,s) 
b.sW Js.(X) qJ * (x,s) . 

Xlim r (y - x)k(s,x,s + ~,y) dy 
b.sIO Js.(X) 

1 l' Is 1 2V2 +-- 1m -(y-x) 
qJ(x,s) b.slO s.(x) 2 

XqJ(z,s)k(s,x,s + ~,y) dy. (3.24) 

The third integral is bounded by 

max IV2qJ(z,s) I lim r l.( y - x)2k(s,x,s + ~,y) dy 
yes.cx) b.sW Js.(X) 2 

and for ~ > 0 this is 

< max IV2
qJ(z,s) I lim ~ 

yeS.(x) b.sW 2E-

x r ly-xl2+6k(s,x,s+~,y)dy 
Js.(X) 

< max I V2qJ (x,s) I lim 1.Jl 
yeS.(x) b.slO 2E-

X fM ly-xI
2

+ 6k(s,x,s+h,y) dy. 

By (d3) of Theorem 3.1 this is zero. Moreover the same 
condition shows that 

lim r k(s,x,s + ~,y) dy 
b.sIO Js.(X) 

and 

<lim -2
1

6 i ly-xI2+6k(s,x,s+~,y)dy 
b.sW E- + S.(x) 

< -1-6 lim r I y -xl2+ 6k(s,x,s + ~,y) dy = 0 
~+ b.SIOJM 

lim r (y - x)k(s,x,s + ~,y) dy 
b.sIOJs.(x) 

<1im--f-s r ly-xI2+6k(s,x,s+~,y)dy 
b.nO E + Js.(X) 

<~limr ly-xl2+6k(s,s,s+~,y)dy=0, 
EI + b.sWJM 

therefore the two other integrals of (3.24) are zero and for 
any x in M, s, in I, and E>O, 

lim r p(s,x,s + ~,y) dy = O. 
b.sIOJS.(X) 

(3.25) 

This is called the stochastic continuity of the transition prob-
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ability. 16 In particular, this implies that P(s,x,t,B) is unique­
ly defined by the generator of the associated Markov transi­
tion semigroup. Other important characteristics of the 
Markovian diffusion process constructed here are given in 
Corollaries 3.3.1 and 3.3.2. 

(ii) => Let P(s,x,t,B) [resp. p. (s,B,t,y)] be the for­
ward (backward) transition probability of the Markovian 
process X" p (s,x,t, y) [p. (s,x,t, y)] its forward (back­
ward) density andp(dy,t) =p( y,t)dy the density ofprob­
ability at time t. 

It follows from the relation of duality between the for­
ward and backward transition probabilities relative to the 
density, 

P (s,x, 2T ,BE) = _1_ r p. (s,x, I.. , Y) p(dY ,I..) , 
p(x,t) JBE 2 2 

that P(s,x,T 12, . ) is absolutely continuous with respect to 
p( . ,T 12). Let us denote by P(x, . ) its density. Similarly, 
for the starting time t = - T 12, we denote by rex, . ) the 
density of P( - T 12,x,T 12, . ) with respect to p( . ,T 12). 
Finally,a(x, . ) will bethedensityofP(s,x,t, . ) with respect 
to the Lebesgue measure d ( . ). 

Now, as a Markov process, X t satisfies 

Pm (X_ T12 EiJS' XtEiJ, X T12 EiJE) 

= i/(dX, - ~) i p( - ~,x,t,dZ) 

X iE p(t,z, ~, dy ) = i/( dx, - ~) 

X i a(x, z)dz iEP(Z,y) p( dy, ~). 
On the other hand, as a Bernstein process with joint density 
m, X t also satisfies, according to Theorem 3.2, 

Pm (X _ Tl2EiJS' XtEiJ, X T12 EiJE ) 

= f f dm(x,y) i K( - ~,x,t,dZ" ~ ,y) 
BsXBE 

= i/(dX, - ~) iE r(x,y) p( dy, ~) 

X i k ( - ~ ,x,t,z, ~ ,y) dz . 

The comparison between the two expressions of Pm shows 
that for almost all x, y (with respect to p _ T 12 XPT 12 ), 

r(x,y)k( - ~,x,t,z, ~ ,y)=a(x,z)p(Z'Y) ' 

which means that, by definition of k, 

r(x,y) 

= a(x,z) k (_ T ,x T y) P(z,y) 
k( - T 12,x,t,z) 2' 2' k(t,z,T 12,y) 

and therefore 

m(BsXBE ) 

= r P(dX, _ T) r p( _ I...,x, T ,y) 
JBs 2 JBE 2 2 
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= i/(dX, - ~) LE r(x,y)p(dY, ~) 
_ r p(x, - T 12)a(x,z) 

JBsXBE k( - T 12,x,t,z) 

Xk(-I...,x,I...,y) P(z,y)p(y,TI2) dxdy, 
2 2 k(t,z,T 12,y) 

which is indeed of the expected form. 0 
Remark: The absolute continuity of m(Bs XBE ) with 

respect to p _ T 12 XPT /2 for any couple of time ( - T 12, 
T 12) is a sufficient condition for the simultaneous existence 
of the forward and backward transitions P and p •. 

It will be useful to summarize the results on the Marko­
vian Bernstein process (we shall soon see that it is unique in 
Theorem 3.4) in two corollaries. 

Corollary 3.3.1: Let k = k(s,x,t,y) be the strictly posi­
tive kernel of the starting semigroup Ut • Then the Marko­
vian Bernstein process X t of the Theorem 3.3 is character­
ized by the following properties. 

( 1) V tel, zeM, up to a normalization, its probability 
density p is given by 

p(z,t) = ep * (z,t)ep(z,t) , 

where ep * and ep are defined according to Eqs. (3.15) and 
(3.20) by 

ep * (z,t) = fM ep ~ T/2 (x)k ( - ~ ,x,t,z) dx 

and 

ep(z,t) = fM k (z,t,y, ~)epT/2 (y) dy. 

(2) The densities of its forward and backward transition 
probabilities satisfy, for x, yeM, - T 12<.s < t<. T 12, 

p(s,x,t, y) = k(s,x,t, y) [ep( y,t)/ep(x,s)] 

and 

p. (s,x,t,y) = [ep • (x,s)/ep *( y,t) ]k(s,x,t,y) . 

(3) The following relation of duality between the for­
ward and backward densities of transition is valid, for 
x,yeM, - T 12<.s<t<.T 12: 

p(x,s)p(s,x,t,y) =P.(s,x,t,y)p(y,t). 

( 4) The finite-dimensional distribution of the process 
X t may also be written as 

Pm (dXl,tl,dx2,t2, .. ·,dxn,tn) 

= p. (tl,dx1,t2,x2) ... p. (ti- .,dxt_ 1 ,tt,xi) 

X p(dXt>ti ) . P(tt,xt,ti + I ,dxi + 1 ) 

... P(tn-I,xn-I ,tn,dxn ) . 

Remark: The analogous result is true for the imaginary 
time case. We shall denote by 

Q(s,x,t,B) = i q(s,x,t,dy) 

(Q. (s, A,t, y) = L q. (s,dx,t, y) ) 

the forward (backward) transition probability of the Mar­
kovian Bernstein process Zt and its associated density, and 
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by P(dx,t) = p(x,t)dx its distribution of probability. b. (x,t) = - ,,(Vtp */tp *)(x,t) , 
Corollary 3.3.2: IftpTI2,tp'!..TI2 are positive, of class C 2, 

and have bounded first and second derivatives, the Marko­
vian Bernstein process X, is a diffusion process whose for­
ward and backward drifts are the (M = Rn)-valued func­
tions b and b. given by 

and the diffusion matrix the matrix-valued function C and 
C. (same notations) 

b(x,t) = ,,(Vtp /tp)(x,t) , 

C(x,t) = C. (x,t) = iii , 

for I the n X n identity matrix. 

ProofofCorollary 3.3.1: We consider only the process in real timeXt • 

(1) According to (3.14), (3.15), and (3.20) we find that the density Pm (dxI,tl)==p(dxl>tl) is, for xleM, tiel, 

Pm (dx1,t l ) = fMdXdytp'!..TI2(X)k(X,- ~ dXI,tl)k(XI,tl,y,~)tpT/2(Y) 

= fM tp '!.. T/2 (x)k (x, - ~,dx,tl) dx fM k (Xl,tl,y, ~) tpT/2 (y) dy = tp *(Xl>tl)tp(XI,t1) . 

We shall see later that this product may indeed be normalized as a probability density (Theorem 4.4). 
(2) These results have been found in the proof ofthe Theorem 3.3: Eqs. (3.17) and (3.21). 
(3) The relation of duality is an immediate consequence of the explicit form of the transition densities p and p * and the 

density p. 
(4) In introducing the above-mentionedp,p., andp in the given finite-dimensional Pm we obtain Eq. (3.14). 
Proofofthe Corollary 3.3.2: By the assumptions about tpT/2 and tp '!.. TI2 and the definitions (3.15) and (3.20) for the 

backward and forward evolutions, '1'(x,s) and '1' * (y,t) have the same properties. In particular, the following Taylor expan­
sion makes sense, for somez in ]x,y[, rin ]s,s + as[: 

a'1' 1 1 a 2'1' 
'1'( y,s + as) = '1'(x,s) + (y - x)V¢(x,s) + as - (x,s) + -( y - x) 2V

2tp (z,s) + _(as)2 -2- (x,r) . 
as 2 2 as 

Using this in the density of the forward transition probability given in Corollary 3.3.1 (2) (and denoting a'1'/as by ¢i) it 
follows from the definition of the forward drift for a diffusion process that 

b(x,s) = lim _1_ r (y _ x)p(s,x,s + as,y) dy = lim _1_ r (y _ x) '1'( y,s + as) k(s,x,s + as,y) dy 
AsiO as )SE(X) AsiO as )SE(X) tp(x,s) 

= lim _1_ r (y _ x) [1 + V'1' (x,s) (y _ x) + ¢i (x,s) • as +1. V2
'1'(z,s) (y _ X)2 

AsiO as )SE(X) '1' '1' 2 '1' (x,s) 

+1. ip(x,r) (as)2]k(S,x,s + as,y) dy 
2 '1'(x,s) 

= lim _1_ r (y _ x)k(s,x,s + as,y) dy + V'1' (x,s) lim _1_ r (y - x)2k(s,x,s + as,y) dy 
AsiO as )s.(X) '1' AsiO as )s.(X) 

+ ¢i(x,s)lim r (y-x)k(s,x,s+as,y)dy+ 1 lim r (y-X)3V2'1'(Z,s)k(s,x,s+as,y)dy 
'1' AslO )s.(X) 2tp(x,s) ASIO )s.(X) 

+ ip(x,r) lim as r (y - x)k(s,x,s + as,y) dy. 
2tp (x,s) AsiO )s.(X) 

The first error integral is bounded by 

max IV2'1'(z,s)llim-
1
- r ly-xI3k(s,x,s+as,y)dy 

yeS.(x) ASIO as )s.(X) 

(or the integral on all of M). By the Theorem 3.1 (d3), this term is zero, as is the other error integral. Since we are in the 
conditions where the "infinitesimal rates" (d 1) and (d2) of the same theorem are identical to the truncated rates on SE (x), we 
get indeed 

b(x,s) = ,,(V'1' 1'1' )(x,s) . 

The same computation for the backward drift, 

b. (y,t) = lim _1_ r (y - x) p. (t - at,x,t, y) dx , 
AtiO at )SE( Y) 

using the density ofthe backward transition probability [Corollary 3.3.1 (2)], yields 

b. (y,t) = - ,,(V'1' *1'1' *)( y,t) . 
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On the other hand, the diffusion matrix C of the process is defined by 

C(x,s) = lim -1-1 (y _X)2p(S,x,s + as,y) dy. 
4.10 as s.(x) 

It follows from the same Taylor expansion as before that 

C(x,s) = lim _1_ 1 (y - x)2k(s,x,s + as, y) dy + vip (x,s) lim _1_ i (y - x)3k(s,x,s + as, y) dy 
.1.10 as s.(x) ip 4.10 as s.(x) 

+¢(X,S)liml (y-x)2k(s,x,s+as,y)dy+ 1 lim_l_ 
ip 4.10 s.(x) 2ip(x,s) .1.10 as 

X r (y - X)4V2ip (z,s) k(s,x,s + as,y) dy + ip(x,-r) lim as 1 (y - x)2k(s,x,s + as,y) dy. 
)s.(x) 2ip(x,s) .1.10 s.(x) 

The first error integral is bounded by 

max I V2ip (z,s) I lim _1_ 1 (y - x)4k(s,x,s + as,y) dy 
yeS.(x) .1.10 as s.(x) 

and so is zero by the Theorem 3.1 (d3). The other error 
integral vanishes trivially. It follows from (d2) (same 
theorem) that, if I is an identity matrix, then 

C(x,t) = fzI . 

The (identical) backward diffusion matrix is found in the 
same way. Of course, all the results concerning the imagi­
nary time process Z, are obtained along the same lines. 0 

The point of Bernstein processes is that they are con­
structed from the data of two boundary probabilities. Now, 
according to Theorem 3.3, we have strong constraints on the 
two functions ip !. T 12 and ipT 12 associated to the Markovian 
representative of the Bernstein process, and therefore on the 
joint probability m = m(x,y) of the boundary random vari­
ables X _ T 12 and X T 12' On the other hand, the two margin­
als of this joint probability ate, by definition, the initial and 
finaldistributionsp(dx, - T 12) andp(dy,T 12) of the Mar­
kovian Bernstein process we are looking for. 

By the Corollary 3.3.1 (1) these conditions on the mar­
ginals of m can be expressed in terms of the given kernel and 
the boundary density probabilities as, in real time, 

ip!. TI2 (x) fM k (x, - ~,y, ~)ipTI2 (y) dy =p(x, - ~), 

ipTI2(Y) fMip!.TI2(X)k(X,- ~,y,~)dX=p(y,~), 
(3.26) 

and the analogous system in imaginary time. 
Now observe that, from the beginning of this construc­

tion, the pair of functions ip!. T 12' ipT 12 was never really 
specified. Our data are the kernel k and the two boundary 
densities of probability p(x, - T 12) and p( y,T 12). This 
means that Eq. (3.26) constitutes a system of nonlinear 
functional equations for ip !. T 12' ipT 12' 

We will call this system the SchrOdinger system. Indeed, 
it was derived more than fifty years ago by SchrOdinger for 
the Gaussian kernel and represents the solution of his con­
struction of time symmetrical diffusion processes. J 

7 

The problem of existence and uniqueness of the solution 
for the Schrodinger system is not at all a trivial one. 
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It was investigated successively by Bernstein, J J Fortet,18 
and Beurling.19 This last author proved that if k is bounded 
away from zero and infinity, 0 < a<.k < b < 00, then the sys­
tem of SchrOdinger has one and only one pair of positive 
(actually of same signs) solutions ip !. T 12 and ipT 12' 

Jamison found a way to extend Beurling's proof without 
this restriction on k (see Ref. 15). 

We recall the following definition: A measure p. on 
(M,f!I) is u-finite if there is a sequence Cn in M such that 
uncn =M andp.(cn) < 00. 

Theorem 3.4: Letp(dx, - T 12) andp(dy,T 12) be two 
strictly positive probability measures on f!I, for (M,f!I) a 
state space whose M is a locally compact separable metric 
space. Letk( - T 12,x,T 12,y) = k(x,y) bea given kernel, 
everywhere continuous and strictly positive onM XM. Then 
there is a unique pair (m,1T) of measures on f!I X f!I, where 
m is a probability measure and 1T a u-finite product measure, 
such that 

dm(x,y) = k(x,y)d1T(X,y) 

= k(x,y)ip!. TI2 (X)ipTI2 (y)dx dy 

and the conditions on the marginals of the measure mare 
given by the SchrOdinger system (3.26). 

Remark: In Sec. IV we will use this result not on all of 
the original state spaceM, but on connected domains A of M, 
as mentioned in Remark (1) of Theorem 3.3. 

This isthe end of the preparatory work for our construc­
tion of the two possible versions of stochastic mechanics. At 
this point we do not have even a physical kinematics; we did 
not introduce a notion of velocity, for example. [The for­
ward and backward derivatives (2.1) and (2.4) of Sec. II are 
two reasonable candidates, but what about an acceleration?] 
What we did is to describe a method to construct Bernstein 
processes from the kernels of two semigroups associated to 
imaginary time and real time SchrOdinger equations. In or­
der to understand the relation of this construction with 
physical dynamics, we have to describe in a much more ex­
plicit way the (unique) Markovian representative of these 
classes of Bernstein processes. 
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IV. THE MARKOVIAN BERNSTEIN PROCESS AND 
STOCHASTIC MECHANICS 

In this section, we consider independently the two real­
izations of Markovian Bernstein processes. 

A. Imaginary time stochastic mechanics or 
(SchrOdlnger's) stochastic variational dynamics 

For two arbitrarily chosen strictly positive densities of 
probability P _ T 12 (X) and PT 12 ( y), the Schrooinger system 
takes the form (M = Rn) 

0T/2(y) fMO~T/2(X)h(X,- ~,y,~)dX=PT/2(Y)' 
(4.1 ) 

for h the fundamental solution of the heat equation (3.5). 
Since we are in the conditions of the Theorem 3.4, we 

have existence and uniqueness of the solution () ~ T 12 and 
OT /2 for the SchrOdinger system (4.1). It follows from Cor­
ollaries 3.3.1 and 3.3.2 that the unique Markovian Bernstein 
process is completely characterized, since we know 0 * (z,t) 
and O(z,t) on all of M X [ - T 12,T /2], namely 

and 

O(Z,t) = fM h (z,t,y, ~) OT/2 (y) dy. (4.3) 

Notice that indeed 0 * (z,t) satisfies (3.5), and o (z,t) satisfies 
the "adjoint" equation (on M Xl) under time reversal, 
namely 

ao fi2 
Ii at = - 2" aO + VO, (4.4) 

with the final condition 0T/2 (y). 
According to the Corollaries 3.3.1 and 3.3.2 we know 

everything about the associated Bernstein process, but let us 
approach the properties of this process in a more "dynami­
cal" way. 

Proposition 4.1: In the conditions of Theorem 3.4, the 
probability density P of the Markovian Bernstein process Zt 
is a weak solution on M Xl of 

ap + divJ=O, 
at 

(4.5) 

where the probability current J is defined by the M xI--",M 
function 

J(X,t) = (1i/2)[0 *VO - (}VO *](x,t) (4.6) 

and O*(x,t), O(x,t) follows from (4.2) and (4.3). 
Proo!' For any fEC~ (M), using Corollary 3.3.1 and 

Eqs. (3.5) and (4.4), 
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~ i f(x)p(x,t)dx 
dt M 

= ~ i f(x)O * (x,t)O(x,t) dx 
dt M 

= fMf[ ~ aO* - ~ 0*]0 

+ j() * [ - ~ aO + ~ 0 ] dx , 

and after integration by parts 

= r !. [O*VO-OVO*]Vfdx. 
JM 2 

Since the test function fis arbitrary in C~ (M), Eq. (5) is 
satisfied. 0 

Remark: The equation of continuity (4.5) is the differ­
ential form ofa (global) conservation of probability. In par­
ticular, we always assume that p has been normalized as a 
probability density. 

The form of Eq. (4.5) justifies the following. 
Definition: The current velocity of the Markovian Bern­

stein process Zt is the M XI--",M function V such that 

J=pV. (4.7) 

Taking into account (4.6), the current velocity reduces to 

V = IiV log«(} 10 *) 1/2. (4.8) 

Since V is a gradient, it will be useful to introduce 
'S = Ii 10g(0 10 *) 1/2 such that 

V= V'S. (4.9) 
Definition: The osmotic velocity of the Markovian Bern­

stein process Zt is the M XI--",M function U such that 

U = Ii logpl /2 . (4.10) 

In other words, using Corollary 3.3.1 (1), 

U = IiV 10g(0 *0) 1/2, (4.11 ) 

and it is natural to introduce R = Ii 10g(0 *0) 1/2 such that 

U=VR. 

Now it may be seen that the forward and backward 
drifts B and B. of the Markovian Bernstein process Zt> giv­
en by Corollary 3.3.2, may be expressed in terms of the cur­
rent and osmotic velocity as 

B(x,t) = (V + U) (x,t) = Ii(VO 10) (x,t) ( 4.12) 

and 

B.(x,t) = (V- U)(x,t) =-Ii(VO·IO*)(x,t). 
(4.13 ) 

Since we know the equations of motion of 0 and 0 ., namely 

Ii ao = fi2 aO + VO (4.14) 
at 2 

and 

ao * 1i2 

-li--= --aO* + VO* 
at 2 

(4.14 )* 

it is easy to find that the dynamics of the current and osmotic 
velocities U and Vis contained in the coupled nonlinear par­
tial differential system on M X I (assuming V of class C I), 
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au Ii - - -
- = - - grad div V - grad V· U at 2 ' 

av Ii - - - --
-= --aU-uVu-VVV+VV. at 2 

(4.15 ) 

A priori, if we forget the origin of this system of equations, it 
is a complicated matter to show the existence and uniqueness 
of its solutions. Here, it is sufficient to observe that the 
change of variables 

( 4.16) 

with the above-mentioned Rand S, linearizes (4.15) since, 
by construction, (). is the solution of the heat equation 
( 4.14)·. The same remark is valid for () =e(R + S)lfI, the solu­
tion ofEq. (4.14). 

In summary, for any chosen pair of positive densities 
p _ TI2 (x) andpT12 (y), we can in principle [if we are able to 
solve the SchrOdinger system (4.1)] find (}!.. T 12 and (}T 12 

such that the forward and backward evolutions (4.2) and 
(4.3) enable us to construct a Markovian Bernstein diffu­
sion process Zt on I = [ - T 12,T 12], with drifts given by 
(4.12) and (4.13) on M XI and the chosen boundary prob­
ability densities. This time-symmetric process Zt is, in this 
way, naturally associated to the starting heat equation (Le., 
the imaginary time SchrOdinger equation). 

Since the time interval 1= [ - T 12,T 12] is arbitrary, 
we have indeed a construction valid for all times. 

However, this construction is manifestly not sufficient 
for any interesting boundary densities of probability. 

To see this, let us consider a stationary situation. 
If we choose the two boundary densities equal to an 

invariant density of the form 

( 4.17) 

for r/Jj (x) in L 2 (M,dx) , a real eigenfunction of the Hamilto­
nian H in (3.5), distinct from the ground state, then these 
probabilities have zeros ("nodes") and we cannot directly 
use our previous results (cf. in particular Theorem 3.4). 

As we said before, our constructive approach is still val­
id in this case, but we need to modify the starting kernel h to 
take into account the boundary conditions created by the 
presence of the nodes. 

Since this situation is natural in real time, namely for the 
excited states of the SchrOdinger equation, we postpone the 
discussion of this aspect until the third part of this section. 

Before concluding the discussion of the imaginary time 
process Zt' we have to specify in which sense the system of 
partial differential equations (4.15) indeed describes a dy­
namics. The answer is contained in the following proposi­
tion. 

Proposition 4.2: In the conditions of the Theorem 3.4, 
and assuming that Vis of class C 1, Eq. (4.15) is equivalent to 
the Newton equation 

(4.18) 

Proof: This is a simple computation. Due to the defini­
tions (2.1) and (2.4) of the forward and backward deriva­
tives, and the formulas (4.12) and (4.13) for the drifts of Zt 
we get 
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DZ= V+ U 

and 
D.Z= V- Ii. 

Now by (2.5), 

DDZ=DV+DU 

av - - - Ii - au =-+ (V+ U)av+-av+-at 2 at 
+ (V + U)aU +!!... aU, 

2 
and by (2.6), 

D.D.Z =D. V -D. Ii 

av - - - Ii - au =-+ (V- u)VV--av--at 2 at 
- (V - U)VU +!!... aU. 

2 

Therefore 

1 av - - - - Ii -"2 (DDZ + D.D.Z) =at+ V· VV+ u· vU+"2 au , 

and Eq. (4.18) is indeed modified to Eq. (4.15). 0 
Proposition 4.2 justifies partially the claim that we have 

constructed a stochastic version of mechanics. It will be con­
firmed by the results of Sec. V. Notice that the left-hand side 
of Eq. (4.18) defines the natural notion of acceleration for 
this construction. It is time symmetric and reduces to the 
classical acceleration if t-Z (t) has a differential strong der­
ivative DZ = dZ I dt in L 1 (P). Also observe that the sign of 
the right-hand side ofEq. (4.18) is "wrong" with respect to 
the classical Newton equation, but correct if we interpret the 
time parameter t as an "imaginary time i7'." This is why, 
from the beginning, the starting parabolic equation (3.5) 
was interpreted as an imaginary time Schrodinger equation. 
The sense of this remark will be clearer in Sec. IV B. This 
dynamical theory of diffusion processes associated to a new 
probabilistic interpretation of the classical heat equation 
(3.5) will be called hereafter "(Schrodinger's) stochastic 
variational dynamics" cf. also Sec. V. 

B. Real time stochastic mechanics 

Due to the form of the given solution (3.2) for the 
Schrodinger equation on M Xl, the two quantum boundary 
densities of probability to consider for the SchrOdinger sys­
tem reduce to 

( T12) - 2R_ T12 (x)lfI p x, - -e 

and 

p( y,T 12) = i RT12(y)lfI 

when 

( 4.19) 

(4.20) 

R _ T/2 (x)=R(x, - T 12), RT12 (y) = R( y,T 12) , 

and therefore this Schrodinger system (3.27) is modified to 
(for M = Rn) 
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• () r k( T T) ()d 2R_ T/2(x)/1I 
tp - TI2 X JM X, - 2'y,"2 tpTI2 Y Y = e , 

( ) r * ()k ( T T) d 2RT/2( y)/1I 
tpTI2 Y JM tp - TI2 X X, - 2'Y'2 x = e , 

(4.21 ) 

for k the fundamental solution of the parabolic equation 
(3.6). 

Suppose first that we are in the conditions of the 
(Theorem 3.1 and) Theorem 3.4. Then we have existence 
and uniqueness of the solutions tp ~ T /2 and tpT 12' but it is 
remarkable that the explicit solution of this problem can be 
found. 

Theorem 4.3: If "'( . ,t) = e(R + is) ( . ,,)/11 is a continuous 
solution in L 2 (M) of the SchrOdinger equation (3.1) (for 
0' = i) and if the two quantum boundary densities are free of 
zeros, the unique solution of the SchrOdinger system (4.21) 
is given by the two continuous functions 

• () (R _ T/2 - S _ T/2)(x)/1I 
tp -T/2 X =e 

and 

() 
(RT12 + STl2)( y)/1I 

tpT/2 Y =e . 

Proof: According to Theorem 3.1, the forward propaga­
tion of tp ~ T 12 is (using the notations introduced in 
Theorem 3.3) 

tp *( y,t) = fM tp ~ T/2 (x)k ( - ~ ,x,t,y) dx, 

- T 12<t< T 12, x,yeM, (4.22) 

where k is the fundamental solution of the parabolic equa­
tion (3.6), 

(4.23) 

Notice that, although the modified potential {} [defined in 
(3.4)] is generally time dependent, it is, like the physical 
potential V = Vex), invariant under time reversal since 
R-+R under time inversion. Consequently, the equation 
"adj9int" to (4.23) under time reversal is simply 

Ii ir = - ~ tltp + {}tp, (4.24) 

for some final condition in tpT /2 (x). Therefore, the same 
kernel k determines the bac"ward propagation [by (3.15) ], 

tp(x,t) = fM k (x,t, y, ~) tpT /2 ( y) dy . (4.25) 

On the other hand, according to the Lemma 3.1.1, the substi­
tution of ",(x,t) = e(R + is) (x,')/1I in the SchrOdinger equation 
(3.1) yields the coupled nonlinear partial difrerential equa­
tions (3.7) and (3.8) for Rand S on M Xl. It follows from 
an elementary computation using these two equations that 
tp(x,t) = e(R + S)(x,')/1I satisfies the dynamical equation 
(4.24) and then reduces indeed to tpT 12 (x) at t = T 12. The 
analogous argument for the forward evolution shows that 
tp * (x,t) = e(R - S)(x,,)/1I satisfies the parabolic equation 
( 4.23) and reduces to the correct initial condition 
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tp ~ T 12 (x) at t = - T 12. By uniqueness for the solution of 
the SchrOdinger system, the conclusion holds. 

Let us summarize some useful information about the 
(real time) Markovian Bernstein ditfusion process X, . 

Corollary 4.3.1: In the conditions of the Theorem 4.3, we 
have the following. 

( 1 ) The probability density of the (unique) Markovian 
Bernstein process X, on I is given by (strictly positive) con­
tinuous function on L I (M,dx), 

p(x,t)dx = e2R(x,,) dx = I"'(x,t) 12 dx . 

(2) The densities ofits forward and backward transition 
probabilities are 

and 

e(R + S) (y,')/1I 
p(s,x,t,y) = k(s,x,t, y) e(R + S)(x,s)/1I 

e(R - S)(x,s)/1I 
p. (s,x,t, y) = e(R _ S)( y,')/1I k(s,x,t, y) , 

- T 12<s<t<T 12, (x,y)eM XM. 

(3) The forward and backward drifts, and the diffusion 
matrix of the process are, respectively, 

b(x,t) = (VR + VS) (x,t), xeM, tel, 

b. (x,t) = ( - VR + VS)(x,t) , 

C(x,t) = C. (x,t) = IiI, for I the nXn identity ma­
trix. 

Proof.' (1) and (2) are immediate consequences of Cor-
ollary 3.3.1 for tp * (x,t) = e(R - S)(x,t)/1I and 
tp(x,t) = e(R + S)(x,t)/lI, and (3) of Corollary 3.3.2. 

The comparison with the diffusion process described in 
the Introduction [(1.4) and (1.5)] shows that we have 
found indeed a new construction of the process of stochastic 
mechanics. Like the one in imaginary time, it is obviously 
valid for all times. 

The description of the dynamical part of stochastic me­
chanics is analogous to the one given in Sec. IV A, so we go 
faster, and we assume that we are in the conditions of the 
Theorem 4.3. 

Theorem 4.4: Letb = IiV tp 1 tp andb. = - IiV tp ·1 tp * be 
the forward and backward drift of the Markovian Bernstein 
process X, (Corollary 4.3.1 ). If we define the current veloc­
ity v and the osmotic velocity u of this process by the M 
valued functions on M Xl. 

v=liVlog (tpltp*)1/2 (4.26) 

and 

u = IiV log(tp *tp) 1/2 = IiV logpl/2 (4.27) 

the dynamics of the process is described by the coupled non­
linear partial differential equations on M XI, 

au Ii addi d at= -'2gr vv-gra v·u, 

av = _ ~ tlu _ uVu - vVv + V{} 
at 2 ' 

(4.28) 

and the change of dependent variable tp * = e(R - S)/II trans­
forms the system (4.28) into the parabolic equation (4.23). 

Proof.' Usingtp and tp * like" and" * in Sec. IV A, and the 
probability density p = tp *tp like p, one verifies easily that 
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the local conservation of probability means that p is a weak 
solution onM Xl of 

ap =divj=O, 
at 

where the current j is defined by 

j = (~2) [cp ·Vcp - cpVcp·] . 

(4.29) 

( 4.30) 

The argument is the one of Proposition 4.1. This justifies 
the definition of a current velocity v such that j = pv, there­
fore v reduces to (4.26). If the osmotic velocity u is defined 
by (4.27), the Corollary 4.3.1 (3) shows that 

b=v+u =VS+ VR (4.31 ) 

and 

b. =v-u=VS-VR. (4.32) 

It follows from the equations of motion of cp • and cp onM X I, 
( 4.23) and (4.24), that the evolution of u and v is described 
by the system (4.28). 

Since cp • = e(R - S)/" on M XI, this is a linearization of 
the system (4.28). Actually, we already know that cp • satis­
fies the parabolic equation (4.23) by construction. 0 

In real time, it is worthwhile to observe that the above­
mentioned linearization of the system ( 4.28) is not the most 
interesting one from the physical point of view. 

Corollary 4.4.1: In the same conditions, the change of 
dependent variable '" = e(R + is)/'' transforms the system 
( 4.28) into the starting Schrooinger equation 

(4.33) 

Proof: It is sufficient to remark that the modified poten­
tial {} of the starting parabolic differential equation [( 3.3) 
and (3.4)] maybewritten,usingu=VR [Eqs. (4.31) or 
(4.32)], as 

{} = u2 + Ii div u - V. (4.34) 

Therefore the second equation of the system (4.28) is modi­
fiedto 

au Ii 1 1 
-=-+ Au +-gradu2 --gradv2 

- VV. 
~ 2 2 2 

(4.35) 

This relation is the dynamical equation found by Nelson in 
his original derivation of stochastic mechanics.3 We already 
know that the change oh:ariable '" = e(R + is)/'' in the Schro­
dinger equation (4.33) gives the coupled nonlinear system 
[(3.7) and (3.8)]. Taking gradients, it follows from the re­
lations (4.31) and ( 4.32) that this system reduces to the first 
equation of (4.28) and to (4.35). 0 

to conclude the analysis in real time, we have to show, 
as in Sec. IV A, why the Markovian Bernstein process X t is 
naturally associated to a mechanics. 

Corollary 4.4.2: In the same conditions as before and, in 
particular, assuming that Vis of class C 1, Eq. (4.35) is equi­
valent to the Newton equation 

!(DD.X +D.DX)(t) = - VV. (4.36) 

Proof: As in imaginary time, this is a straightforward 
computation. By (4.31) and (4.32), 
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DX=v+u 

and 

D.X=v-u. 

Using (2.6), 

D.DX =D.v+D.u 

av Ii au 
=-+ (v-u)Vv--Vv+-at 2 at 

+ (v-u)Vu-!!.Au 
2 ' 

and, according to (2.5), 

DD.X =Dv-Du 

av Ii au 
=-+ (v+u)Vv+-Av--at 2 at 

- (V + u)Vu -!!. Au. 
2 

Therefore 

1 au Ii 
-(DD.X + D.DX) = - + vVv - uVu - - Au 
2 at 2 ' 

and Eq. (4.35) reduces to (4.36). 0 
Thus, in real time, we also obtain a ve~ion of stochastic 

mechanics for which the left-hand side ofEq. (4.36) defines 
a natural notion of acceleration. The sign of the right-hand 
side is correct in the sense that at the classical limit of differ­
entiable trajectories the equation reduces to the classical 
Newton equation. However, the comparison with the New­
ton equation in imaginary time (4.36) shows that the notion 
of acceleration has to be modified when we go from imagi­
nary to real time, in contrast, obviously, with the classical 
situation. This suggests that the analytical continuation in 
the time shall have much more interesting features for sto­
chastic dynamics than for classical ones. 12.19 

Remarks: (1) In the construction proposed here the 
current and osmotic velocities V and Ii (or v and u) playa 
symmetrical role from the beginning. That is why, for exam­
ple, the fact that the current velocity V (or v) is a gradient 
[Eqs. (4.8) and (4.26)] is no longer an assumption as in the 
original construction of Nelson3 but a consequence of our 
constructive approach. 

(2) The two notions of stochastic acceleration associat­
ed to the imaginary time and real time versions of stochastic 
mechanics [Eqs. (4.18) and (4.36)] are the only two time­
symmetrical candidates for the title of mean acceleration, 
using the forward and backward derivatives (2.1) and (2.4). 
This point was observed by Nelson2 but no dynamical mean­
ing was assigned by him to the imaginary time possibility. 

( 3) The comparison between the two realizations start­
ingfromEq. (3.5) (Sec. IV A) andEq. (3.6) (Sec. IV B) is 
now quite easy. The first one is easier to understand dynami­
cally: nothing else than the physical potential Vis involved in 
the construction. But we cannot give an explicit description 
of the associated process Zt before solving the (complicat­
ed) Schrodinger system (4.1). 

In real time, we are able to avoid having to find the 
solution of Eq. (4.21) because we already use a solution of 
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the starting equation (4.33). The price to pay is that the 
probabilistic characterization of the process X t involves nec­
essarily (Corollary 4.3.1) the modified potential {J, in spite 
of the validity of the Newton equation (4.36). This means 
that for a given physical potential V, the class of resulting 
processes Xt have few common probabilistic properties. 

c. Mechanical stationary states 

Suppose that the Hamiltonian of the Schrooinger equa­
tion (3.1) (for 0" = i) satisfies the hypothesis of the Theorem 
3.1 and has a ground state (this is a hypothesis on the poten­
tial V). Then it is well known that this ground state is unique 
and can be chosen to be strictly positive. Let us denote by 
Po = Po(x) the invariant density of the homogeneous diffu­
sion process associated to this situation by real time stochas­
tic mechanics. 

This implies that the given solution of the Schrodinger 
equation takes the form 

1/1o(x,t) =pl/2(x)e-iEotlll, (4.37) 

withpl/2 (x)eL 2(M) (here M = Rn) and Eo is an isolated 
eigenvalue, the inferior bound for the spectrum of the Ham­
iltonian H. According to (3.2), this means that 

R(x,t) = Ii logpb/2 (x) 

and 

S(X,t) = - Eot . 

If we introduce the (smooth) function 

bo(x) = VR, 

the modified potential {J of the parabolic equation (3.3) is 

{J(x) =b~ +hdivbo - V. 

But the (time-independent) Schrodinger equation means 
precisely 

V - Eo = (1i/2)div bo +!b ~ , 

and we find, after substitution of this in {J, that, up to an 
additive constant, the modified potential reduces to the 
physical one, 

{J= V. (4.38 ) 

Consequently, the strictly positive (since Vis bounded be­
low) fundamental solution k of the parabolic equation 
(3.3), in this stationary case, coincides with the fundamen­
tal solution h of the imaginary time construction [i.e., ofEq. 
(3.5)], 

k(s,x,t,y) = kernel Tt _ s 

=h(s,x,t,y) . (4.39) 

It is immediate to verify that the (unique) solution of the 
associated Schrodinger system (3.26)=(3.27) for the in­
variant boundary probability density Po reduces to 

<p ~ TI2 (x) = pb12(x)eEoTI211 

and (4.40) 

({JT12 (y) = pb12(x)e - EaTI211 , 

and then, using Corollary 4.3.1, the forward probability of 
the diffusion process with drift bo to 
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pl/2( y)e-Eotlll 
p(s,x,t,y) = h(s,x,t,y) 1/2 -E"slll 

Po (x)e 
(4.41 ) 

As soon as we consider an excited state of the Schro­
dinger equation the construction seems to break down. In 
this case, the given invariant boundary probability densities 
of the Schrooinger system have nodes [because the associat­
ed wave function 1/1j in L 2 (M), j> 0, has to change its sign in 
order to be orthogonal to 1/10] and it was already observed by 
Fortet,18 40 years ago, that we lose the uniqueness of the 
solution for this system. Actually, this is perfectly natural 
from the physical point of view, and we proceed now to the 
construction of the unique Markovian Bernstein process 
corresponding to a stationary solution of the Schrooinger 
equation, smooth except at the nodes. 

We consider only the one-dimensional case (M = R) 
for the simplicity of exposition. 

Let us assume that the potential Vis such that the Schro­
dinger equation (3.1) (0" = i) admits a stationary solution 
of the form 

.1, "') - iE·tlll 42 'l'j (x,t) = 'l'j (x e J , ( 4. ) 

forl/Jj (x) a real element of L 2(R) (it is always possible to do 
this) and Ej not the lowest eigenvalue of the Hamiltonian. 
Then l/Jj (x) = pY2(X) changes its sign on the state space 
M = JR. (By convention, py2 is the positive or negative 
square root, depending on the chosen region of the sate 
space.) We consider simultaneously two kinds of connected 
domains A of the state space (the real line ), a semi-infinite 
interval ]ZI'OO [=AI (or] - oo,zn [) for ZI one of the two 
extreme zeros of l/Jj (x), and a bounded interval ]ZI,z2[==AI2 
for Zi' i = 1,2, two consecutive zeros of l/Jj (x). Actually, the 
standard one-point compactification of these sets (denoted 
in the same way) will be used. We shall construct a unique 
Markovian Bernstein diffusion process on each of these two 
kinds of domains, considered as state spaces of their own. In 
requiring natural (and compatible) boundary conditions of 
the border of two such domains, the process on all of the 
state space can be decomposed in this way. 

To the given stationary solution of the Schrodinger 
equation 1/1j (x,t), real time stochastic mechanics associates 
formally a homogeneous diffusion process with vanishing 
current velocity v (in the sense of Theorem 4.4) and drift 

bj(x) = Vl/Jj (x)/l/Jj (x) , (4.43) 

which is clearly singular at the zeros of the wave function 1/1j. 

Let us denote by ¢j the restriction of l/Jj to a domain A, name­
lY¢j(x) = l/Jj(X)XA (x), whereXA isthecharacteristicfunc­
tion of A. 

It is easy to check that, as for the ground state, the modi­
fied potential {J for this excited state on A is nothing but (up 
to an additive constant) the restriction to A of the physical 
potential V. In other words, in any stationary situation, the 
two given versions of mechanics coincide and from now we 
can refer to stochastic mechanics, without further specifica­
tion. 

Let us consider the Kolmogorov backward (parabolic) 
equation for the homogeneous process on A, 

au t. Ii 
- = IIj VU + - Au==Aju, at 2 

(4.44) 
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where ~j = V~/~ and Aj is the generator of the corre­
sponding transition semigroup P, = e - tAJ• Notice that u in 
( 4.44) has nothing to do with the osmotic velocity of 
Theorem 4.4: we simply conform here to the traditional pro­
babilistic notation. Since the stochastic continuity of the 
transition probability was assumed, this semigroup is 
uniquely defined by A l' 

We choose to denote by k Aj (s,x,t, y) = k Aj (x,t - s, y) 
the kernel of the starting SchrOdinger semigroup 
U,=Tt =e- tH and by PAj(s,x,t,y) =PAj(x,t-s,y) the 
integral kernel of Pt. 

Before describing the relation between the two semi­
groupsPt and U" we have to characterize the domain of Aj , 

p) (Aj ), by the specification of physical boundary condi­
tions for the process. If A is of the form Al = ]Zl> 00 [, it is 
natural (since ~ J is the quantum probability density in A I) 
to require that 
the set of the twice continuously differentiable 

functions u such that 

AjueC(A), ~J(x)Vu - 0, Aju(x) - 0 
xlz i xt 00 

belong to p) ( Aj ). (4.45) 

If A is of the form AI2 = ]ZI,Z2[, we require that 

the set of twice continuously differentiable 
functions u such that 

AjueC(A), ~J(x)u - 0, ~J(x)Vu - 0 
XlZ I xtz2 

Ajaj.m = - Aj,maj,m (4.50) 

for the above-mentioned boundary conditions, and the rela­
tion between eigenvalues, 

JLj,m = Aj,m + Ej . (4.51) 

In other words the positive kernel kj may also be expressed 
as 

k Aj (x,t - s,y) 

= ~(y)~(x)e-EP-S) 

(4.52) 

This is the starting kernel of our construction of Bernstein 
processes. According to Theorem 3.4, there is a unique solu­
tion for the associated Schrodinger system since we use the 
strictly positive boundary (invariant) probability densities 
on A, 

( T) (T) ~(x) 
Pjx'-T =Pjx'T =fAtfJJ(s)ds' 

(4.53) 

It is easy to find this solution explicitly, 

• () _ J: ( ) Ei T 12)/" 
lP -T12 X -'I'j X e, (4.54) 

( ) _ J: ( ) - Ej (TI2)/" 
lPT 12 Y - 'l'j Y e , 

and therefore the forward transition probability density of 
the (unique) Bernstein process in A follows from Corollary 
4.3.1, 

belong to p) ( Aj)' (4.46) PAj (x,t - s,y) 

If P Aj (x,t - s, y) = P Aj ( y,t - s,x) and 

iip~j(X,t-S,y) dxdy< 00 

then it is known that Ut has indeed an integral kernel 
k Aj (x,t - s,y) S.t. 

ii k~j(x,t-s,y) dxdy< 00. 

Moreover, Ut is a positive self-adjoint operator of Hilbert­
Schmidt type and there is a sequence Vtj,m};; = 1 , 

O</tj,1 </tj,2";; ... , withJLj,m- + 00, and an orthogonal basis 
of L 2 (A,dx), {aj,m};; = 1 such that 

(4,47) 

and 

( 4.48) 

Under these conditions, for fixed x, y in A, t - s> 0, 

k ( ) ~ -I'- (t - s) - ( ) - ( Aj x,t - s,y = ~ e ,.m ajm x aj,m y)1Tj ,m' 
m 

(4.49) 

where 1Tj,m = [fAa;'m (x )dx] -I, is absolutely convergent. 
Now L 2 (A,d~) is u~ary equivalent to L 2(A,~ J (x )dx) 

under ~:g~g/tfJj andH to (Ej -Aj ). Therefore, 
- -I H=Uj (Ej-Aj)~ 

and {aj,m=aj,m/~};;= 1 is an orthogonal basis of 
L 2(A,~J(x}dx) such that 
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for x, y in A, t - s> O. 
This is nothing but that the spectral representation for 

the density of the (forward) transition probability of the 
homogeneous diffusion process on A, with drift ~j = V~/~. 
It is therefore possible to use the natural decomposition of 
the original state space M (here M = R) in disjoint domains 
A, due to the nodes ofthe quantum boundary invariant prob­
ability density, for the construction of a unique stationary 
Bernstein process in each of these domains. 

The two given sets of boundary conditions introduced in 
the eigenvalue problem of A are sufficient for this purpose. 
Using the classification, due to Feller, of the boundary con­
ditions for the one-dimensional diffusion process,20 it is easy 
to clarify the probabilistic sense of the two given conditions. 

For a semi-infinite interval Al = ]ZI'OO [ the left bound­
ary is an entrance boundary and then cannot be reached 
from the interior of the interval. In other words, the quan­
tum node in Z I is never reached. The right boundary is a 
natural boundary and therefore can neither be reached in 
finite expected time, nor may be a starting point of the pro­
cess. 

For a bounded interval ofthe form AI2 = ]ZI,z2[' both 
boundaries are entrance. 

This description agrees with the results known from the 
usual construction of the diffusion processes associated to 
the bound states. 1,21 

Notice that our result does not contradict the unique-
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ness of the process in the (analytical) sense of Carlen on all 
of the state space M (see Ref. 5). There is indeed only one 
process on M, but our description is more detailed and gives 
a different transition probability on each connected domain 
A between the nodes of the wave function. 

The necessity to change the starting kernel of our con­
struction for each region A is clearly due to the end-point 
effects of the nodes. 

Remark: The method proposed here enables us to con­
struct diffusion processes whose drifts are much more singu­
lar than the ones authorized by the general Theorems about 
existence and uniqueness of diffusion processes. An example 
is given in Ref. 12. 

V. VARIATIONAL PROCESSES AND STOCHASTIC 
MECHANICS 

As observed by Bernstein, 11 the hypothesis used for the 
construction of all these time-symmetric processes suggest 
that they may be accessible to a variational characterization, 
in analogy with the trajectories of classical mechanics, for 
two fixed end points. However, it was never done, probably 
because the natural dynamical meaning of these processes 
was not investigated. 

Now, according to Proposition 4.2 and Corollary 4.4.2, 
this dynamical meaning for a specified potential V, is con­
tained in two versions of Newton equations, in imaginary 
and real time. 

As mentioned in the Introduction, we know already, 
thanks to Yasue's resu1t6

•
7 that the real time dynamics is 

indeed the result of a variational principle with an analog of 
our two fixed end points condition. In this section, we de­
scribe another variational approach associated to the struc­
ture of Bernstein processes itself, and therefore common to 
the imaginary and real time dynamics. 

Let us consider the imaginary time dynamics, namely 
the Newton equation of Proposition 4.2. 

In classical mechanics, the action functional associated 
with the Newton equation (M = 1) by the Hamiltonian 
least action principle is 

Ao[X] =JTI2 {.!.IX(t)1 2 - V(X(t»)} dt, (5.1) 
- TI2 2 

where I· 1 is the Euclidean norm. 
Since the imaginary time dynamics is obtained from the 

real time one by an analytical continuation replacing t by 
- it [cf. (3.1) ], the action in imaginary time is proportional 

to 

Ao[z] = JT12 {.!.Iz(t) 12 + V(Z(t»)} dt. 
- TI2 2 

(5.2) 

If we denote as before the imaginary time Markovian Bern­
stein diffusion process by Z" tEl, it is quite natural to consid­
er the following stochastic generalization of the action (5.2): 

Alf [Z] = E [f~:/2 {~ ID.Z(t) 12 + V(Z(t»)} dt] . 

(5.3 ) 

Notice that the two actions coincide at the classical limit 
Ii = O. By analogy with the classical case, we will use the 
integrand (the "Lagrangian") ofthis action Alf [Z ] to con-
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struct a new actionAIf (X,t), a function of the future position 
x and time t [this is the reason for the choice of the backward 
derivative in (5.3) ], intrinsically associated to the dynamics 
of Z,. To do so, let us start from the (forward) parabolic 
equation used for the construction of Z" namely the Cauchy 
problem on M XI, 

ao * Ij2 
-li-= --Il.O* + VO· (5.4) at 2 ' 

where 

o *(x, - T /2) = 0 ~ Tl2 (x) = /iLT12 -5_ TI2)(x)/1f 

is the solution of the Schrodinger system (4.1) for some giv­
en boundary probabilities. In these conditions, the unique 
positive solution 0 *(x,t) of the Cauchy problem (5.4) con­
tains the forward probabilistic information about the pro­
cess Z,. This partial information is time asymmetrical in 
nature. 

Let us define the new function on M X I: 

AIf(x,t) = -lilogO*(x,t). (5.5) 

By construction, Alf is a solution of the nonlinear partial 
differential equation on M XI, 

aAIf Ii - 1 - 2 
at-TIl.AIf +T(VAIf ) - v=o, (5.6) 

with 

AIf(X' - ~) = (8_ TI2 -lLT12 )(x) . 

Equation (5.6) is much more complicated than Eq. (5.4) 
but the existence of the solution of this new Cauchy problem 
is guaranteed by the one of the original problem (5.4). The 
point of the change of variable (5.5) is that (5.6) isadynam­
ic programming equation whose solution is the minimum 
value of some action functional. We shall use here an adapta­
tion of a strategy developed by Fleming in the context of 
optimal stochastic control. 22 

Notice that (5.6) may also be written as 

aAIf Ii - -
at - TIl.AIf -1i(x,VAIf,t) = 0, (5.7) 

for Ii: M XM XI--IR defined by 

Ii(x,p,t) = -!I pl2 + V. (5.8) 

Lemma 5.1: Regarded as a function ofp, h = h(p) is a 
strictly concave function. It may also be expressed by 

h(p) =min[2'(B.) -pB.l = _!lpI2+ V, (5.9) 
B .. 

where 2' (B. ) = 2' (xJj. ,t) is the strictly convex 
M XM xI--R function dual to h in the sense that 

2'(B.) = max [h(p) +pB.l =~IB.12+ V(x). (5.10) 
p 

TheuniqueB. achieving the minimum in (5.9), denoted by 
B., is 

B. = -h'(p) =p. (5.11 ) 

The proof is elementary. 
Coming back to Eq. (5.7) and the h function defined 

there, it follows from Lemma 5.1 that the B. ==11. achieving 
the minimum in Eq. (5.9) is 
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final data Z(t) = x when there is a B. in Dx such that B. (X,/) = - h '(x,VA~,t) 

= VA~(x,/) . (5.12) B. (r) =B.(Z(r},r). (5.18) 

Moreover, the.Y function defined in (5.10) is precisely the 
Lagrangian of our stochastic action (5.3). Given that (5.9) 
holds, Eq. (5.7) modifies to 

aA~ Ii - { 1 - - - } -a --.:lA~ -~in -IB.12+ V-VA~B. =0. 
I 2 B. 2 

(5.7') 

For the connection with the stochastic least action prin­
ciple, we need to define a large class of Y T continuous semi­
martingales in the sense of Sec. II, whose B. are the drifts, 
and the diffusion coefficient is fixed as before. 

The collection of admissible processes for the variation­
al principle is defined as follows. 

If D x d~ote the class of admissible drifts, we require 
that to each B. EDx is associated a decreasing filtration Y T' 
and a Y T -Wiener process w. ( r) such that B (.) is Y - . 
adapted. There is also a process Z ( r) =Z B. ( r) adapted to 
Y T such that 

Z(t) =X 

and 

dZ( r) = B *( r)dr +.Ji dw. (r) , - T /2<r < I < T /2. 

(5.13) 

Finally, it is required that 

I, lB. (r) Idr < 00 a.s. 
-T12 

(5.14) 

~s mentioned at the end of Sec. II, such a diffusion process 
Z ( r) is generally not Markovian, but Ito's formula and then 
(2.5) and (2.6) are still v~lid. 
_ In particular, if we evaluate Eq. (5.7') on any process 
Z ( r) in this class we obtain 

aA~ - - Ii - 1-
Tt+B.VA~ -"2.:lA~ -"2IB• 12 - V<O (5.15) 

or, by the definition (2.6) for the backward derivative, 

D.A~(Z(r),r)<!IB. (r) 12 + V(Z(r»). (5.16) 

Now we compute Ex" [S'_ TI2 ( )dr] on both sides of 
(5.16). Here Ex" = E is the expectation for such a Z( r) 
[i.e., for imposed final data Z(t) = x]. 

It is a theorem of Nelson (Ref. 2, p. 96) that in these 
conditions, the left-hand expectation of (5.16) ·reduces to 
A~ (x,t) - Ex.,[Ah(Z( - T /2), - T /2)] . Taking into ac­
count the initial condition given in (5.6), we get 

A~ (x,t) <Ex., I' {.lIB. (rW + V(z( r»)} dr 
- T12 2 

(5.17) 

We denote by 1(1i,x}i. ) the right-hand term of this inequa­
lity. Observe that the Lagrangian is the one of the action 
(5.3). We shall see that A~(x,t) is the minimal value of 
I ( Ii,x;B. ) in the class of admissible processes. Indeed, in the 
te~nology of optimal control theory, one says that the con­
trol B. (r) is obtained from the fe¢back control law B. for 
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If we choose for B. the function defined in (5.12), we obtain 
a particular admissible process, denoted by Z ( r). Its drift is 

B. (Z( r),r) = VA~(Z( r),r) . (5.19) 

By construction, this drift is the one for which the minimum 
was achieved in Eq. (5.7), namely the one for which inequa­
lity (5.15) reduces to equality (5.6). Therefore 

A~ (x,t) = 1(1i,x;B.) . (5.20) 

Moreover, since the solution of the Cauchy problem (5.4) 
was found equal to 

(J * (x,t) = e(R - 8)(x,')/~ (5.21) 

in the notatio~s of Sec. IV A [Eq. (4.16)] the optimal drift 
(5.19) modifies to, taking into account the definition (5.5), 

B. (x,r) = (VS - VR) (x,r) 

= (V - U) (x,r) . (5.22) 

This is the backward drift of the imaginary time version of 
stochastic mechanics [Sec. IV A, (4.13)]. 

Therefore, we have proved the following stochastic least 
action principle. 

Theorem 5.1: Let (J * (x,t) be the unique positive solution 
of the forward Cauchy problem (5.4) onM XI, whose initial 
condition is a solution of the Schrooinger system (4.1) for 
some given boundary probabilities 

(J *(x, _ T /2) = e(R - T/2 -8_ T/2)(x)/~ • 

IfA~(x,t) = -Ii log (J*(x,t) andB.eDx , then 

A~(x,t)<I(Ii,x}i.), (5.23) 

where the action I is defined by 

1(Ii,x;B. ) 

= Ex., f~ TI2 {~ ID.Z( rW + V(Z( r»} dr 

Moreover, the (backward) drift of stochastic mechan­
ics is a particular drift B. -B. in D x associated to an admis­
sible Markovian process Z( r) and such that 

B. (r) = (V - U) (Z(r) ,r) . 

For this process Z(r), the equality is achieved in (5.23), 
namely 

o 

In the classical case, the main interest of the least action 
principle is that it gives a characterization of the physical 
dynamics. This is also true here. 

Corollary 5.1.1: A Markovian process Z(r), which is 
the minimum of the action 1(1i,x}i.) for B. eDx , satisfies 
the Newton equation in imaginary time of Proposition 4.2, 

!(DDZ+D.D.Z)(r)=VV, -T/2<r<t, (5.24) 

with the "boundary conditions" 
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D*Z( - T12) 

= (VS_ TI2 -VR_ TI2 )(Z( -TI2»), Z(t) =X. 

(5.25) 

Proof: The proof of Theorem 5.1 shows that on this 
Markovian process Z ( r), Eq. (5.16) reduces to the equality 

D*AIi(Z( r),r) = !IB* (Z( r),rW + V(Z( r») , 

namely, using (5.19), 

aAIi 1 - 2 Ii -
-+-IVAIiI --aAli = V. ar 2 2 

Applying V and interchanging the order of differentiation, 

a- - - Ii-
-VAIi +VAIi .V(VAIi ) --~VAIi =VV. ar 2 

By (5.19) this is D*B* = VV or, since B* = V - U by 
(4.13), 

D*V -D* U= VV. 

According to the definition of D * ' this is 

av - - - Ii - au -+ (V- u)VV--~V--ar 2 at 
- (V- U)VU+~~U=VV. 

2 

But we know already by (4.15) that 

au = -~graddiv V-grad V· U 
ar 2 

and therefore 

av Ii - - - - -
-= --~U- UVU- VVV+VV. ar 2 

This is precisely the Newton equation (5.24), by Proposition 
4.2. The given boundary conditions are consequences of the 
construction proposed in Theorem 5.1. 0 

Theorem 5.1 and its corollary confirm the results of Sec. 
IV. To the unique Markovian Bernstein process in imagi­
nary time associated to a couple of given probabilities corre­
sponds a dynamical equation, the Newton equation (5.24), 
and this one follows from a least action principle involving 
only the classical Lagrangian of the problem [cf. (5.3)]. 
This justifies, for this new theory of classical diffusing parti­
cles, the name of" (Schrooinger's) stochastic variational dy­
namics." 

Remark' On the basis of Theorem 5.1, one expects the 
following kind of theorem for the "classical limit": If V is 
bounded below and C I, then 

lim -Ii log e - (t + T 12)H llie - S(xL T /2/1i 
Ii-.o 

= min JI {2..IX( r) 12 + V(X( r»)} dr 
Xer _ TI2 2 

where r is the set of C I paths with X(t) = x, X( - T 12) 
= VS _ TI2(X( - T 12»). These kinds of results are known 
(see Ref. 14, VI 18) and Theorem 5.1 can be considered as 
the generalization of them. 
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We do not go further in this direction because it will be 
more natural to discuss briefly the classical limit in the quan­
tum mechanical context. The next Theorem is the real time 
version of Theorem 5.1. 

Theorem 5.2: Let lp * (x,t) the unique positive solution of 
the forward Cauchy problem (4.23) on M Xl, 

_ Ii alp * = _ ~ ~m * + {}m * at 2T T' 

whose initial condition is the solution of the Schrodinger 
system (4.21) 

lp *(x, - T 12) = e(R- T/2 - s_ T/2)(x)/1i , 

for two given quantum boundary densities of probability 
[(4.19) and (4.20)]. 

If Ali (x,t) = -Ii loglp *(X,t) andJ*eDx , then 

Ali (x,t)<I(Ii,x; ~*), (5.26) 

where the action I is defined by 

JI {I - -} I(Ii,x; ~* ) = Ex,l -ID*X( r) 12 + {} (X( r),r) dr 
- TI2 2 

+E (S-R)(X(-I-) _I-). x,l 2' 2 

Moreover, the (backward) drift of real time stochastic me­
chanics is a particular drift ~ * = b * in D x associated to an 
admissible Markovian process X( r) such that 

~* (r) = (v - u)(X(r),r). 

For this processX( r), the equality is achieved in (26), then 

Ali (x,t) = inf I(Ii,x; ~* ) . 
/J .. eDx 

The proof is the same as the one of Theorem 5.1, for lp * 
replacing 0 * and {} = {}(x,t) replacing V = Vex). 0 

Corollary 5.2.1: A Markovian process X(r), which is 
the minimum of the action I(Ii,x; ~*) for ~*eDx' satisfies 
the Newton equation in real time of Corollary 4.4.2, 

!(DD*X+D*DX)(r) = -VV, -TI2<r<f, 
(5.27) 

with the "boundary conditions" 

D*X( - T 12) = (VS _ TI2 - VR _ TI2 )(X( - T 12», 

X(t) = x, (5.28) 

Proof: For the Markovian process X( r) we have 

D*Ah(X( r),r) = !Ib* (X( r),rW + {} (X( r),r) 

and, since b* (X( r),r) = VAh(X( r),r) , 

aA Ii 1 2 h 
-+-IVAIiI --aAh ={}. at 2 2 

Applying V and interchanging the order of differentiation, 

a Ii 
-VAIi +VAIi ·V(VAIi ) --~VAIi =V{}, ar 2 

namely D*b* = V{} or, since b* = v - u [(4.32)], and 
{}=u2 +lidivu- V [(4.34)], 

D*v -D*u = 2uVu + Ii~u - VV. 

Using the definition of the backward derivative and Eq. 
( 4.28) for aul at, we get 
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av Ii A 1 2 1 d 2 VV -=- u+-gradu --gra v - . at 2 2 2 
This is the Newton equation (5.27) according to Corollary 
4.4.2. As before, the boundary conditions (5.28) follow 
from the construction of Theorem 5.2. 0 

Let us consider the (absolute) expectation of the action 
found in Theorem 5.2 (without the boundary term, and on 
all of I), 

Ali [X] = E [f~:12 {~ ID.X(t) 12 + t? (x(t),t)} dt ] . 

(5.29) 

Notice that, since t? = u2 + Ii div u - V, 

fM t? P dx = fM u2p dx + Ii fM div u . dx - fM Vp dx 

= - fM (u2 + V)p dx , 

after integration by parts of the divergence term, and the use 
of u = fzV logp1/2 [(4.27)]. Therefore 

Ali [X] = E [f~:12 {~ ID.X 12 - u2 - v} dt]. (5.30) 

The interesting point here, in contrast with the imagi­
nary time situation Eq. (5.3), is that the relevant action for 
quantum mechanics [(5.30)] involves not only the classical 
Lagrangian, ! IX 12 - V, but a supplementary term - u2

, de­
pending on the osmotic velocity. This difference with the 
imaginary time case has some interesting implications. 12 No 
definition of stochastic action relevant for a variational prin­
ciple in stochastic mechanics and involving exclusively the 
classical Lagrangian is known today. 

Remarks: (1) It may seem contradictory that the con­
struction of the process X,, tel, involves in a crucial way the 
modified potential t? and its associated integral kernel k 
[Corollary 4.3.1 and Eq. (5.29) ], in contrast to the dynami­
cal equation (5.27), in which only the physical potential V 
appears. There is no contradiction however. An easy compu­
tation shows that the expectations of the "force" and of the 
"torque" due to the nondynamical terms of t? are zero for 
any solution of the Schrooinger equation. So, these supple­
mentary terms have no dynamical consequences. 

(2) The action I({z,x;b.) (without boundary condi­
tions) is not the one proposed by Guerra and Morato23 but 
enables us to obtain, under weaker hypotheses (non-Marko­
vian admissible processes) stronger conclusions (minimum 
of the action and not only critical point) for the same dy­
namical content (Corollary 5.2.1). 

(3) At the classical limit Ii = 0, the osmotic velocity u 
vanishes since the forward and backward drift b and b. re­
duce to the classical velocity [cf. (4.31) and (4.32) ]. Conse­
quently the action (5.30) reduces to the classical one 

Ao[XJ=f
TI2 [J.. 1X(t)1 2 -V(X(t»)]dt. (5.31) 
- TI2 2 

In the same limit the function Ao(x,t) of Theorem (5.2) 
reduces to S = S(x,t) and the nonlinear partial differential 
equation satisfied by S [the realtime analog of (5~6) J is the 
Hamilton-Jacobi equation on M Xl 
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(5.32) 

This one is the result of the (classical) minimization of 

- T /2<.1<. T /2 . (5.33 ) 

Of course, the solution ofthis classical variational problem is 
equivalently characterized as the C 2 path such that 
X = - V V, with boundary conditions 

X( - ~)=VS_TI2(X( - ~)) and X(t)=x. 

(5.34) 

This is indeed the "classical limit" of Corollary 5.2.1. 
(4) Since in Theorems 5.1 and 5.2 the class of admissible 

processes includes, in particular, non-Markovian processes, 
the results of this section mean that no non-Markovian con­
tinuous semimartingale is dynamically relevant for any ver­
sion of stochastic mechanics. In real time, this answers nega­
tively to a conjecture of Nelson (Ref. 1, §23). 

Weare now ready to define informally the class of sto­
chastic processes which motivates the title of this paper: A 
variational process on M, indexed by I, is the unique Marko­
vian Bernstein process constructed according to Secs. III 
and IV, for two arbitrarily given boundary probabilities in 
imaginary time, and for a given pair of quantum boundary 
probabilities associated to a solution of Schrodinger equa­
tion, in real time. The dynamics on I of such a process, the 
Newton equations in imaginary time and real time, is char­
acterized in a variational way by the least action principles of 
Sec. V. Therefore the variational processes can be interpret­
ed as the natural generalizations of the trajectories of classi­
cal mechanics, considered from the variational point of view. 

VI. CONCLUSION 

In this paper, we are able to give a sense to the intuition 
of Schrooinger and Bernstein (cf. Appendix) according to 
which Bernstein processes are the stochastic analog of the 
classical trajectories from the variational point of view. This 
analogy is surprisingly complete since there are indeed sto­
chastic generalizations of the Newton equation behind this 
construction and since, in real time, this generalization is 
indeed associated, according to the initial motivation of 
Schrodinger, to quantum dynamics. This provides a new 
constructive approach to stochastic mechanics, completely 
different from the one proposed initially by Nelson and real­
ized recently by Carlen. It shows, in particular, that if a sto­
chastic dynamics is determined by the data of an accelera­
tion and of the physical potential, then the dynamical 
structure of stochastic mechanics is in no way restricted to 
the real time approach. 

Actually, in spite of the dichotomic presentation adopt­
ed here (imaginary time versus real time) the construction 
directly inspired by Schrooinger [" (Schrooinger's) stochas­
tic variational dynamics"] is already sufficient for the de­
scription of quantum phenomena. Since the proof involves 
some new technicalities, this will be shown elsewhere. 17 
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From the mathematical point of view, the most interest­
ing problem left open by this new constructive approach is to 
verify that it is valid under very general regularity condi­
tions. 

From the physical point of view, it will be interesting to 
investigate systematically the common points and the differ­
ences between the real time and the imaginary time versions 
of stochastic mechanics. We are convinced that a number of 
questions of interpretation, in stochastic mechanics, and in 
quantum mechanics, will be clarified in using this compara­
tive point of view. Since the true stake of the discussion about 
the real time and imaginary time approaches of quantum 
phenomena lies in quantum field theory where the Euclidean 
point of view has been, until now, mathematically if not phy­
sically successful,15 the results of such a comparative analy­
sis will also have some interesting consequences at this level. 

Finally, the fact that this constructive approach of 
quantum dynamics is the only one involving the data of two 
probabilities is not without consequences on the physical 
interpretation of the theory. Some of the elements relevant 
from this point of view are presented in Ref. 12. 
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APPENDIX: BERNSTEIN PROCESSES 

Fifty years ago, in two unnoticed papers,IO·17 Schro­
dinger described a very unusual way to look at diffusion pro­
cesses. His motivation was to find an interpretation of his 
wave equation in classical probabilistic terms. He did not 
realize finally this program but got at least, according to his 
own words: "une analogie avec la mecanique ondulatoire qui 
fut si frappante ... qu'il m' est difficile de la croire purement 
accidentelle." 10 The radically new aspect of the Schrodinger 
approach is to consider a diffusion process on a finite time 
interval 1= [ - T /2,T /2], for a given initial probability 
density P _ T /2 (x) and a given final density PT /2 (x) general­
ly distinct from the one corresponding to the evolution of 
P _ T /2 (x) by the associated diffusion equation. His surpris­
ing conclusion was that the most probable evolution between 
these two boundaries is given by a time-reversible density of 
probability. 

A few times later, Bernstein II gave a probabilistic inter­
pretation of Schrodinger's idea and proposed a very specific 
program of construction of the involved new class of sto­
chastic processes. In order to preserve the time reversibility 

I 

P(XI2 eB2 ... ·,xln eB" lXI, ' X T /2 ) 

of their evolution, he substituted to the usual construction of 
Markov processes for one in which (1) the initial density is 
replaced by the joint density m of the initial and final posi­
tions during the time interval I; (2) the transition of prob­
ability is replaced by a probability of passage K involving 
three positions, whose meaning is that one needs an informa­
tion on the past 9 1 and one on the future Y I of the process 
to predict its dynamics in between; and (3) the Markov 
property is replaced by the condition that the knowledge of 
the position before a fixed past position XI and after a fixed 
future position Xv does not modify the expectation (the 
probability) of the intermediate dynamics. 

Bernstein called "reciprocal processes" the result of this 
construction. The program of Bernstein was realized by Ja­
mison,15 with crucial contributions of Beurling,24 and For­
tet. 18 We summarize the basic properties ofthese Bernstein 
processes following Jamison. We do not use the adjective 
"reciprocal" hereafter because we prefer to introduce the 
term "variational" to denote the relevant Bernstein pro­
cesses for stochastic mechanics (Sec. V). 

Let XI : O-M be an M-valued stochastic process 
'" >-+ ",(t) = x(t .... ) 

defined, according to Sec. II, on (0,0'[, Pl. 
Two subsigma algebras of 0'[ are particularly important: 

the past at time t, f!jJ I = u{Xs ' s<:t}, and the future at time t, 
Y/ = u{Xu ' u>t}. The present at time t, denoted bY./V1 

(./V for "Now") is given bY./V1 = f!jJ /\'FI • For two fixed 
times t and v> t in the finite time interval f, we introduce 
two other filtrations, ff I,V = f!jJ I u.7 v (ff for "exterior") 
and fl,v = Ylnf!jJ v (f for "interior"'). In particular, 
fl,l =./VI and ff t,l = 0'[, the Borel sigma algebra of O. 

Definition: XI has the Bernstein property, if, for any 
- T /2 < t < v < T /2, for any A adapted to ff I,V' and B 

adapted to f t,v' 

P( AnB IXI' Xv) = P( A IXI' Xv) . PCB IXI' Xv) . (AI) 
As in the case of Markovian processes, some equivalent defi­
nitions are more useful. In particular, for any bounded Borel 
measurable g, and - T /2 < t < u < v < T /2, 

E [g(Xu ) I ff I,V] = E [g(Xu ) IXI' Xv] . (A2) 

Here (A2) is clearly the above-mentioned condition (3) of 
Bernstein. 

Lemma A.I: If XI' tel, is Markovian, then it is a Bern-
stein process. 

The proof can be found in Ref. 15. 
Notice that the reciprocal assertion is not true. 
Now we sketch the Jamison's proof of Theorem 3.2 for 

the existence and uniqueness of Bernstein process. 
Proof of Theorem 3.2: (a) Uniqueness: Suppose that 

there is a probability measure P for the Bernstein process XI 
such that (1) and (2) are true. For 
- T /2<:tl < ... <t" = T /2. BjEflJ, one verifies by induc­

tion on n that 

= 1, K(tl,XI,;t2,dX2;~ ,XT/2) 1, K(t2,X2;t3,dX3;~ ,XT/2) 

... r K(tn_2,X"_2;tn_l;dX"_I;~,XT/2) r K(t"_I,X"_d,,,dx,,;~,XT/2)' JBn_, 2 JBn 
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This expression is denoted by h (X" ' X T 12 ). Indeed for n = 2, 

P(X"eB2IX",XT12) = K(tI'X" ;t2,B2;T 12,xTI2) 

is true by hypothesis (2). Now suppose (*) is true for n - I, then 

P(X"eB2,,,·,x,.eB,, IX", X T12 ):sE [XB, (X" )P(X"eB3, ... ,x,. eB" IX", X", X T/2 ) IX", X T/2 ] . 

With the Bernstein property (A2) and the above-mentioned notation for (*), 

= E [XB, (X" )h(Xt"XT/2 )IXt"XT/2 ] , 
namely, by (2), 

= i, K(tl,X,,;t2,dx2;~ ,XT/2 )h(X",XT12 ), 

or, by the induction hypothesis, 

= i, K(tl, X" ;t2,dx2;~ , XT/2) i, K(t2,X,,;t3,dX3;~ ,XT12 ) '" in K(t,,_pX'n_t;tn,dX,,; ~ , XT/2)' 

This is indeed (*). Now, using this result for t 1 = - T 12 (and t2 = t I) in 

P(C) = E [XB,(X _ T/2 )P(Xt,eBw .. ,x'neB" IX - TI2,XT/2 )XBF (XT12 )] , 

we get· (3) and therefore the uniqueness of Pm' 
(b) Existence of Pm: Let 0[_[ ={tv:I[_[ _M} and 0'[_[ =u{X" tEl[_[, where 1[_[ = [ - T 12,T 12[, and the 

probability space (M XM, @ X@,m) for the starting and ending random variables. On this space X _ T/2 (x,y) = x and 
XT/2(x,y) =y are two random variables. If one denotes by P _TI2(B.,y) the conditional probability 
m(X _ TI2eB.IXTI2 =y) for B. in@ andeachfixedzinM,Py (s,x,t,B)=K(s,x;t,B;T /2,y) isa (forward) Markov transition 
probability. Indeed by (K3) for A = M, and (KI), the Chapman-Kolmogorov equation holds: 

Py (s,x,u,B) = fM Py (s,x,t,ds)Py (t,s,u,B) . 

With P _ T 12 ( • , y) as initial distribution, the theory of Markov processes and the Kolmogorov's fundamental theorem assert 
the existence ofa measurePy on 0'[_[ such that with respect to (0[_[ ,0'[_[, Py ),Xt is the Markov process with these initial 
distribution and transition. 

For C[_[ a cylinder event, {X _ T12eB., ... ,x'n eBn}EO'[_[ and 

r r m(x,y)dxdy=PT12(XT12eBE) JMJBE 

the distribution of X T12 , define on (0'[_[ X@) the probability 

Pm(C[_[XBE) = r Py(C[_[)dPT12 (y). 
JBE 

It is the good one, after the identification of (0,0'1) with the product space (0[_ r XM'O'[_I X @ ). 
( c ) Validity of (3) and (I): Given the usual Markovian finite-dimensional distribution 

Py(CI- r) = i m(X - T12edxIXT/2 =y) i PY( - I..,x,tl,dXI)'" i Py(t"_I,dx,,_I,t,,,dx,,) 
Bs B, 2 Bn 

for (A3), we get 

Pm(C)=i i m(X- T12 edxlxT12 =y)i py(_I..,x,tl,dx1)"·i Py(t"_pdX,,_I,t,,,dX,,)dPT/2(y), 
BE Bs B, 2 B. 

but this is (3) since, if c(x,y) is the bounded @ X@ measurable function associated to the "interior cylinder," 

c(x,y) = i PY( - I..,x,tl,tix l) ... i Py (t" -I,x" -I ,t",dx,,) , 
~ 2 ~ 

we have the identity 

i 
C(X,Y)dm(x,y)==i i c(x,y)m(X - T/2edxIXT12 =y)dPT12 (y) . 

BsXBE BE Bs 

Notice also that (3) implies (1) trivially. 

(A3) 

(d) Using (3) and (K3) one verifies that Pm (XueB I~,.v) =K(t, X,;u,B;v, Xv) namely that Xt has the Bernstein 
property with respect to (0,0', , Pm ). 

Remarks: (1) The construction of Pm given in (b) is also valid if we start from 0J-J={tv:lJ-J-M}, O'J-J' and 
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m (X TI2 eBE IX _ T 12 = X) ==,PTI2 (B E'X), For each fixed x in M, p.x (t,B,u,z) K( - T 12,x;t,B;u,z) is also a Markov transi­
tion [put B = Min (K3), then 

p.)t, A,v,z) = J p.x (t, A,u,y)P.x (u,dy,v,z)] . 

With PTI2 ( .,x) as final distribution, construct the measure F.x such that with respect to (0[_ ['0'[_ [F.x), X, is the 
corresponding Markov process. For 

r r m(x,y)dxdy=P -TI2(X- TI2 eBS )' 
JMJBs 

the distribution of X _ T 12' we get the backward version of (A3 ), 

Pm(BSXC1- 1) = r p.x(C1-1)dP _TI2(X). (A3.) JB, 
The usual backward Markovian finite-dimensional distribution 

F.x(C1- 1) = r p.x (tj,dX j,t2,x2) ... r p.x(tn,dXn,I..,y) r m(XTI2edyIX_TI2 =x) 
JB, JBn 2 JBE 

is used in (A3. ) to obtain (3) •. 
(2) This construction, and in particular (A3) and (A3)., shows that if X _ T 12 or X T 12 has a probability measure 

concentrated at one point the Bernstein process is also Markovian. Actually, the class of Bernstein processes is strictly larger 
than the Markov class. 
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An iterative II N expansion scheme is developed to solve the Klein-Gordon equation to obtain the 
energy spectrum of a scalar particle in a spherically symmetric potential. For the Coulomb 
potential, this approach is shown to yield the exact results. 

I. INTRODUCTION 

The method oflarge-N expansion has emerged in recent 
years as a very useful approximation scheme in nonrelativis­
tic quantum mechanics l

-
3 and the multicomponent model 

problems in quantum field theory4,5 and statistical phys­
ics.6

,7 The leading-order approximation in this theory con­
sists of assuming the number of degrees of freedom of the 
system to be infinitely large (N--+oo) and leads in a number 
of cases to impressive results. However, the leading-order 
solution may not be sufficient in generals and one has to 
incorporate the finite-N corrections by introducing a syste­
matic expansion in powers of 1/N. In nonrelativistic quan­
tum mechanics the method oflarge-N expansion serves as an 
alternative to ordinary perturbation theory and employs for 
spherically symmetric potentials 1/k = 1/(N + 2/) as the 
expansion parameter, where N is the spatial dimensionality 
and 1 the angular momentum. Mlodinow and Papanicolaou 1 

have shown by a group theoretic formulation that 1/k is 
indeed a natural expansion parameter. Thus a 1/N expan­
sion is essentially a nonperturbative expansion and contains 
in it the promise of solving the strong coupling problems for 
which the usual perturbative treatments fail. In fact, in QCD 
the only meaningful expansion parameter is 1/ N, where N is 
the number of colors. 

Recently, Miramontes and Pajares9 have studied the 
large-N limits in relativistic quantum mechanics and have 
shown that for a class of potentials VCr) -r", where 
- 2 < n < 0, the relativistic and spin corrections are non­

leading in 1/N expansion. As a specific example they have 
considered the Coulomb potential V(r) = - f3lr, for which 
the relativistic wave equations are exactly soluble in N space 
dimensions. 10 For a spin-zero particle, for an example, the 
exact energy (in units Ii = c = 1) is 

E = m [1 + 4f32{2n - 21 + 1 

+ ~(k - 2)2 _ 4{32}-2] -1/2, (1) 

which, when expanded in powers of 1/k, becomes, for the 
ground state, 

[ 
2{32n] E=ml- L C-

n=1 n k 2n ' 
(2) 

where the first three coefficients C"C2 , and C3 are given by 

C1 = 1 + ~ + ~ +..±... + ... 
k k 2 k 3 ' 

C2 = 1 + ~ + ~ + 108 + '" 
k k 2 k 3 ' 

(3) 

C3 = 2(1 + E.. + ~ + 400 + ... ) . 
k k 2 k 3 

Obviously the relativistic corrections are nonleading in 1/k. 
For most potentials, however, the relativistic wave equations 
are not exactly soluble and one, therefore, has to resort to 
some approximation scheme. In the present paper we make 
an attempt in this direction. We propose a large-N iterative 
procedure for the solution ofthe Klein-Gordon equation to 
obtain the energy eigenvalue of a spin-O particle in a poten­
tial V( r). For the Coulomb potential the method is found to 
generate the exact series. 

11_ LARGE-N ITERATIVE PROCEDURE 

The N-dimensional Klein-Gordon equation (in units 
Ii = c = 1) for a scalar particle of mass m moving in a Lor­
entz vector potential, whose only surviving component is the 
fourth component VCr), is given by 

[V2 + (E - V(r)f - m2]\}I(r) = 0, (4) 

where r is an N-dimensional vector of magnitude rand V2 

can be written as 

V2=~+N-l~_~ 
a~ r ar ~' 

(5) 

L being the angular momentum operator in N dimensions. 
Substituting in (4) 

\}I(r) = R(r) Y1m (0) , (6) 

where R (r) is a function of rand Y1m (0) is an eigenfunction 
of L 2 belonging to the eigenvalue I (I + N - 2), we get 

{~+ N -1 ~_I(l+N -2) 
a~ r ar ~ 

+ (E - V(rW - m2}R(r) = 0, (7) 

which, on substituting R(r) = r- (N -1)/2u(r), reduces to 

[
_ ~+ (k-l)(k-3) 

d~ 4~ 

- {(E - V(rW - m2
} ]u(r) = 0, (8) 

where k = N + 21. In the large-k limit (N--+oo), the energy 
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to leading order is given by 

E"" = V(ro) + m[ 1 + k2/4m2~] 112, (9) 

where ro is the value of r at which the wave function (in the 
limit k-+oo) has a 8-function peak and is to be determined 
from 

~ V'(ro)(l + k2/4m2~)1/2 = k2/4m, 

where V'(ro) = [dV(r)/dr] Ir=ro . 

(10) 

To evaluate the finite-N corrections we rewrite Eq. (8) 
as 

[ _ ~+ (k-1)(k-3) -{(E _V(r»)2_m2} 
dr 4r a 

+ 2(E - Ea) (V(r) - V(ro» ]u(r) 

= [(E- V(roW-(Ea - V(ro»2]u(r) , (11) 

where Ea is some approximate solution for E. Now the sim­
plest approximation consists in putting Ea = E"" and neg­
lecting the term 2(E - Eoo )(V(r) - V(ro»)' Then denoting 
the energy in this approximation by E( I) and the wave func­
tion by u(l) (r), we get from (11) 

[ 
_ ~+ (k-1)(k- 3) 

dr 4r 

- {(Eoo - V(rW - m2} ]u(1) (r) = ~ IU(l) (r) , 

(12) 

where 

(13) 

Now for the ground state wave function (which is nodeless), 
we assume, following Mlodinow and Shatz,2 

(14) 

where x = r - roo Equation ( 12) then reduces to the Riccati 
equation 

_ (<I>;'(x) + <I>;'(x») + k 2V!~)(X) + _k_ + _3_ 
r(x) 4r(x) 

=~I' (15) 

where 

and 

m' ( ) _ d<l>l (x) 
'¥I X - , 

dx 

V (I) (1 m ) (E"" - V(r(xW 
elf (x) = --+ - - --=---"';"'--'-

4r(x) k 2 k 2 

Next substituting the expansions 

"" 

(16) 

~ I = I ~~n)k-n (17) 
n= -I 

and 

"" <1>; (x) = I <I>~n)(x)k-n (18) 
n= -I 

in (15) and equating the terms of same order in k we gener­
ate the following recurrence relations: 
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<I>~ -I)(X) = _ (V!~)(X»1/2, 

2(V~ (x) )1/2<1>\°) (x) 

= ~\-I) + <I>\-I)'(X) +r-2(x) , 

2(V~) (X»1/2<1>P) (x) 

= ~\o) + <1>\0)' (x) - jr- 2(X) , 

2(V!~) (x) )1/2<1>\n + I) (x) 

n 
= ~\n) + <I>\n)' (x) + I <I>~(x)<I>\n - m) (x), 

m=O 

n>O. 

Since V~)(O) = 0, we have from (19) 

~\- I) = _ <1>\- I)' (0) _ ro- 2, 

~\O) = _ <1>\0)' (0) + jro2, 
n 

(19) 

(20) 

~\") = - <1>\")' (0) - I <l>lm) (0)<1>1" - m) (0), n > O. 
m=O 

Then E( 1) is obtained from 

E(I) = V(ro) + [(Eoo - V(ro»)2 + ~ d 1/2. (21) 

In the next improved approximation we set Ea = E (I) in 
(11) and drop the term 2(E - E(I) (V(r) - V(ro»). Let us 
denote the energy in this approximation by E (2) and the 
wave function by u(2)(r). Thus we obtain 

[
_ ~+ (k-l)(k-3) 

dr 4r 

_ {(E(1) _ V(r»)2 _ m2} ]u(2)(r) 

= [(E(2) - V(roW - (E(1) - V(ro»2]u(2)(r) , (22) 

which can be solved again by the above method of liN ex­
pansion by transforming it to the Riccati equation. After E (2) 

is determined, Eo should be replaced by E(2) in (11) and 
then, ignoring the term 2(E - E(2» (V(r) - V(ro»), the re­
sulting equation may be solved to obtain a more improved 
approximate solution E (3) for the energy E. This iterative 
procedure obviously can be continued to obtain any desired 
order of accuracy. In the next section we apply this . method 
to the Coulomb potential for which the method yields exact 
results. 

III. APPLICATION TO THE COULOMB POTENTIAL 

In the case of the Coulomb potential, V(r) = - {3/r, we 
have 

ro = (k 2/4m{3)( 1 - 4{32/k 2) 112 (23) 

and 

Eoo = m(1 - 4{32/k 2)1/2. 

Then V!J.)(x) is given by 

V!~)(x) = (4m2{32/k4)(1- rolr) 2 , 

and, using (16), (18), and (19), we obain 

~ 1 = m2[ _ 4{32(3. +~+..!. + ... ) 
k 2 k k 2 k 3 

(24) 

(25) 

_ ~(~ + 208 + 608 + ... ) _ ... J, (26) 
k4 k k 2 k 3 
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so that E (I) becomes 

E(1) = m[1 - f D 2{32,,] 
n=1 n k 2n' 

(27) 

with 

2 3 4 DI = 1 +-+-+-+ ... 
k k 2 k 3 ' 

(28) 

D2 = 1 +.!.+~+ 156 + .... 
k k 2 k 3 

and so on. Thus the nonrelativistic part of the Coulomb 
ground state energy is exactly recovered even in the simplest 
approximation, the relativistic corrections remaining inex­
act, however. To obtain, therefore, a more accurate solution, 
we now consider (22), which can be written as 

[ _ !!.:.. + (k - l)(k - 3) _ {(E _ V(rW _ m2} 
dr 4r "" 

+ 2(E(1) - E"" )(V(r) - V(ro» ]u(2)(r) = If 2u(2)(r) , 

(29) 

where 

If 2 = (E(2)_ V(roW - (Eoo - V(ro»2. (30) 

Substituting as before, 

u(2)(r) = exp[cI>2(X)] , 

we get from (29) 

(cI>~(x) + cI>i
2
(x») + k2V~)(X) 

-kr- 2(x) -ir - 2(x) = ~2' 

where 

V(2)(X) =_1_+~ _ (Eoo - V(r»)2 
elf 4r k 2 k2 

2(E(1) -E .. )(V(r) - V(ro» 
+ k 2 

and 

Employing the expansions 

~2 = f ~in)k-n 
,,= -I 

and 
00 

..... , () ~ ..... 2(n)(x)k -n, 
'¥2 X = ~ '¥ 

n= -I 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

we end up with a set of recurrence relations similar to (18), 
which are now to be solved utilizing the condition that 

V!~)(x) = 4m2/3
2 (1_ ro + (E(I) -Eoo )k

2
)2 

k 2 r 4m2/3ro 
(33') 

vanishes at 
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(37) 

The energy E (2) is finally given by 

E(2) = V(ro) + [(Eoo - V(ro)f 

- + 1f2 
(E(1)-E .. )2k 2 _ ]112 

4m2ro 
(38) 

=m[l- 2{32(1 +~+2-+-±"'+ ... ) 
k 2 k k 2 k 3 

_ 2{34(1+.!.+~+ 108 + ... )_".]. e k k 2 k 3 

(39) 

Comparison of (39) with (2) reveals thatE(2) is exact to the 
order considered. For higher-order relativistic corrections, 
however, one has to make further iterations. 

In the case of higher excited states for which the wave 
functions u(r) are to be chosen to have the right number of 
nodes, the above method of liN expansion becomes ex­
tremely cumbersome. Alternatively one can employ the per­
turbed oscillator method II to which we now tum. 

IV. THE PERTURBED OSCILLATOR METHOD 

In the perturbed oscillator method we write Eq. (12) as 

[ __ 1_!!.:..+~ _ _ k_+_3_+ k2/1 (r)]u(l)(r) 
2m dr 8mr 2mr 8mr 

= (1f 1/2m)u(r), (40) 

where 

II(r) = [m2 - (E .. - V(r»)2]/2mk2. (41) 

Next we define y = (..Jk Iro) (r - ro) and expand the r-de­
pendent terms in (40) around y = 0 to obtain an effective 
one-dimensional perturbed (nonrelativistic) harmonic os­
cillator equation II 

[ __ l_!!.:.. + '!"m2UJ(I)2y2 + e~1) + V(I)(y)]rp (I)(y) 

2m dy2 2 

= A (I) rp (I) (y) , ( 42) 

where 

UJ(I) = [_3_+ r'J!i'(ro) ]112 
4m2 m 

(43) 

k 1 3 
e~1) = - - - + --+ rokl(ro) , 

8m 2m 8mk 
(44) 

A (I) = (ro12mk) If I , (45) 

and 

V(I)(y) = _1_(e(l)y+e(l)y3) +.!..(e(I)·.2+ e(l)y4) 
kll2 13 k 2Y 4 

+ k !12 (8~1) Y + 8~1)y3 + 8~l)yS) 

+ :2 (8il)y2 + 8~l)y4 + 8~l)y6) 

+ .... (46) 
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3 Eil) = --, 
2m 

E
3
(1) = ("soft(ro) __ 1_) 

6 2m ' ( 
rgj;'" (ro) 5 ) E(I)= +_. 

4 242m' 

~(I) - _.2.. 
VI - , 

4m 
~(I) -...2.-V2 - , 

8m 
8(1) = (rrift"(ro) _ .2..) 

s 120 4m ' (~ I""''''(r: ) 7 ) 8(1) = 01 I 0 + _ . 
6 720 8m 

(47) 

Now applying the fourth-order perturbation theory to (42) and arranging terms of the energy in powers of 11k, we obtain 

E(I) = V(ro) +m[(1 ++) +~{k2(_1-+fl(ro») +k(n+~)cv(l) __ 1_) 
4m ro m 8mro ro 2mro 

where 

+ ( 
3 + (1 + 2n) _( I) + 3 (1 + 2n + 2n2) -(I) 

-- E2 E4 
8mro ro ro 

- cv(~)ro [ep)2 + 6( 1 + 2n)ep)ejl) + (11 + 30n + 30n2)ejI)2] ) 

+ ~(~[ (1 + 2n)Bi l
) + 3(1 + 2n + 2n2)B,iI) + 5(3 + 8n + 6n2 + 4n3)B~I)] 

k ro 

- _1_[(1 + 2n)e(1)2 + 12(1 + 2n + 2n2 )e{1)e(1) cv(l)rn . 2 2 4 
o 

+ 2(21 + 59n + 51n2 + 34n3 )e.i1)2 + 2£P)BP) + 6(1 + 2n)ep)Bjl) 

+ 30( 1 + 2n + 2n2)eP)B~I) + 6( 1 + 2n)ejI)Bp) 

+ 2(11 + 30n + 30n2)ejl)BF) + to( 13 + 40n + 42n2 + 28n3)ejI)B~I)] 

+ __ 1_[4£(1)'£(1) + 36( 1 + 2n)e(l)e(l)e(1) + 8( 11 + 30n + 30n2)e(l)e(1)2 (1)2..2 I 2 I 2 3 2 3 
cv ro 

+ 24(1 + 2n)ep)'£.iI) + 8(31 + 78n + 78n2)epJe jl)e.i1) + 12(57 + 189n + 225nz + 150n3 )ejI)2e.il)] 

___ 1_ [8e(1)3e(l) + lO8( 1 + 2n)e(l)2e(1)2 + 48( 11 + 30n + 30n2 )e(lJe (1)' (1)3..2 I 3 I 3 I 3 
cv ro 

ep) = EJI) /[2mcv(I)]iI2, BP) = 8J[2mcv(I)]il2 . 

After E (I) is obtained, we proceed to solve Eq. (29) for E (2). Defining 

mZ (E V(r»)2 (E (I) E) 
f. (r) = co + co (V(r) - VCr ») 

Z 2mk2 mk 2 0 , 

we get from (29) 

[ 
1 d 2 k 2 k 3 k 21" ] (2) () If 2 (2) ( - --+-- - --+--+ nCr) u r =-u r), 

2m dr 8mr 2mr 8mr 2m 

(48) 

(49) 

(50) 

(51) 

which looks similar to ( 40) and hence it can be solved by the fourth-order perturbation theory by reducing it to the perturbed 
oscillator equation 

[ 
__ 1_~ + ~m2cv(2)2y + Eb2) + V(2)(y)]tp (2)(y) = it (2)tp (2)(y) (52) 

2m dy 2 ' 

where 

CV(2) = [3/4m2 + r;Vi' (ro)/m] 112 , (53) 
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(2) k 1 3 -2 k'l' ( ) Eo =- - -+--+'0:12 rO , 
8m 2m 8mk 

Ii. (2) = (rof2mk) ~ 2 , 

and 

vm (y) = _1_(E(2)y + E(2) • .3) + ~(E(2) • .2 + E(2)y4) 
kll2 1 3 Y k 2 Y 4 

with 

E12 ) = [! + ro:~ro) (E(l) -E",)], 
~2(2) =~ 

8m' 
~~2) =~, 

m 

After E (2) is calculated one has to solve 

3 
E

2
(2) = --

2m' 

~4(2)= -~ 
2m' 

(2) _ ( ,.g Ii" (ro) _ 1) (2) _ (rg f;" (ro) + ~). 
E3 - -, E4 - , 

6 2m 248m 

(54) 

(55) 

(56) 

~(2) = (r~Ii""(ro) _ 2.-) ~(2) = (~f;""(ro) + 2.) . 
s 120 4m' 6 720 8m 

(57) 

- --+-- - --+--+k%(r) u(3)(r) =_3u(3)(r) , [ 
1 d 2 k 2 k 3 ] ~ 

2m dr2 8mr2 2mr2 8mr2 2m 
(58) 

where 

f 
m2 - (E", - V(r»)2 

3(r)=-------
2mk 2 

(E(2) -E ) 
+ '" (V(r) - V(ro» (59) 

mk 2 

and 

~3 = (E(3) - V(ro)f - (E", - V(ro»)2 (60) 

to obtain a more improved solution E (3) and similarly the 
process can be continued to any order. 

The method delineated above can be readily applied to 
any spherically symmetric potential to obtain its energy 
spectrum. For the Coulomb potential VCr) = - {3 fr, the 
results of the first few iterations are 

E(I)=m[l- 2{32(1+~+2.-+ ... ) 
k 2 k k 2 

(61) 

E (2) [1 2{32 ( 2 3 ) =m - -- 1 +-+-+ ... 
k 2 k k 2 

(62) 

(63) 
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Thus in the case of the Coulomb potential one may stop at 
E (2) for the lowest-order relativistic correction. 

V. CONCLUSION 

We have developed in this paper an iterative large-N 
scheme by extending the method of Mlodinow and Shatz2 

and the perturbed oscillator method 11 to obtain the energy 
eigenvalue of a scalar particle moving in a spherically sym­
metric potential. For the Coulomb potential in particular, 
the method looks quite attractive, for it yields the exact ener­
gy series, at least to the order considered in this paper. Final­
ly we remark that our procedure may be useful in the qualita­
tive studies of quark-confining potentials. 
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It is shown that viscous fluid solutions can be obtained by performing conformal transformations 
of vacuum solutions of Einstein's field equations. The solutions obtained by such a procedure can 
be matched, under certain conditions, to their respective original vacuum metrics. 

I. INTRODUCTION 

Anisotropic fluids have proved to be of great interest as 
alternative (and more realistic models) to perfect fluids 
when describing some physical situations for consideration 
in general relativity such as nonstatic interiors of stars, 1-3 
evolution of radiating spheres,4.5 etc. Viscous fluids&.-9 are a 
special type of anisotropic fluids that possess the relevant 
characteristic that the anisotropic pressure tensor is propor­
tional to the shear tensor of the velocity field of the fluid. 
Thus, the constant of proportionality is a multiple of the 
kinematical viscosity. These fluids arouse special interest be­
cause they explain relativistic dissipative processes in situa­
tions near the thermodynamic equilibrium6 and have been 
used to describe neutron stars in certain density ranges lO and 
likewise in cosmology.]) From a more theoretical point of 
view, the possibility of viscous fluids generating some al­
ready known exact solutions has also been studied in FRW 
models,12 electromagnetic field solutions, 13.14 scalar fields, 15 
etc. 

In the present paper a method is described for generat­
ing viscous fluid solutions starting from a vacuum solution 
and then carrying out a conformal transformation. 16 In Sec. 
II a brief account of the theory of conformal transformations 
is given (for further details see the references cited therein). 
Moreover, it is shown how a conformal transformation of a 
vacuum solution generates (through Einstein's field equa­
tions) a matter solution by giving the stress-energy tensor 
corresponding to the new solution in terms of the function 
generating the conformal transformation. Section III is 
dedicated to the study of anisotropic and viscous fluids spe­
cifying the general form of their stress-energy tensors and 
the definition and properties of the magnitudes taking part in 
their composition. In Sec. IV the results of the two preceding 
sections are applied to identify the stress-energy tensor cor­
responding to the new solution given in Sec. II. The possibil­
ity of this tensor corresponding to a viscous fluid with heat 
conduction is given, with negative expansion taking place in 
most of the cases; this is a collapsing fluid. We have specified 
under which conditions such a viscous fluid reduces to a 
perfect one and briefly discussed the matching problem 
between both metrics: the new solution and the vacuum so­
lution from which it was derived. Finally, in Sec. V, the for­
mer results are applied to a particular case, namely, the exte­
rior Schwarzschild solution, and a "naive" model of a 
spherically symmetric collapsing star is obtained, showing 
viscosity, anisotropic pressures, and heat conduction. This 
model satisfies energy conditions l7 and the pressure and the 
density show a reasonable behavior. However, it is not our 

intention to put forward this model as a realistic one, it is 
only used to illustrate the general results formerly obtained. 
Further models are obtainable likewise by performing some 
slight changes in the present one. Moreover, this method can 
be applied to other vacuum solutions, such as Minkowski 
flat space, as is indicated in Sec. V. 

II. CONFORMAL TRANSFORMATIONS IN GENERAL 
RELATIVITY 

As is well known, 1~,17 conformal transformations con­
stitute a special type of map of metric spaces consisting of a 
dilatation (or contraction) of all lengths by a common factor 
depending on the point of the space: 

(1) 

The most important property satisfied by conformal 
transformations (1) is that they keep the components of the 
Weyl's conformal tensor unchanged, and therefore the Bel­
Petrov type, too. Another important property that will be 
useful later is that the isometry group of the original metric 
gab becomes a conformal group of motions of the new metric 
gab' Some more interesting properties of conformal transfor­
mations may be found in Ref. 16. 

The Einstein tensors corresponding to the metrics g and 
g in the case of four-dimensional spaces are connected by 

Gab = Gab + 2( Ua Ub - !UCUcgab ) 

(2) 

where the covariant derivatives and contractions are calcu­
lated with the metric gab' and Ua stands for u'a. The former 
expression written in terms ofthe new metric gab (namely, 
contractions and covariant derivatives performed with gab) 
reads 

Gab = Gab -2UaUb -2Ua;b + (2UC;c - UCUc)gab' (3) 

If gab is chosen to be a vacuum solution its associated 
Einstein tensor is zero, and then, by using Einstein'S field 
equations Gab = Tab' the second member of (3) with 
Gab = 0 may be interpreted as the stress-energy tensor of 
some distribution of matter, 

Tab = -2UaUb -2Ua;b - (UCUc -2UC;c)gab' (4) 

The identification of the material distribution described 
by (4) will be discussed in Sec. IV. 

III. ANISOTROPIC AND VISCOUS FLUIDS 

The stress-energy tensor describing an anisotropic fluid 
with heat conduction9 can be written as 
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Tab =PUaUb +phab +1Tab +Uaqb +qaUb' (5) 

wherep is the energy density,p is the thermodynamic pres­
sure, Ua is the velocity field of the fluid (ua Ua = - 1), if is 
the heat conduction vector (ifqa >0 and ifua = 0), 17' ab is 
the anisotropic pressure tensor (t'b1Tab = 1TabUb = 0), and 
hab is the orthogonal projector to the velocity field hab = gab 
+ UaUb' Note that 1T"b and qaub + U"qb are dissipative 

terms that do not appear in the stress-energy tensor of a 
perfect fluid. 

A particular case of an anisotropic fluid is that of a vis­
cous fluid, characterized by an anisotropic pressure tensor 
17' ab proportional to the shear tensor 0' "b of the velocity field 
U",6-9.18 

1T"b = - 2TJO'"b' (6) 

O'ab =!{U";b +ub;" +u"ub +U"Ub}- (0/3)hab , (7) 

where TJ is the kinematical viscosity coefficient (TJ > 0), u" is 
the acceleration of the fluid (ua = Ua'bub), and 0 is the ex­
pansion ofthe fluid (0 = UC;c). (For the physical sense of 0, 
0' ab' etc. see, for instance, Ref. 9.) Therefore, the stress-ener­
gy tensor of a viscous fluid with heat conduction is 

T"b =PU"Ub +ph"b -2TJO'''b +U"qb +qaub' (8) 

which constitutes the expression of the stress-energy tensor 
for a relativistic dissipative fluid in the framework of the 
standard theory for such fluid mechanics developed by Eck­
art6

,l9 and by Landau and Lifshitz,' and it establishes the 
relativistic equivalent to the Navier-Stokes theory of New­
tonian fluid mechanics. 

Note that the quantities characterizing an anisotropic 
fluid,S namely,p,p, qa' and 1T"b' can be written in an "intrin­
sic" manner if the velocity field u" is known (this is com­
pletely general for any symmetric second-rank tensor; that 
is, given a timelike vector one can always perform such a 
decomposition of the given tensor): 

P = T"bu"ub, P =!h "bT"b' 
(9) 

IV. IDENTIFICATION OF T lib 

The purpose of this section is to show that the stress­
energy tensor given by (4) may be interpreted as the tensor 
of a viscous fluid with heat conduction, provided that the 
function U in (1) satisfies certain requirements, To do this 
we shall substitute the tensor (4) in the set of expressions 
(9), and we shall take as the velocity field of the supposed 
fluid the normalized gradient of the function U; then, the 
only a priori restriction on U will be that its gradient is time­
like: 

Ua =:= (l/A)Ua, A =:= (- u aua)1/2, 

Equation (4) now reads 

Tab = - U 2U"Ub - 2(A(bUa) + AU(a;b) ) 

(10) 

+ (A 2 + UO + U)gab' (11) 

whereAb stands for A ,b and A. stands for the derivative of A in 
the direction ofthe velocity field A. = A"U". 

The density, pressure, heat conduction, and anisotropic 
pressure tensor calculated through (9) are 
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p= - (3A 2+UO), 

p =...t 2 + U + tAO, 

(12) 

(13) 

(14) 

1T"b = -U{U(,,;b) +U("Ub) - (0/3)h"b} = -UO'ab' 
(15) 

From (15) we see that the anisotropic pressure tensor is 
proportional to the shear of the velocity field, and this also 
permits us to identify A with the viscosity coefficient, that is, 

TJ=A. (16) 

Therefore, the fluid under consideration is not only aniso­
tropic, but, more specifically, viscous. 

Some other properties can be worked out from expres­
sions (12)-( 15); for instance, the requirementp > 0 (domi­
nant energy condition23

) implies 0 < 0, and therefore 

(17) 

The fluid so obtained is irrotational (Wab = 0) since its 
velocity field is hypersurface orthogonal; it is collapsing 
(negative expansion); and, provided that on the surface 
U = 0 the derivatives of U and the pressure p vanish, it can 
be matched continuously to the vacuum solution from which 
it derives. 

If the dissipative terms in the stress-energy tensor (8) 
vanish, i.e., - 2TJO'"b + q"ub + u"qb = 0, the viscous fluid 
then becomes a perfect fluid. The necessary and sufficient 
condition for this to take place is that both q" and O'"b vanish 
separately. In the present case, it is easy to see what these 
conditions imply: 

(i) q" = O¢?ua = 0, geodesic fluid, 
(18) 

(ii) O'"b = O¢?U,,;b = l/30h"b' shear-free. 

There is still another restriction upon the velocity field 
U", and consequently upon the gradient of the function U: 
the component UO must be positive in order to preserve the 
orientation towards the future of the temporal coordinate. 
This implies Ut < 0 in the former expressions; otherwise, if 
Ut > 0, we should define the velocity field as 

U" =:= - (1/A)Ua (A>O), (19) 

and then the pressure, density, heat conduction, and aniso­
tropic pressure tensor become 

p = - 3A 2 + 2).0, 

p = A 2 - U - tAO, 

(20) 

(21) 

(22) 

(23) 

Equation (23) implies TJ = - A; that is, negative viscosity, 
which is physically unacceptable. This case will only be ad­
missible when O'"b vanishes, namely, for a shear-free fluid. In 
such a case the expansion 0 must be positive in order to keep 
p positive. 
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V.EXAMPLE 

Let us now apply the former results to one of the best 
known vacuum solutions-the Schwarzschild exterior solu­
tion. 

The Schwarzschild exterior solution, 17 

ds2= - (1-7)dt 2+ (1-7)-1 dr+rd02, 

(24) 

is the only stationary and spherically symmetric vacuum so· 
lution which becomes flat at r = 00. If we perform a confor­
mal transformation, where the function U must depend on 
the temporal coordinate, the resulting metric will no longer 
be stationary (nor spherically symmetric if it also depends 
on any angular coordinate). But, as was previously pointed 
out in Sec. II, the Killing vector associated with the temporal 
coordinate in the Schwarzschild solution generates a confor­
mal motion for the solution 

(25) 

The velocity field Ua transforms itself under the action of S 
as24 

£SUa = (£s U)ua , £sua = - (£s U)ua
• (26) 

Hereafter we shall work under two main assumptions. 
(a) The function U depends only on tand r; U = U(t,r). 
(b) It is of the form 

U = (lIa)(f (t) + g(rW. (27) 

The first assumption together with (26) leads to 

Ut,t = Utu p Ur,t = UtUr, (28) 

and after some straightforward calculations we come to the 
conclusion that 

Ut = C(r) Ur, Ut = C(r)ur, (29) 

where C(r) is an undetermined function of the radial coordi­
nate. Here A. will then be 

A. = e- UlUrl{(1- 2M Ir)-IC 2 - (1- 2M Ir)}. 
(30) 

By introducing (28) and (29) into (27) we obtain 

U= KI (k2+t+ f~)a, 
a C(r) 

U = ~(k +t+ f~)a-I (31) 
r C(r) 2 C(r)' 

Ut = C(r)ur, Ur = (lIA.)Ur, (32) 

e- 2UCC' ur = - U (33) 
(1- 2M Ir)-lC 2 - (1- 2M Ir) r' 

p = 3..1. 2 + 4Q + 2R, P = - A. 2 - 2P + ~(R - Q), 
(34) 

where P, Q, and R are, respectively, 

R=e-2UU {2 r-M + M(1-2Mlr)-lC 2+(1-2Mlr)-(rIM)CC'} 
. r r r (1 - 2M Ir) IC 2 - (1 - 2M Ir) , 

(37) 

where a prime indicates differentiation with respect to rand 
Urr stands for the second derivative of the function U with 
respect to r. 

In order to match continuously this solution to the 
Schwarzschild exterior solution, Ut , Ur , and P must vanish 
on the matching surface defined by U(t,r) = O. The neces­
sary and sufficient condition for this to occur is a;;'3. The 
matching surface U(t,r) = 0, according to (30), is given by 

k2+t+ J~ =0. 
C(r) 

(38) 

This equation gives, for every time t, the radius r M (t) of 
the collapsing object under consideration; and it must be a 
decreasing function of the time. This fact implies that for 
r < rM the quantity t + k2 + S [drIC(r)] is negative; and it 
makes K 1 negative in the case of odd a and positive when a is 
even. 

The only restriction upon the function C(r) is that the 
following energy conditions23 have to be satisfied: 
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(i) p>O, 

(ii) - P<'Pi <.p, 
(39) 

where Pj are the spacelike eigenvalues of the stress-energy 
tensor under consideration. A sufficient (but not necessary ) 
condition for (ii) to hold is 

-p<.3p<p. (40) 

There are a number of functions C(r) satisfying these 
requirements, for instance, 

C(r) = (2Mlna2)(rl2M+b)n+l, (41) 

where a and b are constants that must be chosen, together 
with n, to satisfy the above requirements. Fitting values for 
such constants [and for the other constants appearing in 
( 31 )] are, for example, 

a = 5,7,9, M = 600, a2 = 10-4,10-5
, n = 5, 

b = - 7.5, Kl = 10-24
, k2 = - 160. (42) 
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The density p and pressure p so obtained readily verify 
conditions (38) and (39) for every time t in the region 
2M <, <, M, and they are both decreasing functions of the 
radius ,. 

The radius'M (t) of the collapsing object is given by 

(43) 

which obviously decreases with time. 
The time interval for which all the former results hold 

varies from to = 0 to t1 = a2( I + b) - n - k2; at this time 
(t1 ) the fluid has "collapsed" at the gravitational radius 
, = 2M. For t> t1 there is a singularity (t = k2) and the 
model is no longer valid. 

On the surface, = 2M the metric obviously becomes 
singular like the pressure and the density. The behavior of 
the present solution in the region, < 2M deserves a more 
accurate study, which is being carried out at present, but it is 
beyond the scope of the present work. Nevertheless, it is 
interesting to note that for t > - k2 [recall that t = - k2 is a 
singularity for 'M (t)], the radius of the collapsing object 
becomes greater than 2M and it tends to - 2Mb as t tends to 
infinity, which is a finite value greater than 2M. 

Another way of avoiding the singularity on the surface 
, = 2M could consist of matching a surface '0> 2M with 
another metric, in a similar way to that of Coley and Tup­
per.25 

An appropriate choice of C (,) could possibly lead us to 
a pulsating solution [pulsating 'M (t)]. 

Several additional examples may be found in more sim­
ple cases; i.e., when the function U depends only on t, either 
in the case of the Schwarzschild solution or even in the more 
simple case of Minkowski's flat space-time, giving in this 
case an expanding perfect fluid solution and then reproduc­
ing some of the plane FRW models. 
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A class of perfect fluid metrlcs with flat three-dimensional hypersurfaces 
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The class of perfect fluid and vacuum space-times with a family of flat three-slices and a tensor 
of exterior curvature covariantly constant within these slices is examined and the 
corresponding solutions are found. It is shown that this class contains the class ofmetrics with 
three commuting Killing vectors. Therefore, e.g., all known stationary metrics with cylindrical 
or plane symmetry are generalized. An instruction is given for constructing perfect fluid 
metrics with this symmetry and a connection to a vacuum across surfaces p = O. Thereby the 
equation of state of the interior rotating perfect fluid can be arbitrarily chosen and the 
positivity of density and pressure can be forced. A geometric criterion of the interior metric 
with rotating matter is found that decides whether the exterior solution is stationary or static. 
Besides solutions with three symmetries, inhomogeneous metrics also are found. Among them 
is a solution with one symmetry and rotating, expanding, shearing, and accelerating perfect 
fluid. All resulting vacuum solutions are already known. 

I. INTRODUCTION AND FORMALISM 

With this paper a further step shall be undertaken in the 
program of examining metrics with flat three-dimensional 
slices. The proposal to assume the existence ofhypersurfaces 
with special inner symmetries was first pointed out by Col­
lins and Szafron. Thereby an approach to inhomogeneous 
metrics was suggested without supposing space-time sym­
metries or the Weyl tensor being algebraically special from 
the very beginning. On the other hand, at the end of the third 
of their papers) they doubted the derivation of new solutions 
with the strongest such restriction, with flat slices, because 
first attempts failed even with the help of a computer. Never­
theless in Refs. 2-4 the property offlat slices was established 
for many already known solutions, and new solutions with 
this property also were found. The vital point for obtaining 
these results consisted of allowing the flat slices to be time­
like, not to impose restrictions on the four-velocity ua but to 
impose algebraic conditions on the tensor of the exterior cur­
vature Ka,8' 

Because the projection Kab , a,b = 1,2,3, of this tensor is 
a three-tensor within the flat hypersurfaces X4 = const and 
the hypersurfaces are invariantly defined because of their 
flatness. restrictions on Kab possess a geometric meaning 
and are to be preferred against restrictions on metric compo­
nents. In Ref. 2 perfect fluid solutions with vanishing Kab 
were investigated. Despite zero inner and exterior curvature 
the metrics contain a Petrov type D solution describing ro­
tating dust without symmetry. In Ref. 3 the assumption Kab 
= Agab leads to new perfect fluid solutions with three Kill­

ing vectors. In Ref. 4 vacuum solutions of the Petrov types I, 
III, and N, and partly without symmetries, result under the 
conditionK a a = O. Thereby the Petrov type correlates to the 
rank of Kab: for rank = 1 only type N solutions result, for 
rank = 2 besides pp-waves of type N a type III solution of 
Kundt's classs.6 is contained, and for rank = 3 a special solu­
tion is found. the Petrov 7 solution of type I. 

In this paper the demand on Kab takes differential char­
acter. We assume that Kab is covariantly constant within the 

flat hypersurfaces, i.e., Kab lie = O. A consequence will be 
that at least one Killing vector exists; on the other hand, 
classes of solutions with Petrov type I also result. The advan­
tage of the assumption Kab lie = 0 is to be mathematically 
helpful but not to be very restrictive. It provides the (4,a)­
components of the field equations to be equivalent to the 
demand that for timelike flat slices the four-velocity ua lies 
within these slices, i.e., u4 = 0, and that for spacelike flat 
slices ua is orthQgonal to them, i.e., Ua = O. In the timelike 
case the components ua are free for being defined by the 
(a,a ) -components of the field equations satisfied that way. 
The conventions and the formalism are already given in Ref. 
3 and shall therefore be depicted in a concentrated form. 

The family of flat hypersurfaces is parametrized by the 
timelike (resp. spacelike) coordinatex4

• We denote the nor­
mal vector by na = (O.O,O,N) , nana = E = ± 1 and the flat 
three-metric by gab (X

4
). With the three-vector Na, which 

fixes the mutual position of coordinate systems of neighbor­
ing slices, the space-time metric reads 

ds2 = gab (dxa + Na dx4) (dxb + N b dx4) + E(N dX4)2. 
(1.1 ) 

3 

Here ~p and na take, with the inverse three-metric ~b, the 

form 

(

;ab + ENaN b IN 2 

~p= 

_ENbIN 2 

( 1.2) 

na = ( - N aIN,lIN). 
3 

Latin indices are moved by gab and ~b. With the projection 

tensor 

ha,8 = ga,8 - Enanp , 

the tensor of exterior curvature Ka,8 is defined to be 
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Ka{J = - na;yh yp, 

The normalization and vanishing of rotation of na yield 

Ka{J = K fJa , KapnP = 0, 

-K4a = NbKba' K44 = NaNbKab · 

The three-part Kab reads, with the covariant three-deriva­
tive lIa' 

Kab = (Nallb + Nb lIa - gab,4 )/2N. (1.3) 

As described in Refs. 8 (§21) and 9 the space-time curvature 
tensor can be given in a comprehensive form by K ab , na , 

their covariant derivatives, and £Kab . Formulated in the 
" antisymmetric part of Na,b and the symmetric part corre-

sponding to Kab , the Ricci tensor is 

ENRab = gr(bK ra),4 - Kab IIrN r - KabK rrN 

+ KrbN[a,r] +KraN[b,r]-N,allb' 

ENR 4
m = K b

bllm -K b
mllb , 

3 

E(R - 2Rab g"b) = Kaa 2 - KabK b
a . 

( 1.4a) 

( 1.4b) 

( l.4c) 

In Sec. II an approach for solving the field equations with a 
perfect fluid is developed. The cases corresponding to the 
four possible algebraic types of K m" are investigated in Secs. 
III-VI. In the summary a table containing all sllbcases is 
given. 

II. THE STRWCTURE OF THE FIELD EQUATIONS AND 
THE APPROACH FOR THEIR SOLUTION 

With Kab lie = ° the field equations take the form 

(JL + p)u4
U m = 0, (2.1) 

3 

E(K a
a 2 _ KabK b

a ) = 2(JL + p)U"Ub g"b - 2p" (2.2a) 

(2.2b) 

gr(bKra),4 - KabKrrN + KrbN[a,r] + KraN[b,r] - EN,allb 

=EN(JL+p)uaUb +ENgab (JL-p)/2. (2.3) 

In (2.2b) the norm of the four-velocity 
3 

- 1 = uaupga/J = uaub g"b + EN2(U4)2 (2.4) 

was used. 
The three equations (2.1) are no longer differential 

equations, but for wl=p follows the vanishing of U4
Ub • Be­

cause ua is timelike the norm gives 

for E = - 1, ua = 0, 1 = N2(U4)2, (2.5a) 
3 

for E = 1, u4 = 0, - 1 = uaub g"b. (2.5b) 

In addition to an appropriate equation of state, (1.3) are to 
be satisfied, which are called the Kab -equations in the follow­
ing, because Kab is no longer defined by them but Na and N 
are determined with given K ab . In most cases two of the field 
equations will be regarded as defining JL and p and after­
wards what equation of state they satisfy will be examined. 
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The first step for solving the field equations will be to 
chOose appropriate coordinates in the three-surface. Be­
cause the inner curvature of the three-surface vanishes we 
couldassumegab = diag( - E,I,1) with Kab lie = ° resulting 
in Kab (X4) .lfwe now want to align the coordinate axis to the 
eigenvectors of Kab we must perform x4-dependent coordi­
nate transformations that make the three-metric x4-depen­
dent. We therefore assume from the beginning 

gab = gab (x
4

). 

With this choice we can replace the covariant derivative II by 
the partial derivative and we have Kab,e = 0, i.e., 

To align the coordinate axis to the eigenvectors of Kab we 
need a survey of the possible normal forms of a three-dimen­
sional symmetric tensor. In a spacelike three-surface gab is 
positive definite and Kab takes diagonal form. Concerning 
the timelike case it is known from the literaturelO

•
lI that in 

four dimensions a symmetric tensor defines invariantly a 
two-subspace of the tangent space by transforming every 
vector of the two-surface into a vector of the same two-sur­
face. The following four different cases occur. 

In case A, the two-surface is timelikeand contains AI, 
two real orthogonal eigenvectors; A2, no real eigenvector; or 
A3, a double real null eigenvector. In case B, the two-surface 
is null and contains a threefold null eigenvector. 

The corresponding normal forms of K m" are 

AI: K m" = AIXmX" +A2Ym Y,. +A3Zm Z,., 

gmn = - EXmX,. + Ym y,. + ZmZ,. ,E = 1, 

A2: Km,. = Alk(m i ,.) +A2(/mi,. -kmkn ) + A#mZ" , 

A3: Km" = Alk(min) +A2kmkn +A#mZn, 

B: K m" = Al (zmzn - 2k(min) ) + A2i(mzn) ' 

where gab is given in the cases A2, A3, and B by 

gm" = ZmZn - 2k(m i,,). 

Nonvanishing scalar products of the vectors x", y", z", k n, 

andi"arex"xn =ynYn =z"zn = l,k nin = -1. Theeigen­
values (resp. combinations of them) will be assigned later 
with a(x4 ), b(x4), and c(x4). The case of spacelike three­
surfaces is contained in Al for E = - 1. 

In order to solve the field equations we make use of some 
of them for defining kinematic quantities. Because u4um = ° 
from (2.1), Eq (2.2) defines JL (resp. p ). A combination of It 
andp is obtained from the trace of (2.3), making use of the 

3 

norm UaUb g"b = - 1, which is valid for timelike hypersur-

faces. By thatJL - p can be replaced in (2.3). 
Summarizing, the solution contains in every one of the 

four cases AI-B (i) the choice of coordinates in correspon­
dence with the algebraic structure of Kab and thereby the 
determination of the components of K a b (X4) and gab (X4); 

(ii) the derivation of N,Na from the six linear partial differ­
ential equations of first order 

2N(xQ)Kab (X4) = 2N(a (xa ) ,b) - gab (X4); (2.6) 

(iii) the solution of the field equations 
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[

- N,ab + gab (K',,4 - K', 2N + N",,)/3, 

forE= -1, 

- N,ab + gab (K',,4 -K'mKm,N-N",,) 

+ N(p, + p)uaub, for E = 1. 

(iv) the calculation of p, and p from 

1ft = K a
a 2 - KabK b

a, 

(2.7) 

6p = (4Kaa,4 - NKaa 2 - 3NK a
bK b

a + 4N,a.a )/N, 

forE = - 1, (2.8a) 

2p = K a
a 2 - K\K b

a, 

1ft = (4K a
a.4 + NKaa 2 - 5NK a

bK b
a - 4N,a,a )/N, 

forE = 1; (2.8b) 

(v) for E = - 1 the determination of Ua from (2.7) and of 
3 

U4 from U4 = NaUb ~b. 

In the following sections (III-VI) the cases AI-B will 
be treated this way. 

III. SOLUTIONS WITH Kmn OF TYPE A 1 

Type Al implies that two real eigenvectors are con­
tained in the two-surface invariantly defined by Kmn. Fol­
lowing the above-described approach, we obtain, with tlie 
choice of coordinates 

for K m
n andgmn , 

K m
n = diag(a(x4),b(x4),e(x4»), 

gmn = diag( - E,l,l). 
(3.1 ) 

From three of the six equations NKmn = N(m.n) = 0, for 
m=/=n, we get, e.g., 

(NKl2 ).3 - (NK3l ),2 + (NK23 ),l = N2,I3 = 0, 

the existence of functions Dm (xa
), so that 

Nl = (D3-D2),l' N2= (Dl -D3),2' 

N3 = (D2 - D l ),3' (3.2) 

Specifying E = - 1 and assuming differing eigenvalues 
of Kab by pairs, i.e., the algebraic type in Segre notation 
[111], with U m = 0 from (2.5a) the vanishing of six of the 
seven x4-dependent functions follows and from this Na _xa. 
Such a metric is transformable by xa = ift (x4)xa + q~ (X4) 
(without summation) into a form gmn (x4), Nm = 0, while 
conserving N,m = 0 so that three Killing vectors occur. Be­
cause these solutions with a G31 on S3 are examined several 
times and are known for special equations of state (Ref. 12, 
§12.4.), they are not further investigated. 

AssumingE = - 1 and a = b =/=e,i.e., the algebraic type 
[ ( 11 ) 1 ], with U m = 0 the vanishing of five of the seven func­
tions follows. Because we still have for K II = K 22 the free­
dom of a x I ,x2-rotation, also the sixth function can be chosen 
equal to zero. In analogy to the above case the solution has 
the Bianchi type I and is not further investigated. 

If we finally have equal eigenvalues of Kmn and there­
fore K mn - g mn , i.e., the type [ ( 111 ) ], then we are restricted 
to a subcase of metrics, already treated in Ref. 3, that belong 
to a class of conformally fiat space-times found by Ste­
phani. 13 

B. Rank(Kmn ) = 3, tlmellke slices 

By having the Kab -equations totally solved at the begin­
ning of the above section, we have to expose the ten free X4_ 
dependent functions (seven by integration, three by K m n ) to 
the remaining field equations 

(N(p, + p)UaUb)2 = N(p, + p)ua 2N(p, + P)Ub 2. 

Inserting the linear-in-xa expressions for N(p, + p)Ua 2 and 
comparing coefficients of x a we see that three of the seven 
functions must be zero. One function can be transformed to 1 
by a transformation X4 (X4

) with the consequence N = 1. 
The comparison of xa-coefficients for determining the three 
remaining functions depends on the equality of the K m n­

eigenvalues. 
At first, differing eigenvalues by pairs are assumed, i.e., 

the type [ 11,1 ] . Performing the residual comparisons of xa_ 
coefficients we obtain the following metric: 

E= 1, 

gab = diag( - 1,1,1), 

N= 1, 

(3.3a) 

(3.3b) 

Dm,m = 0 (without summation). NI = - axl + hx2 - sx3, (3.3c) 

(3.3d) 

(3.3e) 

The analysis of the three residualKmm-equations and that of N2 = - hXl + bx2 + gx3, 
all further steps depend on rank(Kmn) and the value N3 = sx l _ gx2 + ex\ 
E= ± 1. 

A. Rank(Kmn ) = 3, spacellke slices 

Before examining the field equations, the three remain­
ing Kmm -equations are to be solved. Performing appropriate 
differentiations and comparing coefficients without specify­
ing E, we obtain from (2.6), (3.1), and (3.2) longer expres­
sions for N m that are quadratic in x a and an expression for N 
that is linear in xa. The coefficients are products of seven 
arbitrary x4-dependent functions and thex4-dependentK mn 
components a,b,e. From the field equations (2.7) we obtain 
linear expressions in xa for N(p, + P )Um Un' 
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h= [(b+e),4 -b 2-e2+a(b+e)]1/2 

X [ - (a + e),4 + a2 + e2 - b(a + c)] 1/2/(b - a), 

g = [ - (e + a),4 + e2 + a2 - b(e + a)] 1/2 

X [- (b+a),4 +b 2+a2-e(b+a)r /2/(e-b), 

s= [- (a+b),4 +a2+b 2_e(a+b)]l/2 

X [(e + b),4 - e2 - b 2 + a(e + b)]l/2/(a - c), 

wherea(x4), b(x4), andc(x4) are possibly only restricted by 
an equation of state p, (p) with 
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p = ab + bc + ca, 

p, = 2(a + b + C),4 + ab + bc + ca - 2(a2 + b 2 + c2), 

and the inequalities 

Ul
2 = «b + C),4 - b 2 - c2 + a(b + c»)/(p, + p) 

(= 1 +u/+u/>O), 

u/ = ( - (c + a),4 + c2 + a2 - b(c + a»)/(p, + p) 

( ~O), 

u/ = ( - (a + b),4 + a2 + b 2 - c(a + b»)/(p, + p) 

( ~O). 

We can choose the functions a,b,c, and their X4 -derivatives in 
a slice X4 = x~ so that these relations are fulfilled at least in 
the neighborhood of a slice X4 = const. Generalizing the reg­
ularity demand of this section, solutions with rank(Kab ) 
= 2, i.e., without loss of generality c = 0, are contained in 
(3.3). After a lengthy calculation the Killing equations yield 
with 

SaTPP,a = 0 = sa(TrpTPr),a-Sap.,a = 0 = S4, 
Sa=Sa(x4), Sa,4=AabS b, 

Aab=(~a ~b 
-s g 

-s) -g , 

-c 

i.e., according to theorems on the existence of solutions for 
systems of first-order ordinary differential equations the 
metric has a G3! on T3• Because, in general, p, = const· p 
does not hold, no further homothetic vector exists. The four­
velocity is nondiverging and nongeodesic and has shear and 
rotation. Setting p, and p equal to zero, the resulting vacuum 
solution is the Kasner metric with the Petrov type I, which 
therefore also occurs in the case of perfect fluid. Because a 
vacuum metric of Dasl4 fulfills the assumptions of this sec­
tion (III B) with the necessary result of the Kasner solution, 
both metrics could be identified by coordinate transforma­
tions. 15 The further contained already known solutions with 
perfect fluid will be given in Sec. IV A in context with other 
very similar new solutions. 

If two of the three Kab-eigenvalues coincide, then the 
cases a = b ¥=c, i.e., [1(1,1)]' and a¥=b = c, i.e., [(11),1], 
occur. Comparing x a -coefficients in the remaining identities, 

(UaUb)2 = Ua 2Ub 2, 

as described at the beginning of this section (III B), we ob­
tain U I = 0 for a = b, in contrast to timelike ua and 
U2 = U3 = 0 and the vanishing of two further functions for 
b = c. With K 22 = K 33 and a therefore possible X 2

,x3_rota-
tion also the third function can be set to zero. We get for the 
metric 

E = 1, gab = diag( - 1,1,1), 

N= 1, NI = - axl, N2 = bx2,· N3 = bx3. (3.4) 

Here a(x4), b(X4) are restricted by 

0= (a + b),4 - a(a - b) (3.5) 

and possibly an equation of state with 
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p = lab + b 2, P, = 2b,4 _ 3b 2. (3.6) 

If the equation of state is not to be specified, a and b can be 
given with arbitrary k(x4) by (k - b)(k - 2b) - k,4 = 0 
and a = k - b. The four-velocity Ua = (1,0,0, - ax l

) is 
nondiverging, nonrotating, nonshearing, and nongeodesic. 
From the Killing equations a lengthy calculation yields, 

with Sap, a = 0 = S4 and 0 = £ ua from 0 = Ua £ TaP, the , s s 
existence of a G4 on T3• Because U a shows acceleration but 
no rotation, the metric belongs to the LRS metrics, class 
11.16,17 Settingp, andp equal to zero, the Kasner metric of the 
"pancake" type with timelike flat slices results. 

The residual case of equal eigenvalues of Kmn and there­
fore Kmn -gmn' i.e., the type [( 11,1)], is a subcase of the 
metrics already treated in Ref. 3 and leads to the de Sitter 
universe. 

c. Rank(Kmn ) = 2 

By assuming diagonal form of K ab , which characterizes 
Sec. III, and further assuming that K 33 = 0, we attribute a 
special role to x3

• Thus we have to consider the cases gmn 
= diag( ± 1,1, + 1) andgmn = diag(1,l,l). Having solved 

with (3.2) three of the six Kmn-equations, the remaining 
equations with Kll = agw K22 = b, K33 = 0 shall be 
treated for the three cases above. The equations read 

N = (D3 - D2),ll/glla (3.7a) 

= (DI - D3),22Ib, (3.7b) 

0= (D2 -DI ),33' (3.7c) 

WithDa,a = 0 [because of (3.2)] we can integrate (3.4c) by 
introducing functions of two variables. Comparing x 3 -coeffi­
cients, we obtain, with functions l(x4),s(x4),w(x4), and 
H(XI,x2,X4) , 

NI =H,I _X
3x 1Llb -x3s, 

N2 = - Lx3x 2/(glla) - H,2 + wx3, 

N3 = sxl - wx2 + LX
I2
/(2b) + LX

22
/(lagll ), 

N = (bH,ll - x3L)/(abgll ), 

and for H the equation 

(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

0= bH,l1 + gllaH,22' (3.9) 

By that three of the field equations (2.7) take the form 

EN(p, + P)UIU2 = H,I2 (b - a) - EH,l112/(agl1), 
(3.1Oa) 

EN(p, + P)U2U3 = (lx2/(agl1 ) - w)b, (3.1Ob) 

(3.1Oc) 

Because of N,33 = K 33 = 0 the 3,3-component of the field 
equation (2.7) reads 

(p,+p)u/= -g33(P,-p)/2. (3.11) 

Starting from (3.11), assertions concerning the equation of 
state will be made later. From the Kab-equations only (3.9) 
is still to be solved. 

In the case of space like slices (E = - 1,gl1 = 1), we are 
restricted to metrics with a G~ on S3' as an investigation of 
(3.10) and the three other field equations (2.7) implies. By 
the implications that H is quadratic in Xl and x 2 it follows 
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that N,a = ° and Na _xa and, in analogy to Sec. III A three 
commuting Killing vectors are obtained. This case has been 
treated several times (Ref. 12, §12.4) and is not further in­
vestigated. 

For both remaining cases oltimelike slices 

gab = diag(gw 1, - g11)' g11 = ± 1, 

at first general assertions are made before they are handled 
separately. 

Computing N2(p, + P )2U2 2U 3 
2 from the 2,3-component 

and on the other hand from the 2,2- and 3,3-component of 
the field equations (3.10) and (2.7) andcomparingx3-coef­
ficients, we obtain L = 0. In the foiIowing we assume 

N,a#O, ( 3,12) 

because N,a = ° implies that H is quadratic in XI,x2, which 
corresponds to the cases c = ° (resp. a = 0) of solution 
(3.3). At firsttheresidualKab - equation (3.9) will be solved 
by introducing new variables y,z and functions 
1(y,x4),g(z,x4), which are conjugate complex for abg11 > 0: 

y = Xl + ~( - b /ag11 )x2
, 

z = x) - ~( - b /ag11 )x2
, 

H = (f(y,x4) + g(Z,x4»)ag11' 

(3.13a) 

(3.13b) 

(3.14) 

Derivatives with respect to y and z are designated with 
primes in the following. The identities 

(N(p, + P)UaUb)2 = N(p, + p)ua 2N(p, + p)Ub 2, 

with N(p, + P)UaUb from (2.7) and (3.14), remain to be 
satisfied. With the field equation (3.11 ) we can draw conclu­
sions for the equation of state: 

g11 = - 1~(p, + p)(p, - p) <0 or u3 = P, - P = 0, 
(3.15a) 

-(p, + 3p)(p, + p) <0 

or p, + 3p = u) = U2 = 0. (3.15b) 

Only for gil = - 1, u3 = P, - p = ° will the solutions be 
given and the method obtained. Hints are given for the un­
physical cases. 

Under the assumptions 

u3 =p,-p=0, gab=diag(-I,I,I), (3.16) 

we can solve the 3,a-components of the field equations (2.7) 
and (3.10) easily by w = s = ° and by separation ofl(y,x4) 
and g(Z,x4). Integrating both resulting ordinary differential 
equations of second order we obtain for I" and gft exponen­
tial expressions in y (resp. z). Inserting these in the last iden­
tity (u) U2) 2 = u /u/,j'" gm = ° follows, without loss of gen­
erality, gIll = ° (because ofthe symmetry y++z, x 2++ - x2

). 

In order not to derive the metric (3.3) we agreed upon in 
(3.12),0 = N,2 = (b /a)/'" (eR), i.e., with (2.8b), we have 

p, = p = ab > 0. 

For P,4 = ° and P.4 #0 the remaining identity 
(U)U2)2 = U)2U/ provides different metrics. 

For P.4 = (ab),4 = ° we obtain with the replacements 
b = n2/a, n = const, andF=I', G =g', the metric 

E= 1, (3.17a) 
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gab = diag( - 1,1,1), 

N=F,) +G. I , 

N) = -a(F+ G), 

N2 = n(F- G), 

N3 =0, 

_ ( n2 _ a2 ) 112 
F- -

n4 +a4 

Xn l cos [ (:: ~ :: y/2(XI + : X2) + n2] 

(3.17b) 

(3.17c) 

(3.17d) 

(3.17e) 

( 3.17f) 

(a
4 + n4 

- 4a
2
n

2
) ( n) + a 4 Xl + -a x 2 

, 
, 2(a2 _ n2) (a4 + n4) 

(3.17g) 

(3.17h) 

p, =P = n2, a2<n2, 

Ua = (n,a,O,2anF) (n2 _ a2) -1/2. 

Here n) (x4), n2(x4), n = const#O can be chosen freely. 
By a j4(x4)-transformation a = X4 can be reached for 

a,4 #0 and n) = 1 for a,4 = 0. 
Properties 01 the metric: The four-velocity is nondiverg­

ing and geodesic and has rotation but no shear. The deriva­
tion of all symmetries is a lengthy calculation despite the 

relations ° = £p, = £ua, which result from ° = £Ta a 
s S s 

= £TaPT aP = Ua £TaP. For a 4 #0 the Killing vectors 
s s ' 

form a G210n T2: 

sa = (n, - a,0,0)/(n2 _ a2)1/2, 

sa = (0,0,1,0). 

For a,4 = ° we have five Killing vectors 

sa = (0,0,1,0), sa = (n, - a,O,O) , 

sa = (q,4 a (n2 - a2 )/sin <p - 2n4q, 

q,4n(n2 - a2)/sin <p + 2a3nq, 0, 

(n2 _ a2) 1/2(n4 + a4) )/2 

X (q,4 cot <p + (2n
2
q - q,44 )/n2,4»' 

with 

<p = «n4 + a4)/(n2 - a2W12(x) + (n/a)x2) + n2 

and q satisfying 

0= q.4n2,4 + «q,44 - 2n
2
q)/n2,4),4' 

An additional homothetic vector does not exist. The solution 
has the Petrov type D and setting p, and P equal to zero, the 
space-time is fiat. Because of the special equation of state 
p, = P = const, no surfaces P = ° exist for connecting the 
vacuum. Because Ua has rotation, the solution cannot be 
generated out of vacuum by a procedure of Tabensky and 
Taub l8 and Wainwright. 19 For a = X4 the solution seems not 
to be of high physical interest because it has high symmetry 
and the projections of Ua, RaP to normalized vectors as va 
= 8f become singular and therefore true singularities occur. 

For a = const, a theorem of Ozsvath20 and Farnsworth 
and Kerr l shows that the GOdel solution22 is the only homo-
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geneous perfect fluid solution with a maximal Gs [see also 
the discussion of the properties of the metrics (4.8) and 
(4.9)]. 

In the case in Sec. III C, P.4 = (ab).4 #0 we can inte­
grate the remaining identity (U IU2)2 = u/u/ with respect 
to X4. With the replacements F = f', G = g' we obtain the 
metric 

E= 1, 

gab = diag( - 1,1,1), 

N=F,I +G,I' 

N= -a(F+G), 

N= (ab)1/2(F- G), 

N=O, 

F= (XI + (~)1I2X2) (a - b),4(a + b) 
a 2(a - b) (a2 + b 2) 

~ (a - b )112 
+ t n

± (a2+b 2)a 

(3.18a) 

(3.18b) 

(3.18c) 

(3.18d) 

(3.18e) 

(3.18f) 

Xexp ± Xl + - X2 , [ ( 
(a2 + b 2)a)1I2( (b )112 )] 

a-b a 
(3.18g) 

(a,4 (a - 3b) - b,4 (b - 3a» (I (b )112 2) G= X - - X , 
2(a2+b 2)(a-b) a 

(3.18h) 

p,=p=ab (3.18i) 

(3.18j) 

(3.18k) 

u/ = (ab),4/(2n(a + b)N) + b /(b - a), 

u/ = (ab),4/(2n(a + b)N) + a/(b - a), 

u3 =0, (3.181) 

U4 = - ulNI + U~2' (3.18m) 

Here n+ (x4),n_ (X4) can be chosen freely and they are con­
jugate complex·if b>a, if not they are real. Also a(x4) and 
b(X4) satisfy 

o =ab(a - b) - n(a + b), 0 = n = const, 

ab>O, (ab),4#0. (3.19) 

Properties of the metric: The four-velocity is not geodesic 
and it diverges and rotates and has shear. The calculation 
provides the only Killing vector a3 and no further homothe­
tic vector. Setting p. and p equal to zero the Minkowski 
space-time results. The vacuum cannot be connected across 
surfaces p = 0 because the components of Ua ,RaP and also 
the projections with normalized vectors as rfZ = Bf become 
singular for 0 = a + b, which results from (3.19) and 
p = ab = O. On the contrary this metric is remarkable as a 
cosmological solution and especially in the mathematical re­
spect. According to an analysis ofWainwright23

•
24 and as far 

as the author knows, it is the first spatial inhomogeneous 
metric with rotating and diverging perfect fluid. But just 
such metrics of high generality are necessary to answering 
cosmological questions. I ,25,26 Both metrics (3.17) and 
(3.18) have the properties that ua lies in the plane spanned 
by the repeated principal null vectors I a,k a of the Weyl ten­
sor, i.e., u[akPp'1 = 0, and the magnetic part of the Weyl 
tensor with respect to ua vanishes. According to Carminati 
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and Wainwright27 the first property applies to almost all 
known type D metrics except the solutions of Wahlquist28 

and Kramer.29 With the metrics (3.17) and (3.18), exam­
ples are given for a theorem of Carminati and Wainwright27 

that Petrov type D solutions with an equation of state 
p = p(p.), the property u[akPp'1 = 0, and the vanishing 
magnetic part of the Weyl tensor with respect to ua have one 
of the following properties: the equation of state satisfies dp/ 
dp. = 0 or 1, or at least three Killing vectors exist. For the 
metrics (3.17) and (3.18),p = p. is valid. 

Having treated above the only physically sensible case 
(3.16) of the distinction (3.15), some hints for solving the 
other cases will be given. To achieve linear equations infand 
g and perform separations, we take advantage of the fact that 
the field equations (3.lOb) and (3.10e) containneitherfnor 
g and that from the field equations (2.7) follows 
N(p. + p)(gllau/ + bull = - (ab),4' Linear equations 
can be obtained by replacing Ua with the field equations 
(2.7) and (3.10) in the identities 

0= N 2(p. + p)2(U I
2(U2U3 )2 - U2

2(U I U3 )2), 

0= N2(p. + p)2(glla(u l u3 )2 + b(U2U3)2) 

+ N(p. + p)u/(ab),4' 

Because positivity conditions are violated, the metrics are 
not further investigated. 

D. Rank(Kmn ) = 1 

With (3.2) we have solved three of the Kmll-equations 
for m = n, For the remaining three we assume K II = a, 
K 22 = K 33 = O. With the result 0 = N,22 = N,23 = N,33 the 
2,2-, 2,3-, and 3,3-components of the field equation (2.7) 
provide 0 = U2 = U3 = P. - P and (2.8) provides in addition 
p. = p = O. For a vacuum Minkowski space-time follows im­
mediately from the expressions for the curvature tensor. 

The above treatment includes all cases of type AI, i.e., 
diagonalizable Kmn. Two types of metrics result. One group 
has rank(Kmll ) = 3, the Petrov type I, a free equation of 
state, and at least as G~ on T3, whereas the other metrics 
have rank(Kmll ) = 2, the Petrov type D, the equation of 
state p. = p, and sometimes only one Killing vector. 

The following section treats the case of tensors Kmll of 
type A2. Because they can be diagonalized by complex trans­
formations we will become acquainted with two groups of 
metrics with the same algebraic properties as in this section. 

IV. SOLUTIONS WITH Kmn OF TYPE A2 

According to the approach described in Sec. II, we will 
again choose appropriate coordinates and components of 
K m

n and gmll to solve the Kab-equations and then the field 
equations (2.7). The emphasis lies on simplifying K m n as far 
as possible, i.e., thatK m n takes second Jordan's normal form 
according to the algebraic type A2 (see Ref. 30, p. 175): 

2b 

o 
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Km·=G 
0 

~). _a2 

0 

(4.1b) 

_(2b/a' 1 

~). gmn - 1 0 

0 0 

( 4.1c) 

, C D· ~n= ~ - 2b/a2 

0 

(4.1d) 

The (in the following not further applied) eigenvalues Ai 
and eigenvectors k n,i n,zn in 

Kmn =Alk(min) +A2(lm in - kmkn) +A#mZn 

and 

gmn = ZmZn - 2k(m in) 

take the form 

km
= - (a'-b'l"'(l~a). 

[m= (a'-b'l-"'( -~/+ z-=G). 
AI = - 2b, A2 = - (a2 - b 2 )1/2, A3 = c. 

Because of the diagonal form of Kmn and gmn.4' from the 
threeKmn-equations (2.6) form:;6n in analogy to (3.2), the 
existence of functions Da with Da.a = 0 (without summa­
tion) follows, as do 

NI = (D3 -D2).1> N2 = (D I -D3).2' 

N3 = (D2 -DI ).3' (4.2) 

The analysis of the remaining three K mm -equations differs 
for K33 = C = 0 and c:;60. 

A. Rank(Kmn ) = 3 

For regular Kmn of the type [u,l) the analysis of the 
remaining three Kmm-equations yields results analogous to 
those in case A 1 in Secs. III A and III B. The expressions for 
Na and N are quadratic (resp.linear) inxn. Again seven free 
X4 -dependent functions occur that, together with 
a(x4),b(x4),c(x4) from K m

n, have to satisfy 

(N(Jl + p)UaUb )2 = N(Jl + p)ua 2N(Jl + p)Ub 2. 

Replacing for N (Jl + P ) U m Un the (in xn) linear expressions 
from the field equations (2.7), it results that three of the 
seven functions vanish. A futher function can be set equal to 
1 by a x4 (x4 )-transformation and the three residual func­
tions are connected with a,b,c by three algebraic equations. 

1. The metric 

E= 1, (4.3a) 
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_(2b/a
2 

gmn - 1 
o 

N= 1 

o 
o 

NI = (1 + (b/a2).4)x1 +gx2 -sx3, 

N2 = - gxl - a2x 2 + wx3, 

N3 = sxl - wx2 + cx3. 

(4.3b) 

(4.3c) 

(4.3d) 

(4.3e) 

(4.3f) 

A possible approach to fulfilling the three remaining qua­
dratic equations for real functions a,b,c,g,s,w of X4 and to 
guaranteeing the positivity conditions Ua 2 ~ 0, Jl ~P ~ 0, 
consists of the following steps. 

(i) Choosing a function Kaa (x4), so that for a given 
equation of state f.l = Jl (p) the relation f.l ~P ~ 0 is satisfied 
by 

(4.4a) 

(ii) Choosing b(x4
), so that a real function v can be 

defined and u3 can be computed by means of the relations 

0:::;; v2 = P + 3b 2 - 2bK a a' 

0:::;;(Jl+p)u//2= -b.4 +bK a
a -po 

(iii) Defining a function q by 

4V2q4 = (v.4 - vKaa)2 

(4.4b) 

(4.4c) 

+ (Jl + p)u//2 + p)(Jl + p)u/12 + Jl). 
(4.4d) 

(iv) Determining a from 

a2 = v2 + b 2. (4.4e) 

(v) For being able to compute U2 from 

0< (Jl + p)u//a2 = 2q2 - V.4/V + K a
a, (4.4f) 

substituting if necessary X4_ - X4, b- - b, Kaa_ - Kaa, 
and satisfying thereby also the above demands. 

(vi) Computing g from 

g = q2 _ v.4/(2v) + a.4/a. 

(vii) Computing U I from 

(Jl + p)u/ = - b(Jl- p)/a2 - Kaa + 2g 

[ = (Jl + P)(U I U2)2/U/>0). 

(viii) Computing c,s,w from 

( 4.4g) 

(4.4h) 

(4.4i) 

(4.4j) 

(4.4k) 

with a unique solution because the coefficient determinant of 
S,w does not vanish with a2 > b 2. 

2. Properties of the metric 

The four-velocity is not geodesic, is nondiverging, and 
has shear and rotation. From the Killing equations it follows 
that, after a lengthy calculation with taJl.a = 0 = t4, 
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A "m =( -1- (b/a~)'4 - 2gb/a2 

-s 

-g-2b 

w 

i.e., according to theorems on the existence of first-order systems of ordinary differential equations the metric has a G3! on T3• 

Because J-l and p do not, in general, satisfy J-l = const . p, no further homothetic vector exists. As described below the special­
ization to vacuum by settingJ-l and p equal to zero has the Petrov type I, which is the most general one and is therefore also val­
id for a perfect tluid. 

3. Subdivision of the metric Into an interior and an exterior solution 
An important question for investigating space-times with perfect tluid concerns the possibility for connecting a vacuum 

solution. In the case of the metric (4.3) this can be answered easily. Because the spatial coordinatex4 parametrizes the tlat 
slices and, on the other hand, J-l(x4

) andp(x4
) can be chosen freely, it is possible to describe perfect tluid and a vacuum and 

their connection by one single metric. To be of physical interest, the solution has to guarantee that J-l '?p '? 0 in the whole 
interior. Moreover the equation of state should not be restricted to extreme cases (p = 0, p = J-l). It is shown in Appendix B 
that these demands can be fulfilled for the metric ( 4.3), For this purpose it is necessary to choose functions K a a (X4) and b(x4) 
in such a way that, for a given equation of state, the inequalities (4.4a)-( 4.4c) can be satisfied in the interval 0 <X4 ~x~ and 
that at x~ the functions have the values K a a = - l!x~, b = bolx~, and bo = const, for a connecting vacuum. 

In order to interpret X4 as a radial coordinate in such a metric, the integral curves of an appropriate combination of both 
spatial Killing vectors have to satisfy the periodicity condition, i.e., the metric must be constituted in such a way that points 
(t,r,f/J,z) and (t,r,f/J + 1T,z) can be identified. Moreover space-time should be regular on the axis of symmetry. In this case the 
quotient of the circumference and the radius of small circles gives 21T. 

Summarizing, it can be stated that the metric (4.3) describes the interior and exterior space of a stationary nondiverging 
perfect tluid with rotation, shear, a free choice of the equation of state, and J-l '?p '? 0 throughout, if appropriate functions 
K a

a (X4) and b(X4) are determined (e.g., see Appendix B) and X4 can be interpreted as a radial coordinate or the metric is 
symmetric to X4 = O. 

4. The vacuum case 

The vacuum solution corresponding to (4.3) reads, for K a a = 0, 

_ (1!(2b) 
gmll - 1 

o 
E= 1, 

N!=x!, 

N2 = _4b 2x 2, 

N3'= -2bx3, 

1 

o 
o 

N = 1, b = const. 

For positive b this is identical to the solution 

k 2 d~ = dx2 + e- 2x dy2 + eX [cos({3x) (dr - dt 2
) - sin({3x)dz dt ] 

of Petrov7 and for negative b identical with it after a transformation z = iz, t = it. 
For Kaa #0 the vacuum solution reads 

E= 1, 

1 

o 
o 

N! = x!(1 + 1!(2( 1 - 2m»)) - x 2/2x4, N2 = X!/2x4 + 2m( 1 - 2m)x2/(x4)2, 

N3=(2m-I)x3/x 4, N=I, m=const, m#!, 0~3m2-2m. 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

(4.5e) 

(4.5f) 

(4.6a) 

(4.6b) 

The limiting case m = j corresponds toKm ll of type A3 (see Sec. V). The metric has the Petrov type I and a G~ on T3• For 
m = j the Killing vectors are 
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5 = a 3, 5 = 2(X4) 1/6 al + 3 (X4) 7/6 a2, 5 = (2 In(x4) - 3)(X4) 1/6 al + 3(x4) 7/6In(x4)a2' 

and for m¥=j they read, with the abbreviationsM = (3m2 - 2m)1/2, lfJ = Mln(x4), 

5 = (X4) I - 2m a 3, 5 = (x4)m - I12(m cos lfJ + M sin lfJ )a l + (x4)m + 112 cos lfJ a2, 

5= (x4)m-1I2(m sinlfJ + Mcos lfJ)al + (X4)m+ 112 sin lfJ a2· 

After a first transformation in coordinates xa so that the Killing vectors read ail' a second transformation Xl =;Xl + ;X2, 

x2 = - Xl + x2 provides a metric in diagonal form: 

d~ = (x4)2m (3m
2 

- 2m) 1/2 [ _ (dxl)2(x4)2i(3m2 - 2m)l/2(i(1 _ m) + (3m2 _ 2m) 1/2) 
2m -1 

+ (dX2)2(X4) - 2i(3m2 - 2m)1/2(i(1 _ m) _ (3m2 _ 2m) 1/2)] + (X4)2 -4m(dx3 )2 + (dX4)2. 

For a2 < b 2, i.e., 3m2 - 2m < 0, it is the Kasner metric with 
K m n of type A 1. This is in accordance with the possibility of 
transformingtensorsK m

n of the form (4.1) witha2 <b 2 into 
diagonal form, i.e., these tensors with a2 < b 2 are of type Al 
for which the Kasner metric necessarily resulted whereas A2 
is characterized by a2 > b 2. 

The method of complexifying a metric in order to obtain 
a real one by a following complex coordinate transformation 
is called a "complex trick" and leads, e.g., to the derivation 
of the Kerr-Newman metric starting with the Reissner­
Nordstrom metric. Because mostly stationary metrics were 
obtained from static ones with this trick, the question occurs 
if a similar relation also exists for the metrics (3.3) and 
(4.3). Though the four-velocity shows rotation in both 
cases, only Killing vectors of the vacuum metric (4.6), 
which can be connected with the perfect fluid metric (4.3), 
rotate also, whereas the Killing vectors of the Kasner metric, 
which can be connected with the metric (3.3), are nonrotat­
ing. Because both three-metrics of the surfaces p = 0 
between perfect fluid and vacuum are flat, the different alge­
braic types of K m n are responsible for the vacuum metrics to 
be static (resp. stationary). 

5. ClassIfication of known contaIned solutIons 

In Secs. III B and IV A solutions were considered with 
timelike flat slices, rank (Kab ) = 3, and Kab lie = 0, and the 
metrics (3.3), (3.4), (4.3), (4.5), and (4.6) were derived, 
which admit at least an Abelian G3 on T3• On the other hand, 
all solutions with a G~ have flat slices, namely the subspaces 
spanned by the Killing vectors, e.g., in the form am with 
consequently gab,m = O. In addition these slices obey Kab 11 m 

= 0 because of 0 = Na,b = N,b' The investigations of this 
paper therefore contain all metrics with a G3! and perfect 
fluid or vacuum. The metrics given above represent the gen­
eral case of metrics with a G3! and perfect fluid or vacuum, 
whereby the tensor of exterior curvature of the Killing orbit 
has rank 3. The vacuum solution (4.6) is contained in the 
class of Lewis3 

I as the case of stationary cylindrical symme­
try. The solutions (3.3) and (4.3) with perfect fluid are new 
in this generality with all three free functions of one variable 
or two free functions and free equation of state. Contained in 
them are all stationary plane symmetric as well as stationary 
cylindrically symmetric metrics. A prominent representa­
tive of this class is a metric of Krasinskj32 describing a per­
fect fluid with stationary cylindrical symmetry, rigid rota-
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I 
tion, and a vorticity vector parallel to the axis of symmetry. 
Due to the last two conditions still one free function of one 
variable remains, the equation of state results from it, and a 
linear ordinary differential equation of second order has to 
be solved. This metric can be classed with (3.3) or ( 4.3) only 
locally because the type of Kmn changes depending on X4. 

As far as the author knows, the metric (4.3) is the first 
one describing the . connection of a rotating cylindrically 
symmetric perfect fluid across surfaces p = 0 with a vacuum 
and satisfying all positivity conditions in the interior. 

B. Rank(Kmn } = 2 

For solving this case we have to start with Kmra and gmn 
in the form (4.1) with c = 0 and the solutions (4.2) for Na 

from three of the Kab-equations (2.6). In total analogy to 
Sec. III C the three remaining Kaa -equations can be solved 
with intermediate results corresponding to (3.7)-(3.9) and 
(3.12)-(3.14). The resulting expressions for Na and N con­
tain functions f and g of the new variables 

y = Xl + ax2 (resp. t = Xl - ax2). 

Derivatives with respect to these variables are assigned by 
primes and overdots. Again the 3,3-component of the field 
equation (2.7), 

(J-t + p)u/ = - (J-t - p)/2, 

restricts the equation of state and provides two possibilities: 

u 3 = J-t - p = 0, 

u 3 ¥=0, (J-t +p)(J-t -p) <0. 

(4.7a) 

(4.7b) 

The treatment of these cases is the same as in Sec. III C. For 
the only physically meaningful case (4.7a) the difference 
concerns conditions for a and b. From N,a ¥=O < U 1

2
, we get 

a,4 = 0 and a> b, and with the A2 condition, a2 > b 2, further 
a>b> -a. 

The special case a2 = 2b 2 must be listed extra, becausef 
and g are restricted by f"" = g = 0 under this assumption. 
After an appropriate x 4(x4)-transformation the metric 
reads, in coordinates t,z: 

ds = (2 ± {l)dy2 ± 2{l dydt - (2 =+={l)dt 2)/(4a) 

+ (dX3)2 + y(y + m)dtdx4 + (y + m/2)2 

- (a/4)y2(y + m)2(2 ± {l»)(dX4)2, 
(4.8) 

J-t = p = a2, 0 = uY = u3 = u4, u t = 2(a/(2 =+= {l»1/2. 
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The function m (X4) and the constant a, a > 0, can be chosen 

freely. A lengthy calculation applying £ua = 0 from Ua £TafJ 
S S 

= 0 shows the existence of five Killing vectors but of no 
further homothetic vector. They are given by 

sa = (st,SY,S3,S4) = (1,0,0,0), sa = (0,0,1,0), 

Sa = (2q + (1 ± {i)sY, 

q,4(Y + m 2/(4y + 2m»)/2 + q,4m/4 + m,4q/2 

+- q,44/( {ia),0, ± 2q,4/({ia(2y + m» - q). 

qobeys 

0= 2q,444/a - aq,4m2 - amm,4q 

+ 2(2 +-{i)q,4 +-,[2qm.44 +- 2.,fiq,4 m ,4· 

The metric has the Petrov type D and Ua is nondiverging and 
geodesic and has rotation but no shear. 

With the assumption a2 I' 2b 2 and the substitutions 
F = I', G = g' the metric reads 

(

2b/a2 

gab = 1 
o 

E= 1, 

1 0) 
00, 

o I 

N = F.I + G,I - b,4/(2a2), 

NI = F + G + b,4X I /(2a2), 

N2 = a( - F + G + b,4X2/(2a2»), 

N3 =0, 

F=( 2
a

-
b 

2)1I2Ln± 
o -2b ± 

Xexp ± [(a2a~:2)112 (Xl +ax2) J 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 

(4.ge) 

(4.9f) 

(2b 3 _ 4ab 2 + 3ba2 _ 203 ) (Xl + ax2) 
-b4~----~~----~--~--~~ 

, 4a2(b - a) (a2 _ 2b 2) , 

I 2 

G --b b X -ax a = const, 
,4 4a2 (b _ a) , 

a>b> -a, Oi=a2-2b 2, 

ft =p =a2, 

2b-a 
U -----~ 
1- a(2(a _ b»)1/2' 

a 
U - -----:-:-2 - (2(a _ b»)1/2 ' 

u3 =0, 

loF + b 4 (Xl - ax2 )/a 
U - ' 

4 - (2(a _ b»)l/2 

( 4.9g) 

(4.9h) 

(4.9i) 

(4.9j) 

(4.9k) 

(4.91) 

(4.9m) 

Here n+ (x4),n_ (X4) can be chosen freely and are conjugate 
complex for 0 2 < 2b 2 otherwise real. With ax4 (X4) -transfor­
mation it is possible to obtain b = X4 for b,4 1'0 (resp. for 
constant b): 
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The Killing equations are solved with £ua = 0 from 
s 

ua £ TafJ = O. For h 41'0 the Killing vectors read sa 
s ' 

= (0,0,1,0) and Sa = (a, - 1,0,0)/(b - a)I/2. They form 
a G,J on T2• For b,4 = 0 and In+n_1 = 1 the metric has five 
Killing vectors. With the abbreviations SoD for the sum ..md 
the ddference of 

and 

n_ exp - [ J, 
they read 

Sa = (0,0,1,0), Sa = (a, - 1,0,0), 

sa = (a(a - b)q,4/D + a2(a - 2b)q, 

q satisfies 

- (2b + a)(a - b)q,4/(aD) + 2a2q, 

0, (a - b) 1/2(a2 _ 2b 2) 1/2 

x [q,4
S 

_ ~ (a2q + q,44)]) , 
4D n+,4 8 

0=q,4 n +,4/n+ [(n+/n+,4)(Sqa2+q,44)1.4' 

A further homothetic vector does not exist. The metric has 
the Petrov type D and ua is nondiverging and geodesic and 
has rotation but no shear. 

Properties olthe metrics (4.8) and (4.9): For both me­
trics, the magnetic part of the Weyl tensor vanishes with 
respect to uQ and the principal null directions of the Weyl 
tensor / a,k a satisfy u[ak PIYI = O. With the solutions (4.8) 
and (4.9) [as previously with (3.17) and (3.18)], examples 
are given for a theorem of Carminati and Wainwright21 stat­
ing that Petrov type D metrics, with an equation of state 
p = p(ft), the property u[ak P/ y1 = 0, and the vanishing 
magnetic part of the Weyl tensor with respect to ua

, have one 
of the following properties: the equation of state satisfies dp/ 
dft = 0 or 1 or at least three Killing vectors exist. For the 
metrics (4.8) and (4.9), ft = p is valid. 

The metric (4.9) with b = X4 has the disadvantage that 
projections of Ua and RaP to normalized vectors as va 

= (a,O,O,O)/JlUiTbecomesingularfor x4-a and therefore 
true singularities occur. 

The solutions (4.9) with b = const, (3.17) with 
a = const, and (4.8) are homogeneous space-times with per­
fect fluid and a maximal Gs. A theorem of Ozsvath20 and 
Farnsworth and Kerr l states that the GOdel solution22 

(here written with an overbar to prevent confusion) is the 
only one with perfect fluid and a maximal Gs• In one direc­
tion the transformation can be given easily. The GOdel solu­
tion takes the form of (4.9) with 
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b = 0, a = (.run-I, n+ = a/.J2" n_ = 0, 

Xl = ~(x - t)/~, x 2 = P (t + x)/~, 
x3 = YI(.r2a), X4 = Z. 

Furthermore it can be shown easily that the Godel solution 
has a one-parameter manifold of families of flat slices: for 
every function x (x,z) the slices x = const are flat [the mani­
fold is one-parametric because any new function x = x(x) 
gives the same family of slices] . 

With the derivation ofthe metrics (4.S) and (4.9), the 
first of the two cases (4.7) of this section (IV B) is treated. 
The unphysical second case could be treated in analogy to 
the corresponding case for Kab oftype Al at the end of Sec. 
III C. 

Because the type A2 does not allow rank (Kab ) = 1, this 
section is finished. 

V. SOLUTIONS WITH Kmn OF TYPE A3 

As described in Sec. II appropriate coordinates are cho­
sen so that K m n takes the second Jordan's normal form, 
which corresponds to the algebraic type 

Km·~G 
_a2 

~. 2a 

0 

Km·~G 
0 

~). _a2 

0 

C· 1 

D· gmn = ~ 0 

0 

, C ~). ~n= ~ -2/a 

0 

a = a(x4), C = c(x4). 

The eigenValues and eigenvectors in 

Kmn =Alk(mln) +A2kmkn +A~mzn' 

gmn = ZrnZn - 2k(m In) 

take the form 

AI = - 2a, A2 = - 1, A3 = C. 

(5.1a) 

(5.1b) 

(5.1c) 

(5.1d) 

A comparison with Kmn and gmn from (4.1) shows that 
(5.1) is the limit of (4.1) for a = b [or a = - b if a is re­
placed by - a in (5.1)]. The derivations of Secs. IV A and 
IV B can be applied almost completely. 

In the case rank(Kmn) = 3, the solutions (4.3) with 
a2 = b 2 and (4.6) with m = ~ result. 

In Sec. IV the symmetry a-. - a existed for 
rank(Kmn) = 2. Therefore the condition r'g" = 0 for 
/(x l + ax2) and g(x l - ax2) could be decided by g" = 0 
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without loss of generality. To take advantage of the calcula­
tions of Sec. IV with the decision g" = 0, both limits 
a = ± b must be investigated. In the fully elaborated case 
(4.7a) only a = - b is compatible with/Nt = O. Different 
solutions result for a = ± b in the unphysical case (4. 7b). 

Section V is now finished. 

VI. SOLUTIONS WITH Kmn OF TYPE B 

The approach will be outlined only because it will prove 
that neither vacuum metrics nor metrics with perfect fluid 
exist. We have 

Km·~G 
0 

2 ) Km. ~G 
0 

0 _ 3c2 , 0 

3c c4 

gm. ~G 
c 

~). 0 

0 c4 

, C c3 

~). c~c(~). ~n=c-4 ~ _ 3c2 

0 

The eigenvalues and eigenvectors in 

Kmn =AI(zmZn - 2k(m ln» +A2/(m zn» 

gmn = ZmZn - 2/(m kn)' 

take the form 

Al =C, A2 = 2. 

~). 
3di 

The solution of the K mn - equations proves to take much 
more effort than in the other cases because K mn does not 
have diagonal form. By introducing potentials, by integra­
tion and thereby introducing functions of less variables and 
enabling comparisons of coefficients, the overdetermined 
system of the six K mn -equations for the four functions N a , N 
can be solved successively. Thereby expressions result for Na 
and N that are quadratic (resp. linear) in XU as in Secs. III B 
and IV A. The remaining equations (N(j.L + p)Ua Ub )2 
= N 2(J.l + p)2Ua 2Ub 2 with expressions for N(J.l + p)uaub 

from (2.7) provide the vanishing of the seven x4-dependent 
free functions. After a x4(x4)-transformation to get N = 1 
the residual equations read 

2c3ul U2 = - c4 + 3c2u/ - u/, 

2c2u3UI = - 4c4 
- 3C4UI

2 + Sc2u/ - 3u/, 

(6.1a) 

(6.1b) 

2CU2U3 = - c4 - c4u/ + 3c2u/. (6.1c) 

Because 2c3u2UI - 2cU2U3 = c4u/ - u/, the two cases 
C2U I - U 3 = 0 and #0 result with (6.1b) in c = 0 or c2 <0. 
Therefore no solutions with perfect fluid and K mn of type B 
exist. Also, vacuum solutions are excluded by p = 6c2 = 0 
from (2.Sb). 
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VII. SUMMARY 

The subject of the investigations has been metrics with 
perfect fluid and a vacuum with a family of flat slices 
X4 = const, whose tensor of exterior curvature Kab is covar-

iantly constant within these hypersurfaces. To simplify cal­
culations, coordinates were chosen so that K a b simplifies as 
far as possible by taking the second Jordan's normal form. In 
Table I an overview of the resulting cases is given. Besides 
the listed metrics with perfect fluid the following vacuum 

TABLE I. Overview of the metrics with perfect fluid and flat slices with Kab lie = O. 

Character of 
TypeofKmn the slices 

spacelike 

rank 3 

timelike 

Al 
spacelike 

rank 2 

timelike 

rank 1 

rank 3 

A2 

(timelike) rank 2 

A3 (timelike) 

B (timelike) 

aH. Stephani, Commun. Math. Phys. 4,137 (1967). 

Segre 
notation 

[ III] 

[(11)1] 

[(III)] 

[ 11,1] 

[1(1,1) ] 

[(11),1] 

[(11,1)] 

[11] 

[ 1,1] 

(11) 

[ l,zz] 

[u) 

[1,2) 

(3) 

Properties of the metric 

G3Ion S3' known for special 
equations of state, 
not further investigated 

special case of Stephani: 
is rederived in Stephani and Wolf b 

(3.3), new, G~ on T3, Petrov 
type I, ua nongeodesic, 
nondiverging, 
with shear and rotation 

(3.4 ), contained in LRS II 

de Sitter metric, is 
rederived in Stephani and Wolf b 

G31 on S3' known for special 
equations of state, not 
further investigated 

(3.17), G2 on T2 , Petrov 
type D, ua nondiverging, 
geodesic, without shear, 
with rotation, p. = p 

(3.18), new, G, onS" Petrov 
type D, Ua not geodesic, expanding, 
with shear and rotation, p. = p 

(4.3), new, G3Ion T3 , Petrov 
type I, ua nondiverging, 
nongeodesic, with shear 
and rotation 

(4.8) Gooel solution 

(4.9), G2 on T2, Petrov 
type D, Ua nondiverging, 
geodesic, without shear, 
with rotation, p. = p 

limits of the metrics of 
A2for4(K\)2 = (K 2

2 )2 

bH. Stephani and T. Wolf, "Perfect fluid and vacuum solutions of Einstein's field equations with flat 3-dimensional slices," in Axisymmetric Systems, 
Galaxies and Relativity: Essays Presented to W. B. Bonnor on His 65th Birthday (Cambridge U.P., Cambridge, 1985). 
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solutions are contained: for K m" with the Segre types [111], 
[ 11,1 ], [( 11 ) , 1] the Kasner metric, and for K m" with the 
Segre type [1 ,zz] with K a a = 0 a metric of Petrov6 and with 
K a a ;CO the vacuum metrics with stationary cylindrical sym­
metry. Because a solution of Das14 satisfies the assumptions 
of Sec. III it could be identified to be the Kasner metric.33 

The resulting metrics with perfect fluid can be divided 
essentially into two groups with the following characteristic 
properties: (i) rank(Km,,) = 3, Petrov type I, a four-veloc­
ity without expansion, a free equation of state, and three 
commuting Killing vectors; or (ii) rank(Km,,) = 2, Petrov 
type D, the equation of state j.t = p, and sometimes only one 
Killing vector. As shown at the end of Sec. IV A, all metrics 
with three commuting Killing vectors possess flat slices with 
K m"lIa = 0 and therefore are contained in these two groups. 
Among metrics with stationary plane symmetry is that also 
contained as a special case: a metric of Krasmski32 for de­
scribing perfect fluid with stationary cylindrical symmetry, 
rigid rotation, and a vorticity vector parallel to the axis of 
symmetry. Whereas in this solution one function of one vari­
able can be chosen freely and a second-order ordinary differ­
ential equation has to be solved, in (4.3) three functions of 
one variable or two functions and the equation of state can be 
chosen freely, so that differential rotation is described also. 

The metric (4.3) is, as far as the author knows, the first 
one that describes the connection of a rotating perfect fluid 
with cylindrical symmetry across surfaces p = 0 with vacu­
um and that, moreover, guarantees all positivity conditions 
in the interior. 

Whether Killing vectors of the exterior space of the me­
trics (3.3) and (4.3) possess rotation or not depends on the 
algebraic type of K m" at the surface of the perfect fluid. 
Despite the rotating perfect fluid the exterior is static in the 
case AI. 

Metrics of the different algebraic types Al and A2 of 
K m" can be transformed by complex coordinate transforma­
tions into each other, so the properties of metrics with a 
different rank (Km" ) differ much more than the properties of 
metrics with different algebraic types of K m" . 

For all obtained metrics with the Petrov type D the four­
velocity Ua lies in the plane spanned by the two principal null 
vectors ofthe Weyl tensor /a,k P, i.e., u[akPpl = 0 and the 
magnetic part of the Weyl tensor with respect to ua vanishes. 
As remarked in Carminati and Wainwright27 the first of 
these two properties applies to almost all known type D me­
trics with perfect fluid except those of Wahlquist28 and 
Kramer.29 According to a theorem of Carminati and 
Wainwright, all metrics with perfect fluid, an equation of 
state p = p (j.t), the Petrov type D, a vanishing magnetic part 
of the Weyl tensor with respectto ua, and u[ak P/ y1 = Opos­
sess one of the following properties: the equation of state 
obeys dpldj.t = I or 0, or at least three Killing vectors exist. 
TheLRS II-metric (3.4)-(3.6) with Petrov type D has four 
Killing vectors and the other type D metrics satisfy j.t = p. 
From these line elements the Gooel solution is an example of 
a metric with a one-parameter manifold of families of flat 
slices. From the type D metrics, (3.18) is, from the math­
ematical point of view and as a cosmological solution, the 
most interesting one. As far as the author knows and accord-
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ing to an analysis ofWainwright,23,24 so far no spatial inho­
mogeneous metric with rotating and expanding perfect fluid 
is known. Besides these properties, the metric (3.18) has 
only one Killing vector. Inhomogeneous metrics with as­
general-as-possible kinematic properties are necessary for 
the theoretical discussion of many aspects of the early uni­
verse so the derivation of such metrics became a more-pur­
sued task during the last years. 

For performing the computations especially for deter­
mining the Killing vectors, computer programs for decou­
piing and integrating systems of partial differential equa­
tions34 were used. 

Concluding, it shall be emphasized that the approach to 
assume special timelike hypersurfaces of constant exterior 
curvature Kab and to align coordinates not to Killing vectors 
but to the structure of K a b' which proved to be fruitful, is not 
only restricted to metrics with flat hypersurfaces. 
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APPENDIX A: CHRISTOFFEL SYMBOLS FOR GENERAL 
9.b,N.,ANDN 

With the tensor of exterior curvature KafJ of hypersur­
faces X4 = const in an arbitrary space-time with the metric 

ds2 = gab (dxQ + Na dx4) (dxb + N b dx4) + EN 2 (dX4
)2, 

the Christoffel symbols read 

rt, = E(Nblic + Ncllb - gbc,4 )/(2N 2
) = EKbc IN, 

3 

rt:c = r:c - ENQKaJN, 

3 

r b4 = r ad(gdb,4 + Nd,b - Nb,d )/2 

- NaN,bIN - EN aKb4 IN, 

r: 4 = N,bIN + EKb4 IN, 
3 

r~ =~b(Nb,4 - N"N",b - ENN,b + N"Ndg"d,b/2) 

-Na(N,4 + NbN,b)IN - ENaK44IN, 

r~ = N,41N + NbN,blN + EK~N, 
with Ka4 = KabN b, K44 = KabNaN b. 

APPENDIX B: CONSTRUCTION OF A METRIC WITH 
.... ~p ~ 0 IN THE INTERIOR AND WITH CONNECTION TO 
VACUUM 

In this Appendix we will show that in the metric (4.3) 
are contained specializations describing space-time with 
perfect fluid, a free equation of state, and generally j.t ~p ~ 0 
connected with a vacuum across surfaces p = O. 

For a vacuum it follows from (4.4a)-( 4.4k) with an 
appropriate X4 -translation, 

Kaa = _lIx4, b=bo!x4, bo=const, 0<3b~ -2bo. 
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To show that functions K a
a (X4) and b(X4) exist that obey 

the inequalities (4.4a)-( 4.4c), including the boundary con­
ditions 

Kaa(x~) = -l/x~, b(x~) =bolx~, 0<3b~ -2bo, 

we introduce functions K(X4),B(X4) with 

K a
a =K _1/x4, 

b =B(K _l/x4), 

K(x~) =0, 

B'(x~) = O. 

The inequalities (4.4a)-( 4.4c) then read 

O~ (/-l- p)/2 =K' - K2 + 2K /X4 + 2p, 

o <p/(K - l/x4)2 + 3B 2 - 2B, 

0~B'(l/x4 -K) -B(K' _K2 + 2K /X4) -po 

(Bla) 

(BIb) 

(Blc) 

(BId) 

(B2) 

(B3) 

(B4) 

The method will be to determineK' step by step for one value 
of X4 depending on K at this value of X4 and also B ' and then 
to repeat this for lower X4. Because the conditions for K and 
B, 

K <0, K'>O for X4 <x~ 

and K = 0 for X4 = x~ 
(resp.B<O, B'>O for X4<X~ 

and B < 0 for X4 = x~ ) 

are consistent, it is only necessary to assume K' as high as 
necessary to guarantee for given K at X4 that (B2) is obeyed 
by 

K' _ K 2 + 2K {> 0, for /-l - 5p > 0, 
X4 <0, for /-l- 5p <0, 

(B5a) 

(B5b) 

according to the desired equation of state. With K and K' 
(B2) provides /-l - 5p and together with a chosen equation 
of state /-l and p satisfy /-l ~p ~ 0 because the sign of /-l - 5p in 
(B5) was determined in correspondence with /-l ~p ~ 0 and 
/-l = /-l (P). The inequality (B3) is satisfied by B < O. With 
K < 0, the condition (B4) can be obeyed by a sufficiently 
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high value of B'. From (BI) with K,B, K a
a (X4) and b(x4) 

result. The remaining steps (4.4d)-( 4.4k) then yield the 
metric. 

IC. B. Collins and D. A. Szafron, J. Math. Phys. 20, 2347 (1979). 
2H. Stephani, Gen. Relativ. Gravit. 14,703 (1982). 
3H. Stephani and T. Wolf, "Perfect ftuid and vacuum solutions of Ein­
stein's field equations with fiat 3-dimensional slices," in Axisymmetric Sys­
tems, Galaxies and Relativity: Essays Presented to W. B. Bonnor on His 
65th Birthday (Cambridge U.P., Cambridge, 1985). 

"T. Wolf, J. Math. Phys. 27, 2354 (1986). 
5W. Kundt, Proc. R. Soc. London Ser. A 270,328 (1962). 
6W. Kundt and M. Triimper, Akad. Wiss. Lit. Mainz, Abh. Math. Nat. KI. 
12 (1962). 

7 A. Z. Petrov, in Recent Developments in General Relativity (Pergamon­
FWN, New York, 1962), p. 379. 

8Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, 
San Francisco, 1973). 

9H. Stephani, General Relativity (Cambridge U.P., Cambridge, 1985). 
10H. Goenner and J. Stachel, J. Math. Phys. 11,3358 (1970). 
l1G. S. Hall, J. Phys. A 9,541 (1976). 
12D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of 

Einstein's Field Equations (Cambridge U.P., Cambridge, 1980). 
13H. Stephani, Commun. Math. Phys. 4,137 (1967). 
14A. Das, J. Math. Phys. 14,1099 (1973). 
1ST. Wolf, to be published in Class. Quantum Gravit. 
16G. F. R. Ellis and A. R. King, J. Math. Phys. 8,1171 (1967). 
17J. M. Stewart and G. F. R. Ellis, J. Math. Phys. 9, 1072 (1968). 
18R. R. Tabensky and A. H. Taub, Commun. Math. Phys. 29, 61 (1973). 
19J. Wainwright, J. Phys. A 12, 2015 (1979). 
201. Ozsvath, J. Math. Phys. 6, (1965). 
21D. L. Farnsworth and R. P. Kerr, J. Math. Phys. 7,1625 (1966). 
22K. GOdel, Rev. Mod. Phys. 21, 447 (1949). 
23J. Wainwright, J. Phys. A 14, 1131 (1982). 
24J. Wainwright, "Bibliography: Perfect Fluid Solutions 1980-1984," pre­

print. 
25M. D. Pollock and N. Caderni, Mon. Not. R. Astron. Soc. 190, 509 

(1980). 
26J. D. Barrow, Philos. Trans. R. Soc. London Ser. A 296, 273 (1980). 
27J. Carminati and J. Wainwright, Gen. Relativ. Gravit. 17, 853 (1985). 
28H. D. Wahlquist, Phys. Rev. 172, 1291 (1968). 
29D. Kramer, Class. Quantum Gravit. I, L3 (1984). 
3°F. R. Gantmacher, Matrizenrechung I (VEB Deutscher Verlag der Wis-

senschaften, Berlin, 1958). 
31T. Lewis, Proc. R. Soc. London Ser. A 136, 176 (1932). 
32 A. Krasinski, Rep. Math. Phys. 14, 225 (1978). 
33E. Kasner, Am. J. Math. 43, 217 (1921). 
3"'f. Wolf, J. Comput. Phys. 60, 437 (1985). 

Thomas Wolf 2353 



                                                                                                                                    

About vacuum solutions of Einstein's field equations with flat three­
dimensional hypersurfaces 

Thomas Wolf 
Friedrich-Schiller-Universitiit Jena, Sektion Physik, Max- Wien-Platz ], DDR 6900 Jena, German 
Democratic Republic 

(Received 19 March 1986; accepted for publication 30 April 1986) 

The class of vacuum space-times with a family of flat three-slices and a traceless tensor of 
exterior curvature Kab is examined. Metrics without symmetry and solutions describing 
gravitational radiation are obtained. It turns out that there is a correlation between rank (Kab ) 

and the Petrov type. Although the resulting solutions are already known, the richness of the 
class of space-times with flat slices becomes obvious. An example is given of a metric with one­
parameter manifold of families of flat slices. 

I. INTRODUCTION 

In a series of papers, Collins and Szafron I proposed to 
impose restrictions on submanifolds of space-time to find 
new exact solutions of Einstein's field equations. The four­
velocity ua of perfect fluid, e.g., should be orthogonal to 
hypersurfaces with inner symmetries. 

In the papers of Stephane and Stephani and Wolf3 in­
stead of restricting the hypersurfaces to be spacelike or to 
demand that ua has no rotation, it was assumed that the 
inner curvature of the slices X4 = const vanishes and the ten­
sor of exterior curvature vanishes, too, or is proportional to 
the three-metric. It is promising to investigate further classes 
with flat slices because new solutions were obtained as well 
as the property that metrics with spherical symmetry and 
satisfying a certain positivity condition possess two families 
of flat slices. For static perfect fluid this inequality guaran­
tees that the mass function m (r), defined by 

mer) =.!..- (1- e- 2A (r» = - f-L(x)x2 dx, 1 Sa
r 
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is positive (with ell = g rr in the diagonal form of the met­
ric). An example of a metric with three Killing vectors act­
ing on two-surfaces, which not only has two families but a 
one-parameter manifold of families of flat slices, is given by 

ds2 = (dXI)2 + (dX2)2 + e2A (dx3 )2 _ e2V(dx4)2, 

..i(x3 ,x4),V(X3 ,x4). 

Every parametrization by 

i4 = i 4(X3,x4), i 4.ai 4.a#0, (1.1) 

provides a family of flat slices. Since V,3 = 0 can be attained 
and by this we can obtain a geodesic normal vector as well as 
V,3 #0 and with it a nongeodesic normal vector, the slicings 
are invariantly distinct and cannot be transformed into each 
other by symmetry transformations. Because a new parame­
trization i4 = i4(X4) gives the same family, it follows from 
( 1.1) that in every point of space-time there exists a one­
parameter manifold of normal vectors to flat slices. 

II. THE METRIC AND THE FORMALISM 

A family of hypersurfaces is given that is parametrized 
by X4. Because these hypersurfaces may be spacelike or time-

like, X4 is a timelike or spacelike coordinate. With the normal 
vector na = (O,O,O,N), nana = E = ± 1, the three-metric 
gab (Xa ) within the hypersurfaces, and the three-vectors N" , 
which fix the mutual position of coordinate systems of neigh­
boring slices, the full space-time metric reads 

ds2 = gab (dxa + Na dx4) (dxb + N b dx4) + feN dX4)2 . 

(2.1 ) 

3 
In the following, Latin indices are moved by gab and~b, i.e., 

Here ~p and na take the form 

(

}b + fNaN b /N2 
~p= 

_fNa/N 2 

n a = (-Na/N,lIN) . 

The tensor of exterior curvature Kap is defined to be the 
negative projection of the gradient of na onto the hypersur­
face 

Ka{J = na;y (8Yp - EnYnp) . 

The symmetry Kap = KfJa results from the vanishing of the 
rotation of na' Because n a is normalized, Kap satisfies 
KapnP = 0, i.e., K 4a = NbKba , K44 = NaNbKab . With the 
covariant three-derivative lIa we eventually get 

Kab = (Na11b + N blla - gab.4 )/2N. (2.2) 

Applying projection techniques described in Ref. 4, § 21 and 
Ref. 5, the space-time curvature tensor can be expressed by 

Kab,na , their covariant derivatives and £Kab . We prefer the 
n 

following form for the Ricci tensor: 

fNRab = gr(bK ra),4 - Kab IIrN r - KabK rrN 

+ KrbN[a,r] + KraN[b,r] - N,blla , 

fNR 4
m =K b

bllm -K b
mllb , 

3 
feR - 2Rab~b) = Kaa 2 - KabK b

a . 

(2.3a) 

(2.3b) 

(2.3c) 

The main advantage of the restriction K a a = 0 consists of 
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the linearization of (2.3a) with respect to Kab . 
The approach will be to determine the decomposition of 

Kab in eigenvectors by analyzing (2.3c) andKaa = O. Equa­
tion (2.3b) will provide the vanishing of rotation of a null 
three-vector invariantly defined by Kab . In the next step a 
flat three-metric gab will be obtained, which is aligned to this 
null vector and simplified as much as possible by the remain­
ing coordinate transformations. 

We do not replace the componentsKab in the field equa­
tions (2.3a) and (2.3b) by the expression (2.2) but treat 
them as independent metric functions and expose them to 
further restrictions. By doing this Eq. (2.2) no longer have 
the status of definition equations but of a tensor equation to 
be solved in addition to the field equations. Therefore they 
are called Kab -equations in the following. In the three-metric 
adapted to the problem these equations together with the 
remaining field equations (2.3a) and (2.3b) will be solved. 

III. A SUITABLE NULL TRIAD 

With 0 = KabK b
a from (2.3c) the flat slices must be 

timelike because otherwise the case 0 = Kab described by 
Stephani I would follow. Expanded in a null triad ka,la,qa 
with 

- kala = qaqa = 1, kaka = lala = qaka = qala = 0, 

Kab reads 

Kab = Akakb + Blalb + Cqaqb 

+ 2Dk(aqb) + 2Ek(a lb) + 2FI(aqb) . 

The algebraic conditions 0 = K a
a = KabK b

a give 

0=C-2E (3.1a) 

and 

O=AB+ 3E 2 
- 2DF. (3.1b) 

With real parameters a,b,c the yet-possible transformations 
of the null triad are 

km=akm', 1m = (1Ia)/m', qm=q;", 

1m =Im', qm =qm' +blm', 

km =km' +bqm' + (b 2/2)1m', 

km =km', qm =qm' +ckm', 

1m = 1m' + cqm' + (c2/2)km' 

and yield, e.g., for a = c=/=b, the new components 

(3.2a) 

(3.2b) 

(3.2c) 

A' =A,B' = b 4A /4 + b 3D + b 2 (C +E) + 2bF+B, 

C' =b 2A + 2bD+ c, 
D' =bA +D, E' =b 2A/2+bD+E, 

F' =b 3A /2 + 3b 2D/2 + b(C +E) +F. 

(3.3) 

These transformations are to be applied to transform some of 
the components to zero. It turns out that for A =/=O=/=B the 
conditions (3.1) guarantee the existence of a real parameter 
b toachieveB' = O. ForA·B = Oas well asA = B = o trans­
formations can easily be found to obtain further 
C = E = DF = O. The result is that Kab can be written as 

Kab = Akakb + 2FI(aqb) , (3.4) 

renaming ka-Ia if necessary. 
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From the field equations 0 = K b mllb , it follows that 
with F= 0, Kbmllbqm = 0 and therefore k[allb ke] = 0, and 
with A = 0, K b mllbl m = 0 and therefore I[allb Ie] = O. Be­
cause rotation vanishes, the vectors ka (resp.la) are propor­
tional to a gradient and by a transformation km' = akm' 
1m' = (11 a) 1m are equal to the gradient of a function u. In 
the case A·F =/= 0, it cannot be derived for any vector of (3.4) 
that its rotation vanishes. Because consequently no appro­
priate three-metric was available, this case could not be 
solved in general, so this paper is constrained to A·F = 0, i.e., 
rank (Kmn) < 3. In the summary a special solution for 
A·F =/=0 is given. 

Having the algebraic structure of Kab established suit­
able flat three-metrics are to be found as follows. 

IV. APPROPRIATE THREE-METRICS 

We want to introduce a coordinate system that is at 
most adapted to the preferred null vector. To this aim we 
choose u = x 3 as a coordinate and demand ka = (0,0,1). It 
can be shown easily that coordinates (x = Xl, V = x 2 ) are 
attainable that preserve K a = (0,1,0) and that give the 
three-metric the form 

dil = g 11 dx2 + 2g 13 dx du + 2 dv du + g33 du2 
• ( 4.1 ) 

The remaining coordinate transformations are u = u (u), 
x = x(x,u), and v = v/u,u + j(x,u), including the-for the 
time uninteresting-x4-dependences. Analyzing the flatness 
property for (4.1) (see Appendix A), which has not been 
taken into consideration up to now, three cases occur corre­
sponding to different structures of kallb : 

(1) Kallb-kakb-g11 = 1, g13 =g33 =0; 

(2) k[mka]lIb =0 or kall[bkm]=/=O,kalla =0 

-gIl = 1, g13 = - 2v/x, 

g33 = p(u)x2 + q(u)x; 

(3) k alia =/=0 

-gl1 = v2
, g13 = l(x,u)v2 + m(x,u) 

(4.2a) 

(4.2b) 

g33 = 12v2 
- 21,x v + 21m + 2n(x,u) . (4.2c) 

Instead of illustrating all six cases of the metrics (4.2) with 
A = 0 (resp. F = 0) only the case (4.2a) withA = 0 shall be 
explained in Appendix B. The results for all six cases are 
given in the summary. 

V.SUMMARY 

The subjects of this paper are the vacuum solutions of 
Einstein's field equations with a family of flat slices and a 
corresponding tensor of exterior curvature Kab that is trace­
less and has a rank lower than 3. Utilizing the field equation 
(2.3c), it could be shown that with vectors ka,la' and qa of 
an appropriate null triad, Kab takes the form 

Kab = Akakb + 2Fl(aqb) . 

Because the field equations 0 = R 4 a yield for F = 0 (resp. 
A = 0) the vanishing of the rotation of ka (resp. la), all 
further field equations could be solved by introducing appro­
priate coordinates and adapted three-metrics. These metrics 
correspond to the cases 
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(1) kallb -kakb; 

(2) O#k[mka}lIb or O#kall[bkm}' k a
lla =0; 

(3) k a
lla #0 with F= 0 and, as well in analogy to the three 

cases with A = 0 and the same subdivision for fa instead of 
ka • All resulting solutions are subcases of already known 
metrics: 

I. Kab =Akakb , 

1.1. kallb -kakb . 

Under these assumptions two metrics exist, both be­
longing to the pp-waves, because 5 a = c5~ is a covariant con­
stant null Killing vector: 

ds2 = dx2 + 2 dv du + [2G,4 dx + 2(w - xG,4u )du 

+ (G./ + G,4uu 2/F2)dx4]dx4 . 

Here, G(U,x4) and F(u) are arbitrary functions, whereas 
W(U,x4) has to be calculated from 

w.u = -G,4uu[G- (1/F)(G,uJF),uu]' 

Now, 

ds2 = dx2 + 2 dv du + [2G,44 dx + 2(w - XG,44U )du 

+ (G,44 2 + (x + G,4 ) 2)dx4]dx4 . 

The G(U,x4) and w(u,x4) have to be calculated from 

0= G,uU44 + G,uu' 0 = F + G,4G,uu - w,u , 

with the arbitrary function F( u). 
Another solution is 

1.2. k[mka}lIb #0 or kall[b km} #0, k alia = 0 . 

For the following solution k a = c5~ is a nontwisting 
nondiverging principal null direction of the Weyl tensor of 
multiplicity 4. This solution therefore belongs to the Petrov 
type N metrics of Kundt's class6

•
7

: 

ds2 = dx2 + 2 dv du - 4v/dx du 

+ (V2/X2 + px2 + qx)du2 

+ [ - 4vj/x dx + 2jdv + 2(v2j/X2 - vim 

+ (j,uu + jp )x2 + q jx)du 

+ (1 - ii,uv + ii,uu X2 )dx4]dx4 , 

where V(u,x4
) and F( V) are arbitrary functions, and 

j(U,x4),p(U,x4), and q(U,x4) have to be calculated from 

j = V:4/V:u , 

( - 2/u + a4 - j au)q = V:u 2F, 

( - 2/u + au - j au )p = 2/uuu + V:u 2p, P = 1 or O. 

For 

1.3. k alia #0, 

no vacuum solutions exist. 
Other solutions are 

II. Kab = 2F1(aqb) , 

11.1. lallb -lalb (the case in Appendix B.). 
In addition to not explicitly derived subcases of the pp­

waves the following solution is contained for which k a = c5~ 
is a nontwisting, nondiverging principal null direction of the 
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Weyl tensor of multiplicity 3. It therefore belongs to the 
Petrov type III metrics of Kundt's class: 

ds2 = dx2 + 2 dv du + [2g dx + 2j dv 

+ 2( - v/u + x7,uu + x(2sJ - g,u) + f)du 

+ (gZ + 2j( - v/u + x7,uu 

+ x(2sJ -g,u) + f) +s2)dx4]dx4. (S.1) 

Whereas for /uu = 0 the metric describes pp-waves, for 
/uu # 0 we have to calculate 

J'(U,x4) from 0 = (J'J' -1/3) - (J' -1/3) (S.2) ,uu ,u ,uu .4 , 

a special solution V from 0 = V:4 - jV:4' S(U,x4) from 
s = /uu 4/3G( V) with an arbitrary function G( V), g(U,x4) 
from 

o = g,uu4 - jg,uuu + 2/ug,uu + /uug,u , 
J(U,x4) from 

0= (jJ),u - J.4 + /uug/s , 

f( U,x4) from 

o = /.u4 - jf.uu + 2/ui.u + /uu! + 2sJ(sJ - g,u ) 

- g(2sJ - g,u ),u - ss,uu . 

Except the equation for calculation ofj all equations are lin­
ear. Two special solutions of (S.2) are given by 

(a) /4 =0, U= J(cll+c2)-1/2dj, 

(b)j=j(u), Clu= JU(J'C'+C3j-C,)2]-1/4dj, (S.3) 

~3/4 . J ] = ~ A , 

3x4cl [/' + c3 j-C,] 1/4 

with Ci = const and the choice CI = 1 corresponds to a coor­
dinate transformation u = U'C, v = vic. It shall be remarked 
that this metric has, in general, no Killing vector, as a 
straightforward calculation of case (S. 3) shows. 

For solutions 

11.2., l[mla}lIb =0 or lall[blm}#O, lalla =0, 

11.3., lalla #0 , 

no vacuum solutions exist. 
Under the assumptions K a

a = 0, rank (Kab ) < 3, the 
given distinction of cases is complete. The case Kab regular, 
i.e., AF # 0 could not be solved in general. A special solution 
for nontwisting ka with kallb -kakb is 

ds2 =dx2 + 2dvdu + [2vdx + 2xdv 

+ 2cu du + (1 + v2 + 2cxu)dx4]dx4 . 

This solution has the Petrov type I and four Killing vectors. 
It is equivalent to a metric of Petrov8 

K2 ds2 = dx2 + e- 2xdy. + ~(cos(v3x) (dr - dt 2) 

- 2 sin(v3x)dzdt) , 

but is obviously formulated in more suitable coordinates. 
As could have been expected a dependence of the Petrov 

type on the rank (Kab ) was established because for K a
a = 0 

andKab = Aka kb with rank 1 only type N solutions exist, for 
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Kab = 2Fl(aqb) with rank 2, type III solutions occur, and for 
Kab of rank 3, the Petrov solution with Petrov type I is con­
tained. 

A conjecture of Berger et al.9 and WainwrigheO not for­
mulated in every detail says that there is a correlation 
between the nature of existing gravitational waves and the 
Cotton-York tensor, which describes the conformally invar­
iant part of the curvature of the hypersJ.lrfaces. This hypoth­
esis arose from the fact that the Szekeres solution contains 
conformally ftat slices with vanishing Cotton-York tensor 
and that, on the other hand, these metrics do not POS8e&s 
gravitational radiation, as was shown by Bonnor.11 Because 
we derived type N metrics (e.g., pp-waves) with ftat timelike 
slices, in the conjecture at least the nature of the hypersur­
faces has to be fixed more precisely. 

As a further interesting result it can be established that 
for vacuum solutions the existence of ftat slices is not cou­
pled to the existence of symmetries as the metric (5.1) 
shows. Moreover ftat slices excluded neither algebraically 
special nor algebraically general metrics. Even if no new me­
trics were derived the independence of the approach based 
on ftat slices is underlined by the richness of the obtained 
solutions. 

In contrast to the pure algebraic restrictions on Kab , in 
addition to the demand of ftatness in this article, in the pre­
ceding paper,12 we make restrictions of a differential kind on 
K ab . A result of this will be that the obtained metrics possi­
bly have the Petrov type I and on the other hand, do possess 
at least one Killing vector. 
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APPENDIX A: ANALYSIS OF II-bt:d = 0 FOR 9.b 

Starting with the form of the three-metric 

3 2 2 2 
ds = g 11 dx + 2g 13 dx du + 2 dv du + g33 du , 

3 
We obtain gll from 0 = R \21 and a transformation 

v = v + II (x,u) [resp. x = x(x,u)] yields gll = v2 or 
3 

gll = 1. In the case gll = 1 we obtain g13 from 0 = R \13' 

3 
while in the other case we obtain it from 0 = R 3 123 . With 

this, g33 can be determined from the residual equations. The 
result is that a metric of a three-space with one time dimen­
sion allowing a null vector k:' with k[allb ) to have the form 
k a = 8~ k 2, ka = 8!k3, i.e., k3 = k3 (u), is transformable in 
one of the following three forms. The characterization of the 
three cases by kallb is invariant against transformations of the 
null vectorsk'" = ak", tn' = l/a/", with a = a(u) because 
of k[bllc) = 0 and kb = 83bk3: 
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L 2 2 ds =gll dx + 2g13 dx du + 2 dvdu +g33 du , 

Xl = X, x 2 = v, x 3 = U • 

The three cases are 

(2) k[mka)lIb~O or kaIHbkm)~O, k a
lla =0 

+-+gll = 1, gl3 = - 2V/X,g33 =p(u)x, 

2v/x 
3v2/X2 - px2 - qx 

1 

I 2 3 - 1 r 23 =r12 = -r13 =--, 

(3) k a
lla ~~gll = v2, g13 = l(x,u)v2 + m(x,u), 

g33 = 12v2 - 2l,x v + 1m + 2n(x,u) , 

( 

l/v2 - I - m/v2 
3 b 2 2 2 g" = - I - m/v m /v + 2l,x v - 2n 

o 1 

x 

where I,m,n still have to satisfy the conditions 

0= - m,u + 2/,xm + Im,x + n,x , 

0= - n,u + 2l,x n + In,x -l,xxx , 

r l 1 rl 121m 12 =-, 13 = v+-, 
v v 

r l I 2il l,xx 13 1
2
m 

33 = ,u - ,x +-+ V+--, 
v v 

r~1 = m,x + 2nv - m2/v -1,xv2 
, 

r~3 = -l,x - 1m/v, 

r;3 = _/2l,xv2 + v( -II,xx 

+ 2/ 2n + 2l,x 2 -l,xu) 

- 21,xn + Im,u + n,u - ml,xx/v _/ 2m 2/v, 

n 1 = - v, ri3 = - lv, q3 = l,x - 12v . 

The given r:c are three-Christoffel symbols. 

APPENDIX B: THE CASE K.,. = 2FI(.qb)' 1.llb -1.lb 
The subject of this appendix are the field equations 

o =g,(bK',,),4 -K"bllaNa +K'bN [",,) 

+K'"N[b.,)-EN,bll" , (Bl) 
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o = Kbnllb , 

together with 

Kab = (Nallb + Nblla - gaM )/2N 

and the algebraic conditions 

K2a =Kll =0, 

(B2) 

(B3) 

(B4) 

because of Kab =2FI(aqb) and la =tPaI3, la=c5~ 12, 
laqa =0=Q2' 

In all six cases the approach consists of the calculation 
of Na,N from the Kab -equation (B3) starting with the v­
integration for (a,b) = (2,2), (1.2) and the introduction of 
functions of the variables x, U,.x4. It follows the comparison of 
v-coefficients in (a,b) = (2,3), (1,1) and x-integration of 
the resulting equations. By that the functions of variables 
x,u,x4 can be expressed by functions of the variables U,.x4. 
Also the field equations (BI) are investigated in the se­
quence (n,b) = (2,b), (1,1),. ... By v-integration and com­
parison of v-coefficients and x-integration and comparison 
of x-coefficients only equations for functions of u and X4 
remain to be solved. For the case (4.2a), A = 0, to be illus­
trated here it follows, from (B3), (B4) with (a,b) # (1,3), 
(3,3), and the functions k,g,j, w, that 

Nl = vk(u,x4) + g(u,x4), 

N2 = xk + j(u,x4) , 

(BSa) 

(BSb) 

N3 = vxk,u - vin + w(x,u,x4) . (BSc) 

Before tackling the remaining equations [ (B3 ) for 
(a,b) = (1,3), (3,3)], N can be obtained from (BI) and 
(n,b) # (1,3), (3,3) with functions d,h,s, 

N = Vd(U,.x4) - x 2d,u + xh(u,x4) + s(u,x4) , (B6) 

with the resulting condition 

0= K13k - d,u . (B7) 

The field equations 0 = K b mllb are equivalent to 

0= K 13,v , 

0= K33,v + K\3,x , 

and taking with Na,N from above the form 

0= - NK13,v = k,u + K\3d , 

and with the conclusion 0 = K13,xd, 

o = NK33,v + NK13, 

(B8) 

(B9) 

= xk,uu -iuu - K33d + (xh + s)K\3,x . (BlO) 

Eliminating K 33 with this in the field equation (B I ) , 
(n,b) = (1,3) [ written down under consideration of 
K13,xk = 0 from (B7)]: 

0= [K13 (xk - j) l.u + K33k - K\3,xg 

+ 2xd.uu - h,u + K\3,4 , (Bll) 

and assuming k #Q......K 13,x = 0 from (B7), so the compari­
son of x-coefficients yields 

o = kk,uu + dd,uu . 

On the other hand, (B7) and (B9) provide 

o = kk,u + dd,u . 

After differentiation of this equation with respect to u and 
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considering the above condition we get 0 = k,u 2 + d,u 2 and 
with (B7) a contradiction to k # O. Therefore it follows that 
k = 0 and, with (B9), d = O. 

With 

Nl =g(u,x4), 

N2 = j(u,x4) , 

N3 = - viu + W(X,U,.x4) , 

N=xh(u,.x4) +S(U,.x4), 

K13 = (g,u + w,x )/(2xh + 2s) , 

K33 = ( - viuu + w,u )/(xh + s) , 

(BI2a) 

(B12b) 

(BI2c) 

(BI2d) 

(BI2e) 

(BI2f) 

the equations 0 = R13 = R 33, i.e., (BI) with (n,b) = (1,3), 
(3,3) and (B8), i.e., 

0= -iuu (hx + s) + K 13,x (B13) 

remain to be solved. Doing this the cases h #0 and h = 0 
have to be distinguished. 

The case h¥O: By integrating (B 13) with respect to x a 
logarithmic x-dependence of K 13 is obtained that because of 
o = R 13' results in iuu = O. By an appropriate ~oor<!.inate 
transformation u = u(u,x4) linear in u we get N2 = j = O. 
Also, without solving the complicated system of differential 
equations resulting from comparing coefficients of powers of 
x in R33 = 0, it is obvious that Sa = c5~ is a covariantly con­
stant Killing vector and existing solutions belong to the 
plane-fronted gravitational waves with parallel rays (pp­
waves). 

The case h=O: To calculate w(x,u,x4) we replace K13 
from (BI2e) in (BI3) and perform two x-integrations. With 
new functions J(u,x4),j(U,x4) the starting point for solving 
0= R13 = R33 is 

Nl = g(u,x4) , 

N2 = j(U,.x4) , 

N3 = - viu + X],uu 

(BI4a) 

(BI4b) 

+ 2x(S(U,.x4).J(U,x4) - g,ul + j(u,x4), (BI4c) 

N=s, (BI4d) 

K13=iuuxI2+J, (BI4e) 

K33 = ( - viuu + X],uuu + x(2sJ - g,u ) ,u + fu )/s . 

From 0 = R 13' it follows that 

0= Uijs),u - U,ujS),4 , 

0= (jJ),u -J,4 +iuugls, 

whereas 0 = R33 leads to 

(BI4f) 

(BISa) 

(BISb) 

2' . 3' 2 (. ) (. ) o = _ 'J,ul,uuu + ~ _ j J.uuu + J,uuu . 
s s s ,u S ,4 

In the following we assume iuu #0 because, on the other 
hand,pp-waves would occur as in the case h #0, Replacing 
S,4 with (BISa) and integrating with respect to u we obtain, 
with the new function r(x4

), 

o = 3iu - ii,uuu Ifuu + fuu4 Ifuu + r . 
A transformation 

u = a(x4)u, v = 'Vla.-j = N2 = N2a = ja, 
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with - a 4/ a = r yields :y = 0 and therefore 
0- ( .. -1/3) _ (. -1/3) - 1 l.uu .u l,uu ,4 • 

(B16) 

With a solutionj of (B16) we get s from (B15a) with a 
special solution Vof 

o = V:4 - jV:u and an arbitrary G( V): 

S = luu 4/3G( V) . 

From the last equation 0 = R 33, two equations follow in u 
and X4. Replacing 1,4 in one of them by (B 15b) and j,uu4 by 
(B 16 ) , 1 vanishes totally out of it. These equations linear in g 
(resp.j) may be regarded as determiningg fromj and! from 
j,J,s,g. 
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An example of affine colUnealion in the Robertson-Walker metric 
M. L. Bedran8
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An affine collineation for the Robertson-Walker metric is found. It implies a condition on the 
metric that is compatible with Einstein's equations for a perfect fluid satisfying the Hawking-Ellis 
energy conditions. It is shown how the geodesics of the metric are obtained from the constant of 
motion associated to the affine collineation. . 

I. INTRODUCTION 

Affine collineations are symmetries of affine spaces de­
fined by the vanishing Lie derivative of the affine connec­
tions l 

(1.1 ) 

where; denotes covariant derivative and R a pyu is the Rie­
mann tensor. In Riemannian spaces Eq. (1.1) is equivalent 
to 

Sea;P);y = 0, (1.2) 

where the ( ) indicate symmetrization in the indices a, p. 
Special cases of affine collineations in Riemannian space­
times with metric gaP are homothetic motions 

Sea;p) = constXgap · 

and Killing vectors 

Sea;p) = O. 

(1.3 ) 

(1.4) 

Affine collineations are transformations that keep the geo­
desics of space-time unchanged, although they may change 
the space-time metric. Hojman et al.2 showed that affine col­
lineations are non-Noetherian symmetries and constructed 
new constants of motion associated to them. 

An example of affine collineation was given by Katzin 
and Levine3 in a two-dimensional affine space, which was 
not a metric space. In this paper we give an example of this 
type of symmetry in the Robertson-Walker metric and show 
that the existence of the affine collineation imposes one con­
dition on the metric that is compatible with Einstein's equa­
tions for a perfect fluid distribution of matter. The equation 
of state thus obtained satisfies all the requirements for a rea­
sonable physical system. 

Finally we show how the geodesics of the Robertson­
Walker metric can be obtained from the constant of motion 
associated to the affine collineation. 

II. METRIC, AFFINE COLLINEATION, AND FIELD 
EQUATIONS 

The Robertson-Walker metric in spherical coordinates 
reads 

• ) On leave of absence from Instituto de Fisica, Universidade Federal do Rio 
de Janeiro, Rio de Janeiro, Brazil. 

ds2 = dt 2 _ R 2 (t) (dr + r dO 2 + r sin2 0 dfTl 2) 
1-kr T' , 

(2.1) 

where k = 0, ± 1. We shall look for a vector Sa that satisfies 
Eq. (1.2). In this paper we consider a vector in the direction 
of time given by 

Sa =I(t)d/., 
which yields 

(2.2) 

Sea; P) = d/. ~ i-I RR (t5~ t51_....:.1- + t5; t5~r 
1-kr 

+ t5!t5~r sin2 0 ) , (2.3) 

where the dot indicates derivation with respect to t. Calcu­
lating Sea; P);y and equating to zero we obtain the following 
conditions over the functions R (t) and I( t) : 

I R - Rj = 0 and j = O. (2.4) 

Equations (2.4) immediately give 

l(t) = cR (t) and R (t) = at + b, (2.5) 

where a, b, andcareconstants. From (2.5) and (2.3) we see 
that Sa is a homothetic motion of the Robertson-Walker 
metric when R (t) is a linear function of time. 

The Einstein equations for the metric (2.1) with the 
energy-momentum tensor of a perfect fluid of density p and 
pressure p are 

2(RIR) + (R 2 +k)IR 2 = -KP, 

3(R 2 +k)IR 2 =KP. 

Equations (2.5) and (2.6) together give 

Kp = - 3KP = (3(a 2 + k)/(at + b)2). 

(2.6) 

(2.7) 

The fluid given by (2.7) will satisfy the weak, strong, and 
dominant energy conditions of Hawking-Ellis4 if 

(2.8) 

It is interesting to note that Sa ofEq. (2.2) with condi­
tions (2.4) is a homothetic motion of any metric of the form 

ds2 = dt 2 _ R 2(t)hij (Xl ,x2,x3) dxi dx j
, i,j = 1,2,3 . 

(2.9) 
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III. CONSTANTS OF MOTION AND GEODESICS 

A constant of motion for a free-falling particle can be 
constructed with affine collineations2 

(3.1 ) 

where pa = M(dxalds) (M is the mass ofthe particle; s is 
the proper time). In the case of our collineation (with a = 1, 
b=O,andc= 1) 

Sa=t$l,., 
this constant is 

K = M (t ~: - s) . 
Equation (3.3) can be integrated to give 

t 2 
_S2 - 2(K IM)s + 2K = 0, 

(3.2) 

(3.3) 

(3.4) 

where K is a constant of integration. Now using the first 
integral of motion 

dxa dxfJ 
gaP Tsd;" = 1 

and choosing 

dO = drp = 0 
ds ds 

(which is possible due to conservation of angular momen­
tum) we have 

(dt)2 _ t 2 (dr)2 = 1. 
ds 1 _ kr ds (3.5) 

Making a change of variables 

r = sin a, for k = + 1, 

r = sinh a, for k = - 1, (3.6) 

2361 J. Math. Phys., Vol. 27, No.9, September 1986 

r=a, fork=O, 

and using (3.4) we obtain 

a=ln[~ (~t2+ !: +2K 

which describes geodesics of the Robertson-Walker space­
time. Due to homogeneity and isotropy of this metric, these 
geodesics can be used to obtain arbitrary timelike geodesics. 
The null geodesics are obtained starting from the conserva- . 
tion law 

dx" 
K= dr 'Sa' 

which yields 

a = In At. 

(3.8) 

(3.9) 

Equations (3.7) and (3.9) are special cases of geodesics giv­
en by Tolman.s 
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Linearized field equations and solutions are derived for a perturbed sheet beam of light. The work 
is based on an exact solution of a collimated beam in the geometrical limit. The linearized field 
changes of the initially curved background metric can be put, with the help of the harmonic 
conditions, into a normal coordinate form. These six normal coordinates satisfy six linearized, 
inhomogeneous, field equations in three variables. Stationary solutions include divergent beams. 
Gravitational waves propagating opposite to the beam's flux are found to be confined to a region 
about the propagation axis of the beam, much as is experienced in wave guides. Radiative cases 
can be produced by large angle scattering of light and are discussed in terms of their effect on an 
ideal optical antenna. The effect is one that grows linearly with time. The growth time is 
prohibitively long for the most energetic systems that can be realistically considered in the 
foreseeable future. 

I. INTRODUCTION 

The gravitational field of a beam of light has been of 
interest at least as far back as 1922 when Lorentz I suggested 
that two light beams traveling in the same direction may 
deflect each other due to their gravitational interaction. An 
approximate weak field solution for finite pencils oflight in a 
vacuum was obtained in 1931 by Tolman, Ehrenfest, and 
Podolsky.2.3 Recently Scully4 extended this work to propa­
gation through a refractive medium. An exact solution for 
vacuum propagation of a beam or pulse oflight was obtained 
by Bonner in the context of the source of plane gravitational 
waves, and independently by Nackoney6,7 as an extension of 
the work of Tolman et al. A further development ofNackon­
ey's work by Banerjee8 includes an exact solution of the Ein­
stein-Maxwell equations. 

The present paper is based on Refs. 6 and 7, which are 
here referred to as I and II, respectively. In those papers a 
collimated beam or pulse of unidirectional light of circular 
cross section and of variable intensity and duration was con­
sidered in the geometrical limit far from sources and absorb­
ers of the light. An exact solution resulted. In Sec. II of the 
present paper the exact solution is presented for a semi-infi­
nite, rectangular cross section; i.e., a sheet oflight propagat­
ing along one coordinate axis, of finite extent along the sec­
ond axis, and of infinite extent without variation along the 
third axis. This choice of cross section permits the use of 
harmonic conditions. The results of interest are not expected 
to differ significantly from the circular cross-sectional case. 

Section III derives the first-order equations for two 
classes of perturbations of the initial beam. Essentially, the 
first is for small angle deflections of the bulk of the beam and 
the second is for large angle deflections of small portions of 
the beam. By reduction of the ten linearized field equations 
for small changes in the metric, six normal coordinates re­
sult, satisfying inhomogeneous wave equations in three vari­
ables. Section IV considers small angle deflections of the 
beam and yields nonradiative solutions including the case of 
a divergent beam. Since the divergent case and the following 
wave cases are each described by first-order changes in the 

initial beam, their simultaneous presence will not interact in 
the first order but will provide cross terms only in the second 
order. Therefore, restricting ourselves to a first-order calcu­
lation allows us to analyze each case separately and superim­
pose the solutions in dealing with radiative divergent beam 
cases. The wave solutions ofSecs. V and VI have many simi­
larities with the vast body of gravitational wave research. An 
excellent review of this literature is found in Thorne's arti­
cle.9 However, distinctive features do arise, as in Sec. V 
where homogeneous wave solutions are considered. For ex­
ample, we find that the beam's gravitational trough acts as a 
wave guide for gravitational waves propagating opposite to 
the beam's flux. In addition, the normal coordinates yield 
two nonzero modes that mimic, but do deviate from, the 
strict transverse traceless polarization of waves in Minkow­
ski space. Section VI looks at the inhomogeneous equations 
and yields gravitational radiation from large angle scattering 
of light. This type of source is one that does not allow a slow 
motion approximation. Specifically, an analysis is presented 
of a gravitational radiator created by light oscillating paral­
lel to the beam between two mirrors. This gravitational radi­
ation is guided by the beam back to a second optical oscilla­
tor, which acts as an antenna. The resulting interaction is 
found to change the optical energy in the antenna. This 
change grows linearly with time. The magnitude of this in­
teraction is quite small and is discussed in some detail. 

II. INITIAL COLLIMATED BEAM 

Consider a sheet beam of light in a rectangular coordi­
nate system (t,x,y,z) = (XO,X I,x2,x3). The beam will prop­
agate along the z axis toward increasing z values. It will be 
considered in the geometrical limit so that the optical wave­
length goes to zero and, hence, the initial beam may remain 
collimated. The cross section of the beam in the x-y plane is 
chosen to be an infinite rectangular sheet; infinite and un­
changing along the y axis and of finite but variable extent 
± X along the x axis. The energy density p of the light beam 
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will be variable and include pulses of light rather than just 
continuous beams. 

The functional dependence of p is simplest if we position 
the absorber and the source of the beam at ± infinity along 
the z axis. We introduce a retarded time t so that elements of 
the light beam in a given x-y cross section are each labeled by 
a single value of t, regardless of their subsequent z position. 
Hence p will be a function of t, but not of z, for the collimated 
beam. Variations with x across a given cross section will be 
allowed. Variations with y will not be considered. Hence 
p =p(t,x) and X = X(t). We define a scaled energy density 
as in Eq. (1,44) [see paper I, Eq. (44)] and Eq. (11,6) by 

m(t,x) = 411'Gc-p. (2.1) 

Since we are working in the geometrical limit, the ener­
gy-momentum tensor is that of a null fluid with the scaled 
local energy density given by Eq. (2.1). Combining the field 
analyses leading to Eq. (1,51) and Eq. (11,25), and setting 
c = 1, we find 

ds2 =f(t,x)dt 2 + 2 dt dz - dx2 - dy2, (2.2) 

where 

(2.3 ) 

For each value of t, f satisfies the equation for m at that time. 
Hence, f follows m in its time dependence. The field travels 
with and depends only on the cross section of the beam 
which shares the same t value independent of the z position. 

If we choose m independent of x, then the solution to 
Eq. (2.3) is 

f= cosh(2mI/2x) , Ixl<X, 

=A +B lxi, Ixl>X, 

where 

A = cosh(2mI/2X) - 2ml/2X sinh(2m I/2X) 

and 

B = 2ml/2 sinh(2m I/2X) , 

(2.4 ) 

where m and X may be functions of t. Regardless of the x 
dependence of m the exterior solution is linear in x with 
singularities at ± infinity. 

III. PERTURBATION EQUATIONS 

A. First-order setup 

Two classes of physical changes from the initial (zero­
order) beam will be allowed. First, a small change aui in the 
beam's four-velocity from ui to iji = ui + aui with the only 
nonzero component of the initial four-velocity being u3 = 1. 
We continue to suppress all changes with y. Hence au2 = 0 
and the remaining aui = aui(t,x, z). This change gives rise 
to a new scaled energy density m = m(t,x, z), which can 
differ from m ( t,x) by a first-order quantity. The second class 
of physical changes will be those in which a small portion 
am (t,x, z) of the beam's energy density is propagated in a 
new direction given by the four-velocity u(t,x, z). We main­
tain our suppression of y and set u2 to zero. 

These two changes give rise to a new metric tensor 
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gik = g(O)ik + hik (t,x, z) , (3.1) 

whereg(o)ik is the zero-order metricofEq. (2.2). Weconsid­
er those changes that result in the gravitational field equa­
tions having no more than a linear dependence on the first­
order quantities hik' aui, am, and m - m, where quantities 
quadratic in these changes are deemed negligible. The null 
condition on the four-velocity iji gives 

auo = -! h33 . (3.2) 

Therefore, if h33 is not equal to zero, dt changes as one pro­
ceeds along a null geodesic. For the beam, this means that t 
would cease to be a retarded time and differ from it by a first­
order quantity. However, in dealing with quantities that are 
themselves first order, this difference would be of second 
order and thus be negligible. Therefore, the retarded time 
description holds for all first-order quantities. One signifi­
cant change is the existence of a z dependence in first-order 
quantities. This allows for the initiation of a perturbation at a 
unique position along the z axis, and results in the loss of the 
equivalence of observers along the beam axis. 

If we assume that m is small enough so that the photon­
photon interactions of intersecting light rays are negligible, 
then we effectively have two null fluids that can interpene­
trate without interaction. In this ~se, t9..e energy-momen­
tum tensor to first order is Tik = Tik + Tik' where, by Eq. 
(1,25), 

and (3.3 ) 
A 

Tik = amgoouiuk/U~ . 
Conditions on Tik exist. First, since we are dealing with 

null fluids, the trace Tii = 0 and this gives 
A A A 

2T03 - Tll - fT33 = O. (3.4) 

Second, the conservation equations, Ti k;k = 0, (in the se­
quence i = 0,1,2,3) give 

m ahoo _ J.. mf ahll _ J.. mf ah22 _ mf ah33 
& 2 & 2 & & 
_ J.. m af h33 _ J.. am fh 33 + fam + a(mfau') 

2 at 2 at az ax 
A A A A 

+ aToo _ aTOI + aT03 _ f aT03 _ J.. af 1'33 = 0, 
az ax at az 2at 

(3.5) 

mf ah 13 _ J.. mf ah33 _ mf aau' + a1'o1 

az 2 ax az az 
A A A 

_ aTll + aT13 _ f aT13 _ J.. af 1'33 = 0, (3.6) 
ax at az 2ax 

mfa;;3 = 0, (3.7) 

and 
A A A A 

aT03 _ aT13 + aT33 _ f aT33 = 0 . 
az ax at az 

(3.8) 

B. Linearized field equations 

With the current scale factors, the field equations, with 
the cosmological constant settozero, areR ik = - 2Tik . We 
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find ten linear, coupled, inhomogeneous, second-order, dif­
ferential equations in three variables. The ten equations nat­
urally separate into a set of three equations for three of the 
hik-h02' h12, h23-and a set of seven equations for the re­
maining seven h ik' The situation is similar to the analysis of a 
system of coupled oscillators. In that problem the isolation 
of normal coordinates which undergo simple harmonic mo­
tion is advantageous. A similar procedure is possible here. 

We first impose harmonic conditions r k gmnr~n = 0, 
and we have (in the sequence k = 0,1,2,3 ) 

~ ah ll _ ah 13 + ~ ah22 + ah33 _ ~tah33 = 0, 
2 az ax 2 az at 2 az 

ahol _ ah03 _ ~ ah ll + ah 13 _ t ah13 
az ax 2ax at az 

+ ~ ah22 + ~ t ah33 + ~ at h33 = 0 , 
2ax 2 ax 2ax 

Oh23 = 0, 

Oh
J2 

= _ at ah23 , 
ax az 

(3.9) 

( 3.10) 

Oh
02 

= - at ah 12 + at ah23 _ at ah23 + 4mt h23 , 
ax az ax ax at az 

Oh22 = 0, 

Oh33 = 41'33' 
1 at ah33 A 

Oh 13 = -----+ 4T13' 2 ax az 

Oh = at ah33 _l... at ah33 + 2mifh + 4T. 
03 ax ax 2 at az 33 03 , 

Oh - -2 at ah 13 + at ah33 41' 
11- ax az ax ax + 11' 

ah02 _ ah J2 + ah23 _ t ah23 = 0, 
az ax at az 

(3.11) 

and 

ahoo _ ahol _ t ah03 + ~ ah l1 + at hl3 az ax az 2at ax 

+ ~ ah22 + ~ t!'" ah33 _ ~ at h33 = 0 . 
2 at 2 at at 2at 

(3.12) 

By taking first partials of the harmonic conditions and 
forming suitable linear combinations of these, the undiffer­
entiated conditions times at lat, and Eq. (2.3) we may put 
the field equations into a new form. 10 In this form the differ­
ential operator on the hik is exclusively of d' Alembertian 
form 0, where 

. a2 2a 2 a2 
0== -g(O) rk ai ak =-2 ---+t~. (3.13) 

ax ataz az-
The resulting d' Alembertian form of the field equations is 

(3.14 ) 

(3.15 ) 

(3.16) 

(3.17) 

(3.18) 

( 3.19) 

(3.20) 

(3.21 ) 

Oh
ol 

= _ at ah03 _ ~ at ah ll + at ah 13 _ at ah 13 + 4mth13 + ~ at ah22 _ ~ at ah33 
ax az 2 ax az ax ax at az 2 ax az 2 at ax 

+ l... at ah33 _ ~ t at ah33 - 4mtll.u' + 41'01 , 

2 ax at 2 ax az 
(3.22) 

and 

Ohoo - 4mhoo = - 2 at ahol + 2 at ah03 _ 2 at ah03 _ a2j hl1 + 2 at ah 13 + 2 a2j h13 
ax az ax ax at az ax2 ax at at ax 

at ah33 a2t (at )2 _ A ------h33- - h33+ 4(m-m)t+ 4Too· at at at 2 ax 
(3.23) 

We now introduce six normal coordinates H ik . Three 
are obvious and the remaining three are patterned after the 
harmonic conditions. The two normal coordinates for the set 
of three equations are 

(3.24) 

aH12 = ah l2 _ ah23 
az az ax 

(3.25) 

The four for the set of seven equations are 

H22 = h22' (3.26) 
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H33 =h33' 
aH13 ah 13 1 ah33 --=------, 
az az 2ax 

and 

(3.27) 

(3.28) 

(3.29) 

By using the field equations, the harmonic conditions, the 
conditions on the energy-momentum tensor, and the null 
condition [Eq. (3.2)] it can be shown that the normal co­
ordinates satisfy the following: 
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and 

DHI2 =0, 

DH23 =0, 

DH22 =0, 
A 

DH33 = 4T33 , 
A 

A 8JaT33 d DH13 =4T13 - -- z, ax 

A 

DH03 = 4T03 - 21T33 - 2 --dz. A A JaT33 

at 

(3.30) 

(3.31 ) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

Once the above are solved, the solution for the ten hik can be 
obtained from the definitions of the six normal coordinates 
Eqs~ (3.24)-(3.29) and the four harmonic conditions Eqs. 
(3.9)-(3.12). 

IV. SMALL ANGLE DEFLECTIONS 

A. General equations 

Realistic beams of light cannot remain collimated. but 
undergo a diffractive divergence. This is a case which fits the 
first class of perturbations. In general, to analyze this case we 

A 

set Am and ti to zero. Hence Tik is zero and Eqs. (3.30)-
(3.35) for the normal coordinates become homogeneous. 
Now H03, H 13' H23, and H33 can be set to zero by the remain­
ing freedom in the coordinates. The homogeneous eq~tions 
for HI2 and H22 are without boundary conditions which re­
late specifically to this class of problems. Hence, we may set 
these to zero in this section. The harmonic conditions [Eqs. 
(3.9)-(3.12)] determine the hik to be polynomials inzofup 
to cubic terms in z for hoo. The polynomial coefficients are 
interrelated functions of t and x. Working with the 
d' Alembertian form of the field equations and demanding 
continuity of the metric up to its first derivatives yields two 
nonzero hik : 

and 

hOI = t(t,x) 

at 
hoo = - (z - zo) + 'T/(t,x) , ax 

(4.1 ) 

(4.2) 

where the constant Zo and the functions t and 'T/ are deter­
mined by the perturbation. The conservation Eq. (3.6) 
yields Au I = Au I (t,x) and this in the conservation equation 
(3.5) gives 

iii = m(t,x) + I'o(t,x) + 1'1 (t,x)(z - zo) , (4.3) 

where 

1'1 = - amAu
l 

_ m i'" aj aAu
l 

dx' 
ax I x,,(t> ax' ax' 

and 1'0 is a first-order function determined by the specific 
perturbation. These, in conjunction with the field equations 
(3.22) and (3.23), yield 

(4.4) 

(4.5) 

2365 J. Math. Phys., Vol. 27, No.9, September 1986 

Since h33 = 0, Eq. (3.2) yields Auo = 0 and the retarded 
time description of the beam's cross sections is maintained. 
If we consider the geodesic equations we may show that 
within the region where this class of perturbations exists, 
r;3 = o and hence dul/ds = O. Thus, the four-velocity of the 
beam's elements does not change along its geodesic under 
this type of perturbation, and a diverging beam continues to 
diverge at a constant angle. 

B. Divergent beams 

The specific case that we will consider is a beam diver­
gent in a region starting at Zo along the z axis. We choose the 
simple linearly spreading case in which m and X are initially 
constant and the first-order change is given by 

(4.6) 

where u is a constant first-order quantity that parametrizes 
the rate of divergence. Under this change a beam element 
initially at x at Zo propagates to x(1 + u(z - zo)) at z. This 
includes the boundary rays at ± X. The energy density also 
changes, by Eq. (4.3), 

iii=m[I-U(lf+ l)/I)(z-zo)]' (4.7) 

Since we demand continuity of gOI' goo, and their first deriva­
tives at x = 0 and at the displaced beam boundaries, we find 
in the divergent region that 'T/ is identically zero and 

t=uFI(x) , Ixl<X, 

= u[FI(X) + (x -X)F; (X)], x>X, (4.8) 

= u[ - FI (X) + (x + X)F; (X)], x < - X , 

where 
FI(x) = 2a- 1 sinh(ax) - x - x cosh (ax) 

and a = 2,fin. To visualize this solution we may rewrite Eq. 
(4.7). Since a(z-zo) is the fractional change Ax/x in a 
ray's axial displacement we have 

iii/m = (1- Ax/x) - (l-I-I)Ax/x. 

The first term on the right is the classical divergence. The 
second term [since I( 0) = 1] is a purely relativistic term 
and corresponds to a gravitational red shift of the energy 
density with one factor of 1- 112 from the energy change of a 
light ray and a second 1- 1/2 from the invariant scalar den­
sity ..r=g dO of the four-volume element. 

In paper I we found that other than beam rays, null 
geodesics in the x-z plane generally propagate toward de­
creasing z values in a series of meanders oflobe-shaped loops 
that have a constant maximum displacement ± x from the 
beam axis. (The word "generally" excludes superenergetic 
beams that could generate a Schwarzschild singularity if ab­
sorbed within a length and time corresponding to a beam 
diameter.) The changes in the geodesics due to a divergent 
beam can be easily investigated external to the beam. By Eqs. 
(4.1), (4.2), and (4.8), hOI = a + bx and hoo = bz, where a 
and b are first-order constants with b < O. Two geodesic 
equations are worth considering. First, duo/ds = !buouo. 
The solution to first order for a ray moving in the x-z plane is 
UO = A (1 + ~b (t - to»). An analysis inside the beam has 
much the same result with b still negative, but variable and 
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tending to zero at the x origin. Hence, a ray proceeding to­
ward negative Z values will undergo a decrease in UO as it 
proceeds into a region in which the beam diverges. Effective­
ly this means a decrease in UO during the passage. The second 
geodesic equation dul/ds = - !(dl/ds) uOuo is formally un­
changed, but is now difficult to solve since UO is changing. 
We may get a qualitative solution using the unperturbed so­
lution u l = ± (2A - A 21) 1/2 with the recognition that 
UO = A decreases with time. The maximum displacement x 
of a null geodesic in the x-z plane is given by the above to be 
I(x) = 2/A. Since lis a monotonically increasing function 
with Ixl we see that x increases as a ray progresses into the 
divergent region. Hence, the null geodesics in the x-z plane 
will still meander about the beam axis as they progress back 
down the beam, but their envelope will grow. This effect will 
be of interest in considering gravitational waves impinging 
on a diverging beam of light. 

V. SOURCE-FREE WAVE SOLUTIONS 

Wave solutions, including radiative ones, can be ob­
tained in this idealized system of a collimated beam of light. 
Their application to physically realistic divergent beams is, 
however, not difficult. Section IV described a divergent 
beam by the first class of perturbations with a change aui in 
the beam four-velocity. The present and following sections 
deal with wave and radiative solutions that can be described 
by the second class of perturbations in which au l is zero. 
Both types of perturbations initiate first-order changes in the 
field equations, which add, but do not mix, in the first-order 
analysis. This allows us to ignore a realistic beam's diver­
gence in discussing wave solutions and, if need be, to add it in 
later. 

A. Homogeneous wave solutions 

We choose am, fi, and aui to be zero and m = m. Equa­
tions (3.30)-(3.35) for all sixHik are without a source and 
become homogeneous. As in Sec. IV, four of the six Hik can 
be transformed to zero by an appropriate choice of the re­
maining freedom in our coordinate system. Two normal co­
ordinates remain, satisfying DHik = O. Empty space solu­
tions exist and are equivalent to the well-known solution of 
linearized, plane, transverse, gravitational waves in Min­
kowski space-time with a pseudotrace tkhik = hll + h22' 
which is zero. 

Considering the solutions in the presence of a beam of 
light, we note that our differential operator D has a variable 
coefficient I as compared to the vacuum case of the previous 
paragraph. If we consider only those cases in which the ini­
tial beam has a temporally constant flux, then both m and I 
are independent of t. Since the coefficients of the differentials 
of t and Z are now independent of t and z, the elementary 
periodic solutions of the homogeneous equations are of the 
form 

'I1(t,x,z) =tf(x)exp[ ±i(lUt+KZ)] , (5.1) 

where lU and K are real constants and tf satisfies 

d 2tf 
-2 + (2wK - ~/(x»)tf = O. (5.2) 
dx 
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The function tf is subject to the boundary conditions that it is 
bounded and should go to zero as x goes to ± infinity. In 
addition, tf and its first derivative must be continuous. With 
l(x);;;'l and symmetric about x = 0, only trivial solutions 
exist for tf for 2w/ K, 1. Therefore, we choose 2w/ K > 1. Since 
I is a monotonically increasing function of Ix I, the coeffi­
cient of the linear term in tf in Eq. (5.2) changes sign at some 
value of x, say x. That value is given by 

1(±x)=2w/K. (5.3) 

Parametrizing Eq. (5.2) by lU and x, rather than by lU and K, 
we have 

d 2tf 4<u2 

dx2 + I(X)2 [/(x) - I(x)]tf = 0 . (5.4 ) 

For Ixl <x the solution tfwill be oscillatory inx. For Ixl >x, 
Itfl will decrease monotonically to zero. The decrease is at a 
faster rate than a pure exponential since I increases with Ix I. 
Because of this, tf will be effectively concentrated in the re­
gion Ix I < x and we will refer to x as the confinement distance 
of the solution. The speed of the '11 wave along the beam axis 
is given by Eqs. (5.1) and (5.3) to be 

dz I(x) 
dt = --2-' (5.5) 

Since I is positive, we find that the phase velocity along the Z 

axis is always negative. This exclusive "backward" propaga­
tion of the waves is a result of the nature of the beam and the 
retarded time metric. A wave propagating forward, i.e., to 
larger Z values, would move with the beam and share its time 
dependence. Hence, such a wave front would be parame­
trized by a single value of t independent of Z and is related to 
the acceleration fields of paper II, Sec. 4. 

In effect then, the beam's gravitational field acts as a 
wave guide for gravitational waves propagating opposite to 
the beam's flux. Since Ivaries with x, the strongest analogy 
would be to an optical fiber with a variable index of refrac­
tion. Ray tracing techniques applicable for optical fibers are 
comparable to the analysis of null geodesics of the unper­
turbed beam. As mentioned in Sec. IV B, the null geodesics 
in the x-z plane are a set of meanders, or lobe-shaped loops, 
which alternate about the Z axis and generally progress to­
ward negative Z values. We will associate the null geodesic 
with a maximum x displacement at ± x with the solution 
that has its confinement distance to be X. We may calculate 
dz/ dt for this geodesic at its maximum displacement x from 
the line element Eq. (2.2). This speed matches the value 
given by Eq. (5.5) for the phase velocity of the wave. Hence, 
there is a correlation between our solution and a specific null 
geodesic, or better, a family of null geodesics that differ only 
by a displacement along the Z axis. This entire family can be 
said to characterize the wave solution. Since the average 
speed along the z axis of the geodesic is less than that of Eq. 
(5.5), the geodesic that represents a given wave front at a 
specific time is replaced in the next moment by a neighboring 
geodesic in the family. This sequential representation will be 
convenient in Sec. V. 

With the boundary conditions cited above we should 
expect that for each confinement distance there will be a 
discrete sequence of lU; namely, the characteristic values lUn 
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where n ranges through the non-negative integers. Our solu­
tions to Eq. (5.4) can be written as ,pic,n (x). This provides a 
complete set of characteristic functions for each value of x. 
The orthogonality condition for the set is 

foo /(x) - /(x) 
.=....;..-,--,-,.;-;....,pic,n (X),pic,m (x) dx = Mn (x)6mn . 

- 00 /(X)2 
(5.6) 

It may be noted that of all the variety of ways in whichw and 
K could be stipulated, only fixing wand the ratio W/K in the 
manner chosen yields a suitable orthogonality relation. 

The exterior Ix I > X solution ofEq. (5.4) can be written 
in terms of Bessel functions since f is given by Eq. (2.4) and 
is linear in this region. Equation (5.4) becomes in this region 

d 2,p 4tu~ B _ --+ 2(X-X),p=0. 
dx2 (A+Bx) 

For X < Ixl < x the solutions are in terms of J I/3 and J -1/3' 
For Ixl >x the boundary conditions at infinity demand that 
the modified Bessel functions KI/3 be used, e.g., for Ixl >X 
and Ixl >x: 

"'=a(x-x)1/2K [ 4tuB
1/2 

(X_X)3/2] (5.7) 
If' 1/3 3(A+Bx) , 

where a is a matching constant. 
The interior solution can be solved for the case in which 

the scaled energy density m is a constant. In this case Eq. 
(2.4) in Eq. (5.4) yields a Mathieu equation. Since any con­
ceivable physical beam has a very small value of mX 2 [see 
Eq. (5.10)] we approximate 

/-z I + 2mx2, x <X . (5.8) 

With this, Eq. (5.4) can be put into the form of Weber's 
differential equation 

d 2,p + [v + ~ _ ~ ~ 2] ,p = 0 
d~2 2 4 ' 

with 

v = w(2m) 1/2X2/(l + 2m.x2) -! 
and 

~= [4tu(2m)1/2/(l + 2mx2)] 1/2 x. 

The solutions are the even and odd parabolic cylinder func­
tions E ~O) (~) and E ~ I) (~), respectively. These functions are 
given by 

E~O)(~) = v1 e-~2/4 IFI( - v/2;!;~2/2) 

and (5.9) 

E~I)(~) = 2~e-~2/4 IFI((l- v)/2;~;~2/2), 

where IFI is the confluent hypergeometric function 

F ( .R. ) _ r(fJ) ~ r(a +A.)r 
I I a,p;Z --- £.. . 

r(a) ..1.=0 r(,8+A.)A,! 

By alternately choosing E (0) or E (I) as the interior solutions 
for ,p we can produce a symmetrical positioning of nodal 
points. For a specific beam with set m and X, our matched 
solutions ,pic,n will range over integer n;..O for each confine­
ment distance X. With this choice n will be the number of 
nodal points of the solution and ,pic,n is an even or odd func-
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tion dependent on the evenness or oddness of n. By choosing 
X<X we simplify the matching of the interior solutions Eqs. 
(5.9) with the exterior solutions Eqs. (5.7) without qualita­
tively changing the analysis. We may write 

mX 2 = (1TG fc5)p= 8.66X 10-53 P, (5.10) 

where P is the power of the sheet beam in watts per length 2X 
in the y direction (per square cross section). Because of the 
smallness of the coefficient in Eq. (5.10) we find that the 
sequence of characteristic values for physically plausible 
powers is 

Wn = 1.14X 1034(,8JXP 1/2)(X /X)2 Hz, (5.11) 

where X is in meters and X<X. For x = X, ,80 = 0.96, 
,81 = 2.98, ,82 = 4.99, and, as n grows, ,8n-2n + 1. For 
x<.X the fit improves and ,8 n is closely approximated by 
2n + I even for small n. For example, at x = 0.5X, 
,80 = 1.00,,81 = 3.00, etc. The 2n + I linearity in character­
istic values is similar to the energy eigenvalue spectrum of 
the quantum simple harmonic oscillator. The similarity in­
cludes x, which becomes the edge of the classically allowed 
region of the oscillator. The main difference in the two prob­
lems is that in our case the potential well of our gravitational 
trough becomes linear for x >X. However, for X<X the ,pic,n 
solution is decreasing rapidly for x >X. In this situation, 
especially for large n, the amount of ,pic,n that penetrates 
beyond the beam boundary X is relatively small. Hence, ,pic.n 
is not sensitive to the exact form of the potential well for 
x> X. The smaller x is with respect to X the less important 
the external solution of f becomes, and ,8 n approaches 
2n + I for all n. 

With the identification with the well-known quantum 
simple harmonic oscillator, we may condense our discussion 
of ,pic.n (x). As with the quantum case, ,pic,n becomes en­
hancedjust interior to x as the value of n grows. In the classi­
cal oscillator this corresponds to the relatively slow speed of, 
say, a pendulum bob near its maximum amplitude. In our 
case we may look at the null rays that characterize our solu­
tion. These rays snake down the gravitational trough of the 
light beam, opposite to the beam's flux, with a maximum 
displacement at ± x. At either of these extremes the ray is 
propagating parallel to the beam axis. Hence it will spend 
much of its "time" near these extremes and ,pic,n will be en­
hanced there. 

For x > X we qualitatively have the same form of the 
solution. The one additional feature worth noting is that as x 
increases, the Wn values become a continuum. In so doing, 
,pic,n represents very x-extended gravitational waves propa­
gating opposite to the beam which, in the limit, become 
plane waves. 

B. Effect of the source-free wave solutions 

As with the divergent beam solution, r;3 = 0 and 
dui/ds = O. The beam geodesics are unaffected to first order 
by the passage of the homogeneous wave and the beam re­
mains collimated. Oscillations in the beam's energy density 
do occur and can be calculated by the conservation Eq. 
(3.5). We find that a(gcxPi)/az = O. Since goo undergoes a 
first-order change with z, so will the local energy density m. 
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Ifwe assume that we can extend this solution of a beam in the 
geometrical limit to a light beam with a finite frequency, 
then we have the possibility of a heterodyne effect with the 
gravitational wave. Considering that 1/Ix,n depends on x, then 
the heterodyning would have an x dependence acting as the 
signature of a gravitational wave's passage. However, the 
effect is offirst order and we must contend with the gravita­
tional wave frequency as given by Eq. (5.11). Ifwe could use 
the reported power of a 1014 W pulsed x-ray laserll and 
choose x = X = 1 m, we find that the fundamental gravita­
tional wave frequency is 1027 Hz. Since the x rays are report­
ed to have a frequency of 1017 Hz we cannot expect effective 
heterodyning of the two waves. Although gravitational 
waves ofless than the first resonant frequency might be gen­
erated and directed back down the beam, they would have to 
be classified as highly subresonant. The response of any sys­
tem to weak impulses of highly subresonant frequencies is 
always small and in our case would be totally undetectable in 
the foreseeable future. 

An astrophysical case is worth considering. By aiming a 
laser at a rotating neutron star one might expect that a por­
tion of the gravitational radiation produced by the star 
would be captured in the beam's gravitational wave guide 
and either be directed back toward a detector on the Earth or 
possibly be focused into the beam so that its effect would be 
amplified. Taking (()O to be the rotational frequency of a neu­
tron star, say 103 Hz, we may use the solutions when x > X. 
Since the beam would have to be continuous or continually 
pulsed we choose P = 106 W. With X = 1 m it can be shown 
that x:::::4X 1018 m = 400 light years. With x so large, the 
wave would be greatly spread out and the effect on the beam 
or detector would be without the distinctive x-dependent 
signature of a wave where x :::::X. In addition, the ditfractive 
divergence of a physical beam will act to spread the gravita­
tional wave even more. This is a result of the conclusion 
discussed at the end of Sec. IV that the maximum displace­
ment x of the null rays in the x-z plane grows as the rays 
progress opposite to a divergent beam's flux. Since we have 
identified a wave with a confinement distance x with these 
null rays, we may conclude that the wave guide effect is di­
minished in this case and that the gravitational wave will 
also diverge upon encountering a divergent beam of light. 
Once again the effect of such an encounter is not expected to 
be observable. 

VI. RADIATIVE SOLUTIONS 

We will describe the solution and effect of a small por­
tion of light caught between two fixed ideal mirrors at z I and 
Z2' respectively, with ZI <Z2' The mirrors will be oriented 
such that the oscillating light of density am oscillates paral­
lel to the beam at an average distance x = S from the beam 
axis, with an x extent about S of ax. So that the mirrors do 
not interfere with the beam itself we may place them just 
outside of the beam at S > X. We will ignore the gravitational 
field of the mirrors and analyze the field produced by the 
light alone. With this assumption the analysis can be divided 
into two. First, we consider the field with the light source 
moving forward with the beam and, second, we consider the 
field with the light moving rearward, opposite to the beam's 
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flux. In both cases we will concentrate on the solution in the 
region Z <ZI' 

A. Forward moving pha .. of oscillator 

In the Z I to Z2 region the four-velocity ui of the forward 
phase of the oscillating light is identical to that of the initial 
beam. We find only one first-order component ofthe energy­
momentum tensor Too = am/. With the d' Alembertian 
form of the field equations (3.14 )-( 3.23), only Eq. (3.23) 
for hoo has an inhomogeneous term. The other hik are with­
out sources and distinctive boundary conditions other than 
continuity requirements. We are justified, therefore, in set­
ting all hik to zero except for the more complicated hoo. Us­
ing conservation equation (3.5) and the Z dependence of am 
during the forward phase of the oscillation, we find that hoo 
will grow if Z <ZI' But if Z <ZI the equation is simpler since 
am is now zero. For Z < Z I the field change hoo can be shown 
to satisfy Eq. (2.3) just as I did for the unperturbed beam. 
But goo = I + hoo and it is convenient to choose 
goo(x = 0) = I since goo=1 in a vacuum and this gives a 
uniformly scaled transformation of Minkowski space Eq. 
(1,2). However, I(x = 0) = 1 and therefore 
hoo(x = 0) = O. As a solution to Eq. (2.3) hoo becomes iden­
tically zero for Z < Z I' Hence, we conclude that all h Ik are zero 
for Z < Z I' The essential point here is that if we look at the 
effect of the forward phase of the oscillation in the region 
Z <ZI' we find that the hik field does not propagate into this 
region and the effect is nonexistent. 

B. Rearward moving phase of oscillator 

The nonzero four-velocity components of am (t,x, z) 
moving opposite to the beam are ilo = 2//and il3 = - 1. It 
should be noted that unless x = 0 this four-velocity does not 
obey the geodesic equations. However, ifz2 - ZI is sufficient­
ly small this four-velocity choice is a reasonable approxima­
tion. Using these ili components, the nonzero components of 
A 

Tik are 

Too = ami, T03 =2am, T33=4amll. (6.1) 

Before discussing the inhomogeneous field equations 
generated by these terms, the homogeneous normal coordi­
nate field equations (3.30)-(3.32) for H12, H22, andH23 can 
be quickly handled. Nonzero solutions for H 12 and H22 were 
discussed in Sec. V and both can now be taken to be zero 
without a loss of generality. The conservation equation (3.7) 
removes all substantive variations of H 23 inside of the beam. 
Extending it to all x, H 23 may be taken to be zero. The three 
inhomogeneous equations (3.33)-(3.35) can be simplified 
by the conservation equation (3.8), where m is now indepen­
dent of t. In the Z I < Z < Z2 region this yields 

am(t,x, z) = EI(x)r(x)s[t - 2z11(x)] , (6.2) 

where E is a first-order constant and r and s are zero-order 
arbitrary functions of their arguments. As was discussed 
with Eq. (5.5), the form of the argument of s corresponds to 
the null rearward velocity of the oscillating light. Our inho­
mogeneous normal coordinate equations in thez I <z < Z2 re­
gion become 

(6.3) 

Raymond W. Nackoney 2368 



                                                                                                                                    

DH13 = - 32€ J ars dz ax 
with rs being zero outside of this region, and 

DH03 = 0 , Z <Zl , 

(6.4) 

= -4E/r[s(t,z) -S(t,Zl)] ' ZI<Z<Z2' (6.5) 

= - 4E/r[s(t, Z2) - s(t, ZI)]' Z2 <Z . 

Conservation equation (3.6) demands thatH13 also satisfies 

m aH13 = ~ a/ 6.m. (6.6) 
az / ax 

In analyzing the behavior of H 13, we note that for Z > Z2 and 
for Ixl <X the right side ofEq. (6.6) is zero and this in Eq. 
(6.4) gives 

a2
H i Z2 ars __ 1_3 = _ 32€ -dz, Z2<Z, 

ax2 
z, ax (6.7) 

Therefore H 13 is essentially Z independent in this region. In 
demanding continuity in x the Z independence may be ex­
tended to the entire Z > Z2 region. Hence H13 shares the time 
independence of its source much as / shared the time inde­
pendence of m. In the region where Z <Zl and Ixl <X, the 
right side ofEq. (6.4) is zero. By Eq. (6.6) we then find that 
a2H 13/ax2 = 0 in this region. Demanding continuity in x, 
H13 can be no more than a function of t for z <ZI' which, to 
maintain causality, can be set to zero. Although H 13 is more 
complicated for Z \ < Z < Z2' the essential point is that due to 
an oscillation in the Z\ <z <Z2 region, H13 is consistent with 
zero for Z <Z\' grows for Z\ <z <Z2' and then propagates un­
changed with a beam cross section for Z > Z2' This is similar 
to our conclusion at the end of Sec. VI A, in that, if we con­
centrate on the effect fot Z <Z\' we may ignore the contribu­
tion of some field components. In this case we may ignore 
H 13• 

Normal coordinates H33 and H03 remain. Our task is to 
satisfy Eqs. (6.3) and (6.5) for some r and s. Simple condi­
tions onH33 andH03 do not exist as they did for H23 andH13• 

We again choose mX 2 to be small so that the approximation 
ofEq. (5.8) holds. The homogeneous solutions for 'I1(t,x, z) 
given by Eq. (5.l) and the matched solutions tPx.n (x) [Eqs. 
(5.7) and (5.9)] can be used to fabricate a solution to the 
inhomogeneous equations. 

One way to attack the two inhomogeneous equations is 
to first find the response function to a source offrequency m, 
which has a set x displacement 5 and proceeds back along the 
entire Z axis. Once obtained we then proceed to a delta func­
tion source in the temporal variable. The procedure involves 
expanding the inhomogeneous solution in terms of a com­
plete set of homogeneous solutions tPx.n for the chosen m. The 
requirement for a source at x = 5 demands that x = 5 and 
the use of the complete set {tPx.n}. An extended source over a 
range of x would require a comparable range of complete 
sets. We will therefore restrict our interest to those cases in 
which the x dependence can be approximated by a delta 
function. This restriction can be traced back to the existence 
of lex) in the d'Alembertian operator. Specifically, our 
equations are not fully separable. This effectively couples the 
variables t and z. This can be seen in the relationship of m and 
K in the homogeneous solutions. There m and K are indepen-
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dent, but, once chosen, their ratio determines the confine­
ment distance X. In the inhomogeneous case the source posi­
tion 5 must be identified with x and this, in turn, determines 
m/K. Hence only m or K can be chosen freely. In this discus­
sion we will fix m and let the ratio determine K. This means 
that mt + KZ = m [t + a//(5) ] and t and Z are coupled dur­
ing the rearward directed phase of the oscillation in the sin­
gle variable 

T = t + [21/(5)] z, (6.8) 

which is the natural temporal variable to use during the rear­
ward phase. The response function is given by a Fourier 
transform and the resulting contour integration. Introduc­
ingH( T,x) as a general inhomogeneous solution, our under­
lying equation to solve is 

DH = 8(x - 5)cos(mT + q?) U( T) , (6.9) 

where U is the unit step function with U = 0 for T < O. 
Choosing a contour that ensures causality (which in this 
case means no response previous to the passage of the 
source), we find 

H( T,x) = U( T) L tPs.n2(5)tP~n (x) 
n 4mn (mn - m )Mn (5) 

x{mncos(mT+q?) -mn cos(mnT)COSq? 

+msin(mnz)sinq?}, (6.10) 

withMn given by Eq. (5.6). 
It should be noted that any source described by 6.m ( T), 

independent of t, is one which moves rearward at the local 
speed of light at x = s. This source moves along the entire z 
axis and the solution H describes a wave which trails behind 
the source much as a flag will trail behind its pole. But, as 
mentioned before, the assumption that the light element re­
mains at x = 5 is an unrealistic one in that a null geodesic at S 
directed toward the rear would start to move toward the 
beam's axis. However the actual problem that we wish to 
consider is for light caught between two mirrors at Z 1 and Z2' 
This problem does not have the above complaint because we 
may choose Z2 - Z \ small enough so that the inward tenden­
cy of the geodesics can be as small as desired and can be 
further compensated for by slight inclinations of the mirrors. 

As discussed in Sec. VI A the forward phase of the oscil­
lation produces no effect in the Z <ZI region. Even so, it 
would seem that the removal of this forward part of the oscil­
lation would produce a gap in the temporal description of the 
rearward phase of the oscillation. We can see that this is not 
the case if we follow a cross section of 6.m. As a cross section 
proceeds from Z2 to z 1 the quantity t increases uniformly. At 
z \ the cross section is reflected. Since the retarded time t 

parametrizes forward-directed cross sections, the quantity t 
remains constant until reaching Z2' At Z2 the cross section is 
reflected back toward z \ and t once again increases uniform-
1y. Therefore, 6.m is a continuous function of t for a fixed z 
during the rearward motion. In addition, this produces a 
source with a natural frequency inversely proportional to 
Z2 - Z\; namely, 

(6.11) 

It may be noted that the rearward directed 6.m is indeed a 
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step function of the variable r during this oscillation. 
Using a non-negative sinusoidal dependence for lim, we 

choose 

S(t, z) = s( r) = [1 - cos (UJr) ] 

X[U(Z-ZI) - U(Z-Z2)]' 

If we apply this tOH33 we see from Eq. (6.3) 

DB33 = 16E8(x - 5') [1 - cos(UJr)] 

X [U(z -ZI) - U(z -Z2)] . 

(6.12) 

(6.13 ) 

This may appear to be similar to Eq. (6.9) for H, but the 
source term no longer has the transient in r and now has an 
explicit Z dependence. The lack of a r transient will be dis­
cussed shortly, but the Z dependence is crucial in that it sin­
gles out specific positions along the Z axis. It was the lack of a 
true Z dependence, which allowed a solution for H by an 
expansion in terms of the homogeneous solutions. Each of 
those solutions represents a wave moving back along the 
entire beam axis passing all Z values indiscriminately. 

We are not, however, at an impasse. The wave guide 
effect provided by the light beam is beneficial. We recall that 
a sinusoidal source moving parallel to the Z axis at x = 5' and 
opposite to the beam's flux produces a wave that acts as an 
infinite tail to the source with constant intensity [Eqs. (6.9) 
and (6.10) ] . If we were to stop or reflect the source at Z = Z 1 

it is reasonable to assume that the gravitational wave would 
continue to propagate into the Z < Z 1 region. There will be 
some new transients in the wave front, but the structure of 
the infinite tail will not significantly change since the light 
beam acts as a wave guide for propagation into the Z <ZI 
region and there is no other dissipation in the system. Hence 
the wave of the semi-infinite track source should look like 
that of the wave of the infinite track source some distance 
behind the wave front. 

If we now consider a sinusoidal oscillatory source 
between Z 1 and Z2' we even lose the semi-infinite track source 
case. But, an observer between Z 1 and Z2 will see a source that 
locally is indistinguishable from a sinusoidal infinite track 
source. Therefore, an observer at Z in the Z < Z 1 region will see 
the gravitational wave of the preceding paragraph much as 
before if we also demand that Z<Z2' The last condition en­
sures that the wave structure will approach that of the semi­
infinite track case. In addition, by using a constant sinusoi­
dal oscillating source, the transients in the semi-infinite 
track case can be ignored. In conclusion, we may use the 
steady-state wave of the infinite track case [Eqs. (6.9) and 
(6.10)] for our sinusoidal oscillator in the Z < Z 1 region if 
Z<Z2' Hence, the solution to Eq. (6.13) for Z<ZI is 

H33 = 4E L tPs.n ~5')tPs.n (x) 

n = 0 UJnMn (5') 

X 1 + . [ 
UJ2 cos(UJn r) - UJ~ cos (UJr) ] 

UJ~ - UJ2 
(6.14 ) 

The solution for H03 is more difficult because of the 
unique source of Eq. (6.5). But, by the discussion of t pre­
ceding Eq. (6.11), we find S(t,ZI) =S(t,Z2)' Hence the 
source term of Eq. (6.5) becomes zero for Z >Z2' By intro­
ducing a new function 
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F= aH03 
az ' (6.15 ) 

the resulting equation is manageable. That is, F satisfies 

OF = - 8EUJ sin(UJr)8(x - 5') [U(z - ZI) - U(z - Z2)] . 

Using Eqs. (6.9) and (6.10) we find 

F=2EUJ 2: tPs.n (5')tPs.n (x) 

n = 0 Mn (5')(UJ~ - UJ2) 

X [ (UJIUJn )sin(UJn r) - sin UJr] . (6.16) 

We may also show that H33 is related to H03 through 

F= - 2./(5') aH33 . (6.17) 
4 az 

C. Antenna structure and response 

The effect of the above oscillatory source solution on the 
beam itself is similar to that of the homogeneous solution 
discussed in Sec. V B. The oscillation in energy density ex­
ists, but it is minute. However, there is the possibility of 
amplification with an antenna. Considering the general prin­
cipal that the best antenna for a given radiator has the same 
basic structure as the radiator itself, we can create an an­
tenna out of an oscillating light element. The mirrors can be 
placed atz3 andz4 withz3 <Z4 <Z1' The simplest case is when 
Z4 - Z3 = Z2 - ZI' The antenna also shares the radiator's 
x = 5' position and, hence, has the same natural frequency. 

The phase relation between a light element in the an­
tenna and a gravitational wave is important. We start the 
cycle at Z4 and follow the light element. Since the gravita­
tional wave was formed by a source at x = 5' it propagates 
back at the same null speed as the antenna light element at 
x = 5'. Hence, during this rearward propagation the light 
element and the wave are phase locked and the interaction is 
constant during this passage. This is somewhat analogous to 
the situation of a surfer riding a wave. If the surfer stays in 
phase with the wave the wave-surfer interaction is also con­
stant. But a difference exists in that the surfer is a dissipative 
system, while the gravitational wave case is not. The time 
integral of the wave-antenna light interaction may grow. At 
Z3 the light element reflects forward and the effect of the 
wave on it becomes identical to that of the wave on a beam 
element as it progresses from Z3 to Z4' This was discussed 
previously and the small resulting oscillation in energy den­
sity is negligible. What is important is the phase relation 
between the light and wave upon being reflected at Z4' Let us 
measure the retarded times in units of2(z4 - z3)1/(5'). This 
is the time interval in t units to go from Z4 to Z3 (or in r units 
to go from Z3 to Z4)' If the light element starts at Z4 at 
(t,r) = (0,0), then the values at Z3 will be (t,r) = (1,0). 
Upon completion of the first cycleatz4' (t,r) = (1,1). This 
is identical to the light element in the radiator and, hence, to 
the gravitational wave itself since Z4 - Z3 = Z2 - Z I' There­
fore, the wave and light element start the second cycle in the 
antenna with the same phase relation as they had initially. 
Again the interaction is maintained during the rearward 
propagation to Z3 and the effect will continue to build. After 
N cycles any effect will be N times that of a single cycle. 
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Consider the photon energy in the antenna. The energy 
change in the antenna is given by the eikonal equation. If the 
four-velocity of an observer is Vi then the local optical fre­
quency of a light element with four-velocity ui is 

( 6.18) 

where 'Vo is a constant for a given light element in the an­
tenna. The photon energy is obtained by multiplying by 
Planck's constant. 

During our cycle ui, Vi, and gik all change. But we may 
take the observer to be a mirror of the antenna. Then the 
change in the mirror's velocity ~Vi due to the wave passage is 
periodic with the same period as that of the light element in 
the antenna. Hence ~Vi is zero after one antenna cycle. The 
same holds for hik as observed at Z3 or Z4' Therefore only ~Ui 
has a net change and to first order we have UO = 2/1 + ~uo 
and u3 = - 1 + ~U3. Our eikonal relation after one period 
becomes 

~'V = 'VO/-
I
/
2 (ffiuo + ~U3) • 

The fractional change in frequency after N periods is 

~'V/'V = NI- I
/
2 Y , (6.19) 

where 

Y(7') =ffiuo + ~U3 
and 7' selects the specific light element in the first period of 
oscillation. As discussed, the change ~Ui in one period is 
equal to the change during the rearward passage; i.e., 

~Ui = iZ

' du
i 

ds , 
z. ds 

with 7' constant. Changing variables, we have to first order 

~u' = - dz, 7' constant. . iZ4 

du
i 

z, ds 

By the surfing analogy the effect of the interaction duilds is 
independent of z in the antenna for any light element. There­
fore, 

. dui 

~u' = - (Z4 -Z3) . 
ds 

This can be evaluated by the geodesic equations and written 
in terms of the hik . These in Eq. (6.19) give 

Y(z) = _ [ aH03 + 1 aH33 + ~ (ahoo _ lahoo) 
az 2az Fat az 

- 22 dl hOI] (Z4 - Z3) . 
1 dx 

By Eqs. (6.8), (6.15), and (6.17) this simplifies to 

Y(z) = [F + 22 (ahoo + dl hOI)] (Z4 - Z3) . 
1 a7' dx 

(6.20) 

As long as Y is nonzero, the frequency change given by Eq' 
( 6.19) will grow linearly with time and the light elements in 
this optical antenna will undergo linearly increasing red or 
blue shifts. 

Further computation of Y is tedious. But since hoo and 
hOI can be derived from H03 and H 33, they too can be written 
in terms of F and its derivatives. The specifics of this system 
are not as important here as the approximate magnitude of 
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the redlblue shifts. So we will approximate Eq. (6.20) by 

Y';:;:,F(Z4 - Z3) , (6.21) 

and consider applications. 
An astrophysical application seems unlikely due to the 

necessity of sufficient identity between the radiator and the 
antenna. As discussed in Sec. V B, beam powers of a few 
hundred terawatts have been reported for a pulsed x-ray la­
ser. If a somewhat continuous beam could be constructed 
with a power P of 1014 W with X = 1 m. then by the discus­
sion in Sec. V B the fundamental frequency Wo';:;:, 1027 Hz. 
With our radiator the actual gravitational frequency is given 
by Eq. (6.11), where Z2 - z I (at the smallest) might be the 
thickness of a film 1 A thick. Hence w';:;:, 1019 Hz and our 
system is highly subresopant. 

To find an order of magnitude for the effect of such a 
gravitational wave, we see by Eq. (6.16) that only the first 
term in the expansion for F would be of any significance. 
Hence, 

(6.22) 

where c had been previously set to unity and tu is the x 
thickness of the radiator around x = s. By Eqs. (5.10) and 
(6.2), 

E P, X 
m';:;:,P tu' 

(6.23) 

where P, is the power of the light in the radiator per 2X in the 
y direction. Equations (5.6), (5.11), (6.22), and (6.23) 
give 

IFI ';:;:,2.5 X 10-60 wP, . 

Using IF I, Eqs. (6.11), (6.19), and (6.21), and also noting 
that Z4 - Z3 = Z2 - Z I' we find that 

~vlv';:;:, 10-50 NP, , 

where P, is in watts [Eq. (6.23)] and N is the number of 
oscillations in the antenna. The relation holds for any highly 
subresonant system and is independent of the antenna pow­
er, w,X, andP (as long as!'>P,). The time T for Noscilla­
tions is T = 21T'N 1 wand the time to yield a fractional change 
~'VI'V is 

(6.24) 

where P, is in watts and Z2 - Z I is in meters. Say that we 
could create a radiator with an optical power P, ';:;:, 10-2 

P = 1012 W with Z2 - ZI ';:;:, 1 A as discussed above. If we 
could also detect a shift in the optical frequency in the an­
tenna of~'V/'V = 10- 10, then by Eq. (6.24) T';:;:, 1010 sec or a 
few hundred years. The rapid development of the x-ray laser 
may reduce this value quickly. The recent report l2 of an in­
crease in the power by six orders of magnitude would, for 
example, reduce the resonant frequency Wo by three orders of 
magnitude. We would, therefore, still have a highly subre­
sonant system, and the above analysis holds. With the pa­
rameters used here and keeping P, ';:;:, 10-2 P, Eq. (6.24) 
states that T diminishes by the six orders of magnitude to 
T';:;:, 1Q4 sec. Considering, among other things, that the beam 
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of light should be continuous for at least this length of time 
at a power P and that the thin film radiator must hold togeth­
er with a power P, inside of it, a laboratory attempt at detec­
tion would appear to be prohibitive. 

Although true detection of this type of gravitational 
wave appears to be unlikely, the system is rather unique and 
may allow selective application. For example, it is not unrea­
sonable to imagine a cosmological situation in the early uni­
verse where an immense directed energy transport exists of 
the kind envisioned here. The channeling of gravitational 
waves back along the beam axis may provide a useful cou­
pling of regions. 
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First it is shown that within a relativistic Fermi field theory, a bound lI'I1k (/,t) II <C IIfl12 already 
implies canonical anticommutation relations (CAR). Then under Powers' assumptions a linear, 
first-order differential equation for the fields t/lk (x,t) is derived. This shows that in the set of 
generalized free fields fulfilling CAR only the free fields are irreducible at time zero. Finally 
Fermi fields in two space-time dimensions are considered. It is shown that only four-fermion 
interaction might be compatible with CAR and a bound on the coupling strength is derived. 

I. INTRODUCTION 

In 1967 Powers I showed that a relativistic field theory 
for fertnions fulfilling canonical anticommutation relations 
(CAR) and in which the time-zero fields form an irreducible 
set can never describe any interaction if the dimension of 
space-time is at least three. 

We want to supplement his result by the following re­
marks. 

( I) If instead of CAR we assume only that the fields at a 
fixed time are bounded operators and their norm lIt/lk (/,t) II 
is bounded by the L 2-norm IIfl12 of the test functions, then 
CAR follows from locality (see Sec. II). 

(2) We show that the Fermi fields are not only general­
ized free, but that these fields fulfill a linear, first-order, par­
tial differential equation. This shows also that in the set of 
generalized free fields fulfilling CAR only the free fields are 
irreducible (see Sec. III). 

(3) Finally we consider two-dimensional Fermi field 
theories. First we derive that the only interaction that might 
be compatible with CAR is the four-fermion interaction pro­
posed by Thirring,2 but, in addition, we get a bound on the 
coupling strength. As a consequence, we show that a spino! 
Majorana field is a free field and that there cannot exist any 
nontrivial solution for the massless Thirring model that ful­
fills CAR. To our knowledge none of the known solutions 
for nontrivial, two-dimensional fermionic models does fulfill 
CAR (see Ref. 3). Unfortunately we are not able to disprove 
the existence of such solutions. For the Yukawa interaction 
there exist solutions that fulfill CAR (and CCR), but this 
model contains fermions and bosons and therefore does not 
fit into our scheme (see Sec. IV). 

Let us recall the assumptions that led to Powers' ICAR 
theorem. 

(i) Relativistic quantumjield theory: t/I is am-component 
Fermi field in the axiomatic frame given by Wightman. At 
spacelike distances the fields anticommute, i.e., 

{t/lk (x),t/lr (y)) = 0 = {t/lk (x)*,t/lr (y),} if (y - X)2 < o. 
The number of space-time dimensions is n + 1. 

(iO Canonical anticommutation relations (CAR): (a) 
For fixed time t the fields t/lk (/,t) and their adjoints 
t/lk (/,t) * define operators if smeared with test functions 
jeY(R"). 

(b) The fields fulfill CAR: 

{t/lk (/,t),t/lr (g,t)} = 0 = {t/lk (/,t)*,t/lr (g,t) *}, 

{t/lk (/,t)*,t/lr (g,t)} =~kr i (f*g)(x)d"x. 
R" 

(iii) Irreducibility: The smeared fields at a fixed-time act 
irreducibly on the Hilbert space K. 

(iv) Existence ofatt/l: We assume that forf,geY (R") the 
expressions 

= (att/l) (/,0)1It/1(g,O)1I0 

converge strongly. 
Throughout this paper t/I(/,t)1I stands for either t/I(/,t) 

or t/I( /,t) * and we often drop the indices labeling the field 
components if they are of no special importance. Ifwe do not 
write a time argument we always mean the field operator at 
time zero. 

II. CONSEQUENCES OF A Lz-BOUND FOR 11« 1,1)11 
It is well known that from 

{t/lk (/,t)*,t/lk (/,t)} = r IfI 2 (x)d"x, k = l •... ,m. 
JR" 

the bound lIt/lk (/,t}1I = IIfllz = lIt/lk (/,t)*11 follows. Now 
we shall show that such a bound 

(2.1 ) 

already implies that the equal time commutation relations 
are determined by the two-point functions and their singu­
larities are at most ~ functions. 

Theorem 1: The assumptions (i) relativistic quantum 
field theory (reI. QFf) and (iii) (irreducibility) supple­
mented by the bound (2.1) imply 

{t/lk (x,t)II.t/lr (y.t)} 

= (O.{t/lk (x,t)II,t/lr (y,t}}0) = Ctf>t"'/~(y - x). (2.2) 

Proof: (a) Because Lemma I in Powers' paper! is the 
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key to this whole business we write down his result as the 
following lemma. 

Lemma 2.1: Forf,g,heL2(Rn
), we have 

II [tf(h)-{tf(g)#,tf(/,t)}] II 
o;;;C"lIh Ibsuplflsuplgllt I", (2.3) 

where n is the number of space dimensions and Cn is a con­
stant. 

(b) For t = 0 we get from the above lemma 

[tf(h )#{tf(g)#,tf( f)}] =0, 

forf,ge..9"(R") and heL2 (R"). 

Now {tf(g)#,tf(f)} is a bounded operator by (2.1) and 
therefore irreducibility (iii) implies 

{tfk (g,O)#,tfl (/,O)} = (0, {tfk (g,O)#,tfl (/,0) }O). 

II II {tf(x,O)-,tf(y,t)}(y - X)j g#(x)f(y)d"x d "y II 

Also because time translation is given by a unitary operator 
elHt

, which leaves the vacuum 0 invariant, this is true for all 
t. 

(c) Lemma 2.2: 

{tfk(X,t)#,tfl(y,t)}(y-x)j =0, forj= 1, ... ,n. 

PrOOF Take f,ge.@'(Bi") contained in a cube of side 
length L. To simplify notation we drop the indices k and I. 
Like Powers 1 we define for /feZ" and t> 0 the Hermitian 
projections E ~ by 

(E~f)(x) 

= V(x), 
10, 

ifx;e[k;t,(ki + l)t], 
otherwise. 

With their help we get by linearity 

i= 1, ... ,n, 
(2.4) 

= 11~:t"II {tf(X,O)-,tf(y,t)}(Y-X)jg#(X)f(Y)E~(X)EI(Y)d"Xd"YII· (2.5) 

This sum is finite becausefandg have compact support! By locality we get Iki -Ii 10;;;1, for all i = 1, ... ,n. If we write 

Yj -Xj = (Yj - kj t) + (kj t-Xj) 

and use the triangle inequality, we have 

0;;; L I III {tf(x,O)#,tf(y,t)}[E~(x)g#(x)EI(y)(yj -kj t)f(y) 
~.l 

1~-II<1 

+E~(x)(kj t-xj)g#(X)EI(Y)f(Y>]d"Xd"yll. 

Now we can use the bound (2.1) and get 

0;;;4 X 3" + I(L + 2)" maxlfl maxlgllt I. 

(2.6) 

(2.7a) 

(2.7b) 

The additional factor I t I is a consequence of the factor (y - x) j in (2.5) and is due to the fact that !Yj - kj t I and I kJ t - xJ I 
can never exceed 31 t I! 

As t goes to zero Lemma 2.2 follows from (2.5) and (2.7). This shows that the singularity in the equal-time anticommuta­
tor is at most of {j function and therefore the second part of the theorem has been proved. 

Remark 2.3: In Theorem 1 we do not end up with the usual CAR algebra, because we did not use Lorentz covariance. A 
possible way to incorporate Lorentz covariance is to use a KiHlen-Lehmann representation4 for the two-point function. As an 
example let us take a charged spin-! field, which we assume to have a definite behavior under P (space reflection) and C 
(charge conjugation). The Kallen-Lehmann representation has the form 

(O,{~(x,t),tf(y,s)}O) = f>O dm2{P1 (m2)( - i)S(y - x,s - t;m) + p2(m2)i~(y - x,s - t;m2)}, (2.8) 

with ~ = tf*ro and PI (m 2»0, 2mpI(m2 »P2(m2»0. (We stick to Schweber's notationS for ease of reference.) The bound 
(2.1) implies 

l"" dm2 PI(m2)o;;;C 2
• 

After rescaling we get the usual CAR algebra. 

III. A FIRST-ORDER DIFFERENTIAL EQUATION FOR 
",(x,t) 

(2.9) 

Let us outline the idea: If (at tf) (/'t) exists then because oflocality the support of {tfk (x,t) * , (at tfl ) (y,t) } consists only of 
the point x =y and the bound IItf(/,t) II = IIflb implies that this anticommutator is a linear combination of {j(y - x) and 
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Vj t5(y - x),j = t, ... ,n, but by CAR we write these terms as {t/tk (x,t)*,t/tk (y,t)} and {t/tk (x,t)*,Vj t/tk (y,t)}. Fromirreducibi­
lity we then conclude that at t/t, equals a linear combination of VJt and Vj VJt. 

Because many of these steps are already included in Powers' paper, I let us recapitulate his ICAR theorem: For n>2 we 
have the following equations: 

m A 

(at t/tk)(J,t) = L t/t,(TklJ,t) +t/t,(TklJ,t)*, k= t, ... ,m, (3.1) 
1= I 

A 

where Tkl are linear and Tkl antilinear operators from Y(R") into L 2(R"). 
A 

The followng theorem characterizes Tkl and Tkl as first-order differential operators with constant coefficients. 
Theorem 2: Under the assumption ofthe ICAR theorem we have, for all k,l = t, ... ,m andjeY(R"), 

Tkd= (Mkl + UkIV)J, (3.2a) 
A 

Tkd= (Nkl + 13kIV)!*, (3.2b) 

where M kl , Nkl , Ukl' and 13kl are constants. 
A 

Proof: (a) From CAR it is obvious that Tkl is uniquely determined by {t/t,(g)*,(att/tk)(!)} and Tkl by 
{t/t, (g). (at t/tk)(! )}. 

(b) The following lemma shows that {t/t,(X,O)II,(att/tk ) (y,0)} is a linear combination of t5(y -x) and Vj t5(y -x), 
j= t, ... ,n. 

Lemma 3.1: 

{t/t,(X,O)II,(at t/tk)(Y,O)}(y-x);(y-x)j ==0, foralli,j= t •... ,n. 

Proof: For!,ge9 (R") consider 

II {t/t(x,O)II,t/t(y,t)}(y - X)j g#(x)!(y)d"x d"y. 

By using the same steps as explained in the proof of Lemma 2.2, we get the esimate 

(3.3) 

III I {t/t(x,O)II,t/t(Y,t)}(Y -x);(Y -X)j g#(X)!(Y)d"Xd"yll ..; 8· 311+2(L + 2)" maxlgl maxl!llt 12. (3.4) 

Dividing by t and passing to the limit t = 0 we get Lemma 3.1. 
(c) Therefore we get from CAR 

{t/t,(x,O)*,(at t/tk) (y,0)} = M k1t5(y - x) - Ukl Vt5(y - x) 

= Mkl{t/t, (x) *,t/t, (Y)} - Uk,{t/t, (x)· , (Vt/t, ) (y)}. 
A 

This proves (3.2a) and (3.2b) follow along the same line and from the fact that t/t, (Tkl J,O) * has to be linear in! 

(3.5) 

Remark 3.2: We expect this linear differential equation for t/t(x,t) to reduce to a free-field equation, if we take Lorentz 
covariance and eventually certain discrete symmetries into account. As already pointed out in Remark 1.3, a Kiillen­
Lehmann representation is a feasible method to prove this. We want to illustrate this for the most interesting case, namely the 
example of a charged spin-! field. 

We start with the Kallen-Lehmann representation (2.8), CAR requires fodm2 PI(m2) = t and the existence of 
at t/tk (J,t)O implies fodm2 PI (m2)m2 < 00. 

Consider now the equal-time anticommutator 

{~(x,t), (ir' a. ¢) (Y,M = r dm' p, (m') ( - i) [~ iy' a. - m ~(y - x,O;m ~ + mS(y - x,O;m) 1 
==0 

= fO dm2 PI (m2)m rcfi(Y - x) + LX> dm2 P2(m2) rcfi(Y - x). (3.6) 

\. """ I '---..,--I 
M, M2 

Therefore we have the equation 

(3.7) 

From irreducibility (iii) we derive the free-field equation 
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(3.8) 

Therefore the spectral weight function PI is of the form PI (m2) = C18(m2 - (MI + M2)2) and CAR implies CI = 1. By 
definition, MI = fO'dm2 PI (m2)m = MI + M2 and therefore M2 = 0, which implies P2==0 because P2 is a positive distribu­
tion. 

As a by-product we have shown the following corollary. 
Corollary 3. 3: Within the set of generalized free fields given by the Kallen-Lehmann representation (2.8), fulfilling CAR 

and the bound 

i'" dm2 m~l(m2) < 00, (3.9) 

only the free fields of a definite mass M fulfill the irreducibility assumption (iii). 

IV. WHAT HAPPENS IN ONE SPACE DIMENSION? 

This case is of special interest because, as already mentioned in the Introduction, there are some explicitly solvable models 
available (see Ref. 3). None of the known solutions fulfills CAR. We are not able to show that only free fields can fulfill CAR, 
but, nevertheless, we hope our analysis gives some new insight into this problem. 

In the case n = 1 we cannot conclude from Lemma 2.1 that [tP(h)lI{tP(g)II,(at tP)(f)}] vanishes. The situation im­
proves if we consider higher commutatoIl, e.g., for the fourfold commutator we get the following lemma. 

Lemma 4.1: There exists a constant C such that for heL2(R) andfl, ... ,~E~ (R) we have 

A 4 
III tP(h)lI{tP( f4)11[ tP( ,t;)II{tP(h)lI,tP( ft,t) II} ]}]" <;C Ilh Ib II maxi /; lit 12. (4.1) 

1=1 

ProoF Goes along the same line as Lemma 1 in Powers ICAR theorem. 
The detailed structure of the operator {tP(~)II[ tP(,t;)II{tP(h)II,(at tP) (fl)}]} will be displayed by the following lemma. 
Lemma 4.2: For fl, ... ,~E~ (R) we have 

(i) {tPk. (~)II[ tPk, (,t;)II{tPkl (f2)1I, (at tPk, )(fl)lI} P = (O,{tPk. (~)II[ tPk, (,t;)II{tPk, (h)II,(at tPk,> (fl)lI} pO) 

(4.2) 

where C(t/If., ... ) is a complex number, whose absolute value is bounded by Co<216. 
(ii) C(t/If.,t/If"t/If"t/If,) is totally antisymmetric under permutations of the fields t/lf

i 
and it vanishes if two arguments 

equal each other. 
ProoF (a) From Lemma 2.1 for the case n = 1 we get the boundedness of the triple commutation (i) and it equals its 

vacuum expectation value because of Lemma 4.1 and irreducibility (iii). 
(b) Using the same methods as in proof of Lemma 2.2 one can easily obtain forfl, ... ,~E~ (lR) the estimate 

II f {tP(X4)1I[ tP(x3 )II{tP(x2 )II,tP(x)Jt)II} ]}(xj - Xj )~(X4)~(X3)'!I;(X2)~ (x l )1I dX4 ... dXIl1 <C~ maxi/; lit 12 (4.3) 

and therefore we have 

{tP(X4)1I[ tP(x3 )II{tP(x2)'1,(at tP)(x l )II}] }(xj - Xj )==0. 

This together with locality and translation invariance proves the representation (4.2). 
( c) If we take the characteristic function E of the unit interval as test function for the fields, then 

IC( t/If .... ) I = II ~~ + {tPk. (E)II) [tPk, (E :,>II{tPkl (E :,>II,tPk, (E:, ,t)II} p II 
<; ~~ + II 1'~/4 {tPk. (E :,>11 [ tPk, (E:, )1I{tPk, (E :,>II,tPk, (E:' ,t)II} ]} II 

1/, -/,1<1 
1/,-/.1<1 
1/.-/,1<1 

<; lim (1It)23
• 33 [(1It) + 2]t 2 = 216. 

t--+O 

A more refined estimate yields immediately Co < 80. This proves part (i) of the lemma. 
(d) If we apply the Jacobi identities 

[A {B,C} ] + [B{C,A}] + [C{A,B}] = 0 

and 

{A [B,C]} + {B[A,C]} + [C{A,B}] = 0 
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to the triple commutator (4.2) and use CAR we get 

C(f/{.,f/{3,t/{,f/{,) = ( - l)C(f/{.,t/{,f/{"f/{,) = ( - l)C(f/{"f/{.,f/{"f/{,). (4.8) 

The antisymmetry under exchange of f/{, and f/{,. follows from 

0= a, ("'k, (/2,t)#''''k, (/1,t)#} = {(a, "'k,) U;,t)#''''k, (/1,t)#} + {"'k, (/2,t)#,(a, "'k,) (/1,t)#}· (4.9) 

(e) For real test functions the triple commutator (4.2) is symmetric under permutation of the test functions and 
antisymmetric under permutation ofthe field labels. Therefore C( f/{., ... ) has to vanish if two field labels are equal. 

This completes the proof of the lemma. 
The next lemma shows that with the help of these coefficients C( f/{., ... ) we can uniquely express the double commutator 

[ ",(h ) #{'"(g)#,a, "'( I )#}] as a linear combination of all the fields "'I and I/J'f. 
Lemma 4.3: Forll' h., hE!!} (R) we have 

m m 

["'k, (h)#{"'k, (/2)#' (a, "'k, )( II )#}] = L C( I/J'f,f/{, ,f/{"f/{, )"'1 (I 3# I~ I') + L C( "'/,f/{, ,f/{, ,f/{, )"'/« I! I~ I' )*)*. 
1=1 1=1 

Proof: (a) Let Q be the difference of the right- and left­
hand side of Eq. (4.10). For ge!!}(R) it follows from 
Lemma 4.1 and from CAR that, for alII = 1, ... ,m, 

(4.11) 

By continuity this equation can be extended to all geL2 (R). 
(b) Because all odd n-point functions vanish there exists 

a unitary and Hermitian operator UI such that 

UI n = n, UI "'(/'t)U I-I = - ",(/,t). (4.12) 

From (4.12) we get immediately 

["'/(g)#,UIQ] = - UI{"'/(g)#,Q} = O. (4.13) 

Therefore we conclude from irreducibility (iii) 

(4.14) 

because Q is an odd monomial. But UI is unitary and there­
foreQ=O. 

Before we draw conclusions let us summarize what we 
already know about {",(g)#,(a, "')(/)}. From Lemma 3.1 
we get 

{"'I (x,t)#, (a, "'k ) (y,t)} 
A 

= C~''''k (x,t)8(y - x) + B"","'k (x,t)8'(y - x). (4.15) 

We claim that the matrix B is constant, because estimate 
(2.5) proves the boundedness of 

IIII {",(x)",(a, "') (Y)}(Y-X)g'i(X)/(Y)dxdyll 

and it is easy to show that for hEL2 (R) 

["'(h)lI,f I {",(x)",(a, "') (Y)} 

X (y - x)g'i(x)f(y)dx dY] =0. (4.16) 

By extracting the vacuum expectation value, we can rewrite 
(4.15) as 

{"'I (x,t)#, (a, "'k) (y,t)} 

=A_,JI 8(y - x) 
V'/,"'k 

+ B""''''k6'(y - x) + C"","'k (x,t)6(y - x), (4.17) 

where the matrices A and B are uniquely determined by the 
vacuum expectation value of (4.17). 
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and 

(4.10) 

Corollary 4.4: Let us consider a spin-! Majorana field 

"'I (/'t)* = "'1(/*,t)''''2(/,t) * = "'2(/*,t) 

{"'k (/'t),"'/(g,t)} = .!.8kl { (Ig) (x) dx. (4.18) 
2 JR 

There are only two different fields and therefore 
C("'k,''''''''k, )=0 which in turn implies 

{"'k (/),(a, "'I) (g)} = (n'{"'k (/),(a, "'I )(g)}n). 

( 4.19) 

Proceeding in the same way as Powers I did, we end up with 
the free-field equations 

a, "'I + ax "'I + m"'2 = 0, 

a, "'2 - ax "'2 - m"'l = O. (4.20) 

This confirms the old statement by Thirring,2 that a spin-! 
Majorana field can never describe any interaction in a ca­
nonical theory. 

Remark 4.5: For a charged spin-! field (or, equivalently, 
for two spin-! Majorana fields), there is up to permutations 
only one nontrivial triple commutator 

{"'2( i4) * ["'2( h){"'1 (/2) *,(a, "'1)( II)}]} 

= C(VIr,"'2,t/If''''I) I (If hi! II)(x)dx. (4.21) 

Let us define A = iC("'!''''2,t/If''''I); then A is real and 
Lemma 4.2 provides the bound Ill. I ..;;Co..;;216. How can we 
interpret (4.21)? In terms of Wick polynomials we could 
reproduce (4.21) by identifying 

i a, '" 1 ==A: VIr "'2 '" 1: + linear terms in "', ( 4.22 ) 

and this would also explain formula (4.10). Unfortunately 
we do not know a priori how to define such operator prod­
ucts. Otherwise we could use the arguments by Powers I and 
the ideas of Sec. III to derive the Thirring equation 

i(a, + ax )"'1 + m"'2 =A: VIr "'2 "'I:' (4.23) 

i(a, - ax )"'2 + m"'l = A: t/If "'I "'2:' 
supplemented by CAR and a bound on A, which is very 
strange. Another peculiarity is described by the following 
corollary. 

Corollary 4.6: m = 0 implies A = 0, i.e., in our frame-
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work there exists no solution to the massless Thirring model 
as long as A. #0, which fulfills CAR. 

Proof: For m = ° we get for the anticommutator 

{¢'2 (x,t)* ,i(at + ax )¢'l (y,t)} 

= A.{¢'2(X,t)*,: t/Jr ¢'2 ¢'l: (y,t)}. (4.24) 

By construction [remember the explanations leading to Eq. 
(4.17)!] the vacuum expectation value of the right-hand side 
in Eq. (4.24) vanishes. [A nonzero expectation value 
c~(y - x) would produce a mass term C{¢'2(X,t)*,¢'2(y,t)} 
because of CAR!] Therefore we get the equations 

(O,{¢'k(x,t)#,i(at +ax)¢'l(y,t)}O) =0, 

(O'{¢'k (x,t)#,i(at - ax )¢'2(y,t)}O) = 0, (4.25) 

and from a Kallen-Lehmann representation [see Eqs. (3.6) 
and (3.7)] we see immediately thatpl(m2) =~(m2) and 
P2(m2) = O. From this we conclude that ¢' is a free-spinor 
field and A. has to vanish. 

Remark 4. 7: Finally let us consider a theory with more 
than two spin-! Majorana multiplets, e.g., a Gross-Neveu 
model with at least three Majorana spinors or a Federbush 
model, which is described in terms of two charged spin-! 
fields. 

Lemma 4.2 tells us that only a four-fermion interaction 
might be compatible with CAR. There is the possibility of 
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having different "coupling constants" C;, because there are 
more than four different fields available, but all these C1 have 
to fulfill an a priori bound IC; I <Co<216. 

For the Federbush model, which is explicitly solvable, 
all known solutions do not fulfill CAR. 
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The existence of the continuum, quantum field theory found by Baker and Johnson [G. A. 
Baker, Jr. and J. D. Johnson, J. Phys. A 18, L261 (1985)] to be nontrivial is proved 
rigorously. It is proved to satisfy all usual requirements of such a field theory, except rotational 
invariance. Currently known information is consistent with rotational invariance however. 
Most of the usual properties of other known Euclidean boson quantum field theories hold here, 
in a somewhat weakened form. Summability of the sufficiently strongly ultraviolet cutoff bare 
coupling constant perturbation series is proved as well as a nonzero radius of convergence for 
high-temperature expansions of the corresponding continuous-spin Ising model. The 
description of the theory by these two series methods is shown to be equivalent. The field 
theory is probably not asymptotically free. 

I. INTRODUCTION AND SUMMARY 

Recently Baker and Johnson I reported a solution to a 
long-standing problem. The problem was the construction of 
a nontrivial, scalar, self-interacting boson quantum field the­
ory in four dimensions. In the context of usual approaches 
the existence of such a theory was virtually excluded. Atten­
tion has been centered on the gO:;4:4 theory because higher 
polynomial powers in the interaction are not renormaliza­
ble.2 The usual tool in quantum field theory is the cutoff or 
regularized perturbation theory and the approach has been 
to adjust the bare parameters of the theory or add counter­
terms in such a way as to leave the resultant physical quanti­
ties predicted by the theory finite. Of course, as is pointed out 
by careful treatises2 on the subject, it is conceivable that one 
can construct other theories that are nonrenormalizable, but 
these require an infinite number of counterterms that in 
principle require an infinite number of experimental mea­
surements to fix such a theory. From the theoretical point of 
view this approach is not too pleasant because of the com­
plexity of the specifications required to yield even a finite 
physical theory. A key theoretical method to overcome this 
latter difficulty was foreshadowed by Simon3 who realized 
that for P(;) 2 field theory, the rate of falloff of the (vacuum 
subtracted) two-point Schwinger function at large distances 
dominated the higher-order (vacuum subtracted) 
Schwinger functions. Thus the control of the two-point func­
tion for such a theory suffices to control the entire theory and 
leads to a finite physical theory. Nevertheless Newman4 

proved, under mild assumptions, that such a field theory 
cannot exist if its degree (which corresponds formally to the 
degree of the polynomial interaction in the Hamiltonian) 
exceeds 4, which would appear to leave the search for a non­
trivial self-interacting boson theory in four dimensions with 
only gO:;4:4 as a candidate. However recent numerical5 and 
theoretical6

•
7 evidence strongly suggests thatgo:;4:4 theory is 

itself trivial, i.e., a generalized free-field that has no scatter­
ing. This situation is rather mysterious because, for the cor­
responding classical case (nonlinear Klein-Gordon equa­
tion) nontrivial scattering is known8 to occur and by the 

correspondence principle one might expect this feature not 
to be disrupted by quantization. 

Although in recent years, the main thrust of quantum 
field theory has been along the lines of non-Abelian gauge 
theories, the standard model requires the Higgs boson (four 
real fields in the simplest case) to transform massless gauge 
fields into massive ones. Hence the construction of a four­
dimensional, nontrivial, self-interacting boson quantum 
field in the Higgs sector is certainly still a necessary compo­
nent of the theory. 

A fresh way to attack the solution of this construction 
problem was discovered by Baker9 in the study oflimitations 
of critical index universality. Baker and Johnsonl call this 
the "method of phantom fields." It bears a relationship to 
the spirit oflocal effective Lagrangian theorylO and the the­
ory of ultraviolet renormalons. II

-
13 In the latter theory it 

was found 14.15 that they are proportional to the insertion of 
local irrelevant variables, as, for example, ;6, ;8, etc. The 
method of phantom fields contemplates polynomial interac­
tions of arbitrary degree and so the whole family has an infi­
nite number of parameters. In this way it accords with the 
abstract theory of nonlinear wave equations in being able to 
deal mathematically with a wide and rich class of model 
theories and leaves to the physics of the problem the choice 
of the relevant ones. 

In this paper I demonstrate that for a given interaction 
polynomial and a given four-dimensional Euclidean, space­
lattice ultraviolet cutoff that there exists a limiting process 
that defines a continuum random field that exists for any 
prescribed positive physical mass m. This field satisfies the 
axioms of Nelson's reconstruction theorem. 16 An exception 
is that rotational invariance is not proved, but only shown to 
be consistent with currently available information. By Nel­
son's theorem, a Minkowski space theory can then be con­
structed that satisfies the Wightman axiomsl7 of quantum 
field theory. The other results reported by Baker and John­
son I concerning the non triviality and, in principle, computa­
bility by series methods of the continuum field theory depend 
on numerical estimation procedures. These results will be 
discussed separately. 18 The theories so constructed are prob-
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ably not asymptotically free. I draw the reader's attention to 
the point that the computability question for the class of 
continuum phantom field theories contains in it the notori­
ous, currently unsolved by rigorous methods, question of the 
construction of gO:ifJ4:4 field theory. The simpler question of 
the rigorous computability of a sufficiently strongly cutoff 
lattice field theory is answ.ered here in the affirmative. 

The methods employed in this paper are to associate the 
lattice cutoff Euclidean quantum field theory with a corre­
sponding continuous-spin Ising model. Then the machinery 
of rigorous statistical mechanics, consisting mainly of in­
equalities and convergent series expansions, is used to estab­
lish the existence and various properties of the field theories 
in both the infinite volume and continuum limits. 

In the second section, I describe the phantom field mod­
el and make the connection with the corresponding contin­
uous-spin Ising model. In the course of this connection a 
coefficient K is introduced to multiply the site-site coupling 
term. This parameter plays the role of the inverse tempera­
ture in statistical mechanics, and expansions in this param­
eter, or quantities closely related to it, are often termed high­
temperature expansions. The Nelson 16 axioms needed in his 
reconstruction theorem are discussed and it is shown that, 
except for rotational invariance, they are all valid for models 
of this structure. 

In the third section, I assemble relevant information 
about the infinite volume or thermodynamic limit at fixed 
lattice spacing, a. These results are either simply cited with 
appropriate references or a proof is given or sketched as is 
required. All the results in this section assume that the lattice 
spacing is positive and not zero. A few of them require the 
additional hypothesis that the physical mass m, which de­
scribes the exponential decay at large distances, is positive as 
well. Three boundary conditions are treated: free boundary 
conditions, periodic boundary conditions, and Dirichlet 
boundary conditions. The thermodynamic limit of the free 
energy per unit volume exists for all these boundary condi­
tions and must agree independently of the boundary condi­
tions. The thermodynamic limit for the Schwinger functions 
(the expectation value of a product of field monomials at 
various lattice sites) with Dirichlet boundary conditions ex­
ists. The doubly cutoff (finite volume and nonzero lattice 
spacing) perturbation series in powers of the coefficient ,10 of 
the interaction polynomial is summable to the correct phys­
ical answer for all positive real ,10 and defines correctly the 
infinite volume limit by an appropriate limiting process. The 
free energy is uniformly continuous in ,10 for 0<,10 < 00. The 
physical mass is defined as the rate of exponential decay of 
the unsubtracted two-point Schwinger function in the limit 
of infinite separation of the points, and a pseudomass is in­
trOduced for finite volume that is proved to be equal to the 
physical one in the thermodynamic limit. Nelson's reflection 
positivity property holds for these models where the reflec­
tions are through lattice symmetry planes and his result that 
the corresponding transfer matrix can be expressed as the 
exponential of a nonpositive, Hermitian oPerator holds as 
well. Various fundamental correlation function inequalities 
hold such as the Girffiths inequality, the Griffiths-Kelly­
Sherman inequality, the Fortuin-Kasteleyn-Ginibre ine-
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quality, the reflection positivity inequality, and the Frolich­
Lieb inequality. There are many consequences. The two­
point Schwinger function is monotonically decreasing with 
the separation of the two points and is also log convex at least 
in directions perpendicular to planes of lattice reflection 
symmetry. The Sokal cluster property holds. This result is a 
key one because it shows that if the two-point Schwinger 
function decays exponentially with distance, then so too, 
modulo a few powers of the distance, do the higher-order 
Schwinger functions. Thus, if the two-point Schwinger func­
tion is controlled, then by two-point dominance the whole 
theory is also controlled. 

In addition if we suppose that the physical mass m > 0, 
as well as that the lattice spacing a> 0, then we can show that 
the Schwinger functions are uniformly continuous in ,10 and 
are independent of the boundary conditions. In addition a 
variant definition of the mass (second moment definition) 
and the amplitUde renormalization constant Z3 are also uni­
formly continuous in ,10' To show that these results are not 
vacuous, I use the continuous-lPin Ising model fo~ulation 
and show that there exists a K such that for K <K (suffi­
ciently high temperature) the physical mass is positive and 
goes to infinity as K-o. In addition I show that for K suffi­
ciently small that the high-temperature series converges and 
so for ,10 non-negative real the free energy and the Schwinger 
functions are analytic in some disk centered at K = O. To 
close the third section I show that if the interaction polyno­
mial is of degree 2p then there exists a Ko such that if for 
IK I <Ko and 0< l:tol <Am' larg:tol«p + 1)17"/2, then the 
free energy per unit volume is analytic in :to. 

In the fourth section, I discuss the continuum limit. Bya 
Peierls-type argument these models must display long-range 
order for sufficiently low temperature (large K). By my de­
finition, the occurrence of long-range order forces the phys­
ical mass to zero. For a finite box the pseudomass is contin­
uous in K. I can therefore select a sequence of boxes with 
lattice spacings that go to zero simultaneously with the box 
size going to infinity and chose a K for each box in the se­
quence to keep the pseudomass fixed. By amplitude renor­
malization, this process defines a continuum limit that yields 
a mass and amplitude renormalized field theory. By two­
point dominance, uniformly in the sequence of box sizes, the 
whole set of Schwinger functions are also controlled. Thus I 
have shown that theories of this type do exist, and satisfy all 
of Nelson's axioms, save rotational invariance. I discuss this 
last point further in the last section. 

In the fifth and final section I discuss the perturbation 
series in the coefficient :to of the interaction polynomial. I 
show that for K sufficiently small (high enough tempera­
ture), that is, for a sufficiently strong, lattice ultraviolet cut­
off, the asymptotic series in :to is generalized Borel summa­
ble to the physically correct answer. By analytic 
continuation this summation implies, at least in the neigh­
borhood of K = 0, the physically correct answer. A conse­
quence of this result is that the full, lattice cutoff:to series 
implies the full K-series for any positive real :to. Contrari­
wise, as we mentioned in our summary of Sec. IV as the K­
series is convergent for any:to and small enough K. A knowl­
edge of this expansion suffices to determine the complete:to 
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expansion, for K small enough. However again analytic con­
tinuation (here in K) gives us the complete results and so 
mathematically the two series expansion methods contain 
equivalent descriptions of this family of field theories. 

As an illustration, I compute the first-order, lattice cut­
off perturbation expansion terms for the four-line g and the 
six-line II.. renormalized coupling constants for the case 
where the interaction polynomial is of degree 6. This exam­
ple illustrates that a phantom field can be constructed that 
has, to leading order, g < 0, where g;;;'O is proven for gO:t/J4:4 
theory. The naive continuum limit a-+O of this theory has an 
apparent go < 0 that would look unstable; however, the cut­
off version has a nonzero coefficient of the t/J6 term to main­
tain stability. 

By considering the interchange of limits so that instead 
of summing the Xo series first and then taking the continuum 
limit, which leads to the physically correct model, one can 
look at the coefficients of the Xo expansion term by term, and 
consider their continuum limit. Several features are then evi­
dent. First the coefficients are, of course, not finite term by 
term even after mass and amplitude renormalization. Sec­
ond it is easy to exhibitterms in the two-particle scattering 
amplitude that do not go to zero as the particle momentum 
becomes large, so the theory is probably not asymptotically 
free. Third there are terms which depend on the lattice cutoff 
and differ for different lattices so the resultant theory is 
probably cutoff dependent. Finally, even though the contin­
uum limit of the series terms is not necessarily finite, they are 
rotationally invariant in momentum space, so the theory 
probably is rotationally invariant and so permits the con­
struction of a family of boson quantum field theories that 
satisfy the Wightman axioms. 

II. EUCLIDEAN, POLYNOMIAL, BOSON QUANTUM 
FIELD THEORY MODEL 

The models I wish to study are closely related to the 
scaling limit of the continuous-spin Ising model. A great 
many of their properties have been reviewed by Baker. 19 I 
will work in four-dimensional Euclidean space because, if we 
are successful in satisfying Nelson's axiomsl6 then by his 
reconstruction theorem a Minkowski space-field theory sat­
isfying the Wightman axioms l7 can be obtained. To guide 
the imagination we start with a structure, 

z = f 9t/J(x)exp{ - f d 4x[ (Vt/J)2 

+ m~t/J2 +lI..o;h(t/J)]} . (2.1) 

Because of the behavior of the parameters in the model with 
the ultraviolet cutoff, (2.1) can be viewed as a symbolic 
shorthand for a set of limiting procedures that I will subse­
quently detail. 

The first step in my approach is to introduce a finite 
portion of an infinite space lattice, with a field variable on 
each lattice site. This procedure introduces both a volume 
and an ultraviolet cutoff. I thus start from 
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Z = m -1 f :.~ f I} dt/J. 

X { ~ [8 ~ (t/J. - t/J.+6)2 
exp - ~v - ~ 2 

• q {II} a 

+m~t/J: +lI..o:fi(t/J.):]) , (2.2) 

where M is a formal normalization constant, r ranges over a 
finite portion of the space lattice, {3} is one-half the set of 
nearest-neighbor sites on the lattice, v is the specific volume 
per lattice site, e.g., a4 for the hyper-simple-cubic lattice, a is 
the lattice spacing, q is the lattice coordinate number,fi (t/J.) 
is a lower, semibounded, even, monic polynomial of degree 
2p, and :t/J": is the normal-ordered product. As long as the 
lattice spacing is greater than zero, the normal-ordered 
product19 is 

:t/J2P: = ± (2p)!( -IY 2-JCit/J2p-2J (2.3) 
i=O (2p-2j)~1 ' 

where Cis the Fock-space commutator [t/J-,t/J+] that, for 
the hyper-simple-cubic lattice in a box of edge L with N 4 

sites, is 

1 (21T)4 [ ( 1 )] -I C=--4 - L m~ +4a-2 L sin2 -k·3 
(21T) L k {II} 2 

(2.4) 

where k ranges in steps of (21T/L) over a cube -1T/a<kj 

<1T/a, i = 1, ... ,4. In the limit as the box size becomes infinite, 
C goes over into an integral over k. This limit having been 
taken, if we now let a-+O then C-oo in a manner propor­
tional to a-2

• By the use of (2.3) I can reexpress (2.2) as 

Z = M -I f ~.~ f II du. exp{K L L u.u. + II 
- 00. • {II} 

- ~ [A~ +XoP(U.)]} , (2.5) 

where M is a different formal normalization constant and P 
is again a lower semibounded, even, monic polynomial of 
degree 2p, provided a > O. The notation of (2.5) is given by 

U. = t/J. (16v/qa2K) 1/2, A = ! K(1 + a2m~) , 
_ P (2.6) 
11..0 = 11..0 (qKa2/16v)Pv , P(x) = L aix~, ap = 1 . 

J=I 

The introduction of the extra parameter K in (2.5) allows us 
to impose the following normalization on the scale of U.: 

1 = (0 = (~)IK=O 

f~ :X2 exp{ -Ax2 -XoP(x)}dx 
=-----'-::--=--:---=~-:---

f~: exp{-Ax2-XoP(x)}dx ' 
(2.7) 

which determines A as a function of Xo and P. We will defer 
discussion of the boundary conditions to a latter section. 

I now introduce the concept of "phantom fields," which 
is central to my approach. I choose Xo = O( 1) and aJ 
= O( 1) with respect to the lattice spacing a. By means of 
therelationbetweenu. andt/J. of (2.6) and (2.3) and (2.4) 
we may readily compute that the coefficient of t/J2" in (2.2) 
will be proportional to a2

(" - 2). In other words the coeffi-
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cient of t/J4 is of order unity, that of t/J6 is of order a2
, t/J8 of 

order a4
, and so on. This means that if we were to write out 

the continuum limit, symbolic shorthand without further 
attention, no polynomial term beyond t/J4 would seem to ap­
pear. Nevertheless, it is far too hasty to jump to the conclu­
sion that the presence of if, say, in (2. S) does not affect the 
continuum limit. We call these fields "phantom fields" be­
cause they appear to vanish in the continuum limit. Even so, 
that they may affect the continuum limit can be seen by the 
following illustration. The normal-ordered products from 
the phantom fields contribute coefficients of order unity to 
the coefficient of t/J4. For example, 

a2:t/J6: = a2t/J6 - ISa2Ct/J4 + 4Sa2C 2t/J2 _ ISa2C 3
• 

Since C a: a-2 we get a negative contribution to the coeffi­
cient of t/J4 in the continuum limit. With a judicious choice of 
p, I can produce a model, which is stable for large t/J, i.e., the 
integral in (2.2) over t/J. converges for a> 0, which has a 
positive (divergent) sign of the coefficient of t/J4 and no term 
visible to compensate it. This model avoids Newman's4 
proof of nonexistence because in his sense, the "polynomial 
degree" remains 4 for all phantom field models. 

We close this section with a discussion of Nelson's'6 
axioms for a continuum Euclidean field theory as they apply 
to lattice cutoff field theory. The axioms are: let there be 
given a random field t/J(x) with the following properties 
[where/(") (r» ... ,r,.) is a testing function, i.e., it is infinitely 
differentiable and vanishes outside a finite region of "space­
time"] . 

(a) Euclidean in variance. 

T,.,t/J [P") (r" ... ,r,. >] = t/J [P") (Or, + b, ... ,Or,. + b>] , 

(2.S) 

where 0 is an orthogonal transformation including reflec­
tions, and T,., is a member of a group of measure preserving 
transformations that are indexed by 1/, 1/r = 0 -'(r - b). 
This property holds for the lattice cutoff models in the re­
stricted sense that it holds for the symmetry group of the 
lattice. In impose periodic boundary conditions, then we get 
at once the translational in variance by any of the four funda­
menta1lattice vectors. When the lattice spacing goes to zero, 
this property becomes translational invariance. As far as ro­
tations and reflections go, only the lattice symmetries are 
built in and it remains to be shown that the full orthogonal 
group develops in the continuum limit. 

(b) Markov property. This property is easily explained on 
the lattice. Let Xbe a finite subset of the points on the lattice 
and ax be all the nearest-neighbor points of the points in X 
that are not themselves points in X. Then, if u is any random 
variable that depends only on t/J(x), xeX, the Markov prop­
erty says 

(2.9) 

where X I is the complement of X on the lattice and 1: (X) is 
the set of all t/J(x), where xeX. In words (2.9) says that the 
expected value of a random variable with support in X is not 
changed, once the values of the nearest-neighbor fields are 
fixed, by fixing further spins in the complement of X. This 
property of my model can be seen by inspection of (2.2) [or 
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(2.S)] because once the t/J(x) in the set ax are fixed, the 
expectation value integral factors into an integral over X and 
one over x'/ax. The second one cancels between the numer­
ator and the denominator of the expectation value leaving 
only integrals over t/J (x), xeX, irrespective of what spins are 
or are not fixed in X I \ax, which means the Markov proper­
ty is built into this model. 

(c) Hermiticity. 

t/J{[P,.) (r" ... ,r,. >] *} = {t/J [p,.) (r" ... ,r,. ) p*. (2.10) 

This property follows easily here because the measure is a 
non-negative definite function of real t/J(x). For further de­
tails, the reader is referred to Baker'9 and Nelson.'6 

III. INFINITE VOLUME LIMIT 

Much of the basic material needed in this section is al­
ready available for the models under consideration in Ba­
ker's review article.'9 I emphasize immediately that 
throughout this section a finite lattice spacing will be as­
sumed and the passage to the continuum limit will be consid­
ered in the next section. The first step is to establish the 
existence of this limit and this step has been taken in the 
aforementioned reference for three sets of boundary condi­
tions. Namely, first free boundaries (a SUbscript plus is used 
to denote them) where any term ofthe form (t/J. - t/J. +,,)2 
in (2.2) that involves a t/J which lies outside the finite portion 
of the lattice considered is dropped. Second, periodic bound­
ary conditions (no SUbscript is used to denote them), where 
the portion of the lattice considered is infinitely repeated in a 
periodic manner so when a t/J. +" occurs that falls outside the 
portion considered, it is replaced by the corresponding t/J on 
the opposite boundary. Finally Dirichlet boundaries condi­
tions are used. (Here a subscript minus is used to denote 
them.) Here if a t/J. +" lies outside the portion considered, it 
is just taken to be zero. The main tools used are various 
correlation function inequalities. Next define the Schwinger 
functions, 

S(r" ... ,r,.) = (MZ) - 1 f :.: f [I} dt/J. ]t/J.I ... t/J •• 

X { 
"[,, (t/J. - t/J.+" )2 exp - k. v k. 2 
• {,,} a 

+m~ t/J; +Ao;h(t/J.):]), (3.1) 

where M, Z are as in (2.2). The appropriate boundary condi­
tions, by use of (3.1), are implied to define not only Sbut S + 
and S _ as well. The conclusions are, in brief, 

Z+>Z>Z_>O, 

S(r" ... ,r,. »S_ (r" ... ,r,. »0, 

S+(rl, ... ,r,. »S_(r" ... ,r,. »0, 

and independent of system size, 

S(r" ... ,r,. ) 
<: So x" exp[ - m~a4x2 - AoD4;h(x): ]dx 

So exp[ - (m~a4 + Sa2)x2 -AoD4;h(x):]dx 

(3.2) 

(3.3) 
As to the variation with system size Z + decreases monotoni­
cally, since if two chunks of lattice A and B are joined 
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Z+,A+B<Z+.AZ+,B (3.4a) 

and Z _ increases monotonically in the same sense, i.e., 

Z_.A+B>Z_.AZ_.B' (3.4b) 

These inequalities permit the conclusions, if one treats a por­
tion of the lattice of edge L 

1 . 1 . 1 I 
-lnZ+> 11m -lnZ+>lim -4InZ_>-4InZ_. 
L 4 L-+<s> L 4 L-+<s> L L 

(3.5) 

Equation (3.5) gives meaning to the "free energy" per unit 
volume as 

(3.6) 

has been proved to exist for fixed lattice spacing for every 
non-negative, bare-couple constant Ao and bare mass m~. 
Further it has been proved19 that 

/= - lim O/L 4)ln Z =/_ , (3.7) 
L-+<s> 

and 

These results establish the full existence of the infinite vol­
ume limit for Dirichlet boundary conditions and at least par­
tial results for other boundary conditions. 

The next step is to see what can be concluded from the 
cutoff perturbation series in Ao. Here, of course, I keep the 
lattice spacing a > 0 and I will first start with a finite sized 
box of edge L. First notice that since ;.h(;): is lower semi­
bounded, there exists a constant Y such that ;.h (;): + Y>O, 
for all real ;. If I replace ;.h: by ;.h: + Yin (2.2) then Z is 
replaced by Z exp( - AoVN4Y) , where there are N 4 lattice 
sites in our box of edge L. It is now immediate that 

Z exp( - AovN4Y) = i<S> e - A.c,s dp(s) = g(Ao) , (3.9) 

where dp is a non-negative measure. Functions of this struc­
ture can be exploited by means of the following generalized 
Pade approximants20,21: 

" B"._I (z) = L aj exp( -ZO'j) , 
j=1 (3.10) 

" B",o(z) =ao+ L a j exp( -ZUj ) , 

j= 1 

where the a", aj' O'J' uj are never negative and are deter­
mined by the equations 

g(z) - B". _ 1 (z) = O(z2") , 

g(z) - B",o (z) = O(z2" + I) . 

These approximants have the properties 

(3.11 ) 

B", _ 1 (z) <B" + I, _ 1 (z) <g(z) <B" + 1,0 (0) <B".o (z) , 

(3.12) 

for real, non-negativez. For every such z, (3.12) implies that 
as n-+oo bothB", _ 1 (z) andB".o (z) converge to a limit (not 
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necessarily the same limit). Using these approximants and 
the monotonicity properties in box size established in Sec. II, 
Bakerl9 proves that from the series expansion for finite box 
size with Dirichlet boundary conditions 

/=/-

= - !~~[m~(lIL4)ln[eXp(AovN4Y)B",_t<A)])]' 
(3.13 ) 

where vN41L 4 is a pure number depending only on lattice 
structure, and/and/_ areas given by (3.6) and (3.7). If the 
series expansion for free-boundary conditions is used, then 
the result, 

/+ = - !~~[mln(lIL4)ln[exp(AovN4y)B".0(A)])] 
<.1=/- (3.14) 

follows, where the inequality follows by (3.2). 
By means of the cluster property for the free field 

(Ao=O) special case and the combinatorial structure of the 
series expansion in Ao Baker19 shows that the expansion is 
finite, term by term, and independent of L since, by con­
struction (3.11), 

/+.L - (lIL 4)ln[exp(AovN4Y)B",o(Ao)] =O(A~"+I), 

/ _ ,L - OIL 4)ln[ exp (AovN4 Y)B",o (Ao)] = O(A ~") , 
(3.15) 

and since all the series terms remain finite as L-+oo, Eq. 
(3.15) remains valid in the infinite volume limit. 

Next I remark that (3.4) can be replaced by a uniform 
boundS" for O<.Ao<' 00. The end pointAo = 0 causes no trou­
ble as it is explicitly computable and finite (a > O,m~ > 0). 
Since;.h: is lower semibounded, the factor exp[ ] tends to a 
finite number of peaks at fixed values of x. By the saddle­
point method, as Ao-+oo t~e bound in (3.3) becomes 

2 2 ' l:/exp( - Sa Xj )a j 

(3.16) 

where only the tallest peaks contribute, and l:a j = 1. Thus 
the upper bound of (3.3) is uniformly bounded over the 
whole range O<.Ao<' 00 and we select S" as the least upper 
bound. As a consequence of this bound, it is a straightfor­
ward computation to show that 1/'- I and 1f'1 are uniformly 
bounded for all Land O<.Ao<' 00 if a> 0, m~ > O. Thus it must 
be that the infinite volume limit of / _ = / is a uniformly 
continuous function of Ao, O<.Ao<' 00. 

Ifwe investigate the behavior of/± as a function of the 
boundary conditions we note that the difference between Z + 
and Z _ is just a change in the coefficients of the boundary ;~ 
terms. Thus if we go from Z+ to Z_ by adding 7J va-2;~, 7J 
running from zero to unity, to each boundary ;; term we 
find 

:~ = V~~2 ~ (;;) • (3.17) 

By (3.3) each term is bounded and as there are only of order 
L 3 termsa/la7J~ asL-+oo. Thus/+ =/_ =/in theinfi­
nite volume limit. 

Ifis now established that, for any of the three boundary 
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conditions considered, the same infinite volume limits of the 
free energy per unit volume is obtained. For Dirichlet 
boundary conditions the infinite volume limit of the 
Schwinger functions exists. For the approach to the origin 
along the positive, real ,.1.0 axis, these functions are asympto­
tic to the finite, term-by-term, perturbation series in ,.1.0' Uni­
form continuity holds for the free energy in ,.1.0 and also the 
other coefficients of /z and the infinite volume limits of the 
Schwinger functions are uniformly bounded in ,.1.0' 

I remind the reader that so far I have only discussed 
existence and have not discussed the question of uniqueness 
of the sum of even the finite volume the perturbation series. 
A partial discussion of the direct summation of the infinite 
volume limit perturbation series will be given in Sec. V. 

To prepare for the eventual consideration of the contin­
uum limit I now consider the properties of the two-point 
Schwinger function S(r l ,r2)' As is well known (e.g., Ba­
kerI9

), for a lattice free field [Eq. (2.2), ,.1.0=0] 

S(r,s)ex:e-molr-sVlr_sI3/2. (3.18) 

This exponential decay identifies mo as the mass of the field 
and this property is useful in making further progress on the 
rigorous properties of the model field theory. For the lattice 
cutoff Euclidean theory under discussion we wish the behav­
ior 

(tPotPr) ex: exp( - mer) Irll , (3.19) 

where r is a unit vector parallel to r. We must allow possible 
direction dependence at this stage since we are working on a 
lattice. 

The usual definition of the physical mass in the infinite 
volume limit is 

m = lim inf (-In[ (tPotPr)/B ]/lr/) . 
Irl ~'" 

(3.20) 

By Griffiths' inequalities,22.23 which hold for this case, 
(tPotPr) >0 so there is no problem taking the logarithm, and B 
is the upper bound of (3.3) for (tPotPr) uniform over all r. By 
construction m>O. It is worth mentioning that a finite box 
size approximation to m can be defined. Instead of (3.19), 
define 

ft(L) = min ( -In[(tPrtPs)IB]llr-sl). 
r.S 

By arguments of Bakerl9 it follows directly that 

ft(L + 1)<ft(L) , 

and by construction ft (L) >0. Thus 

lim ft(L) =ft>O, 
L~", 

(3.21) 

(3.22) 

(3.23 ) 

by standard theorems. Next, I need a result of Nelson's. 16 
First the unnormalized transfer matrix from one lattice hy­
perplane to the next is 

To=exp(-J.- v ± r'{r [(tPr+f>+n6' -tPr+n6·)2a -2] 
2 n = 0 r {6}' 

2384 

+ m~tP~ + n6' + Ao;h (tPr + n6'):} 

+ v~' (tPr+'" - tPr )2a- 2) , 
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(3.24) 

where 1:r I is over the three-dimension lattice hyperplane, 
{al' is the subset of {a} that lies in the lattice hyperplane, 
and a' is the nearest-neighbor vector perpendicular to the 
hyperplane. The normalized transfer matrix is 

T = T oIspr(To) , (3.25) 

where the spectral radius of an operator is defined as (inde­
pendent of norm) 

(3.26) 

It is evident by construction that T is a real symmetric opera­
tor and positively preserving, i.e., if u is everywhere positive, 
then Tu is also. Further all eigenvalues, tv' of T must by 
standard theorems be real, and by construction ltv 1<1. In 
fact Nelson 16 shows that they are all non-negative and there­
fore, there exists a unique, Hermitian, positive operator H 
such that 

(3.27) 

A consequence of this result is, by the spectral theorem for T, 

(tPotPn6') = (tPoe-nHtPo) = t tndft(t) (3.28) 
(tP~) (tP~ ) Jo ' 

wheredft is non-negative. Since (t 2n) >(t n)2 we find that, in 
any direction perpendicular to a lattice hyperplane (or any 
reflection symmetry hyperplane of the lattice) that 

-In( (tPotPn6' )/(tP~» -In( (tPotP2n6' )/(tP~» 
-------, , . (3.29) 

Ina'i 12na'l 
In addition (3.28) has the obvious consequence (as O<t< 1) 
that the correlations are monotonic along lattice lines: 

(tPotPn6.)«tPotPCn -1)6') ' (3.30) 

which implies (tP~) bounds every two-point correlation 
along a lattice line. 

The property of reflection positivity (or Osterwalder­
Schrader positivity) holds for our model. 24-28 Combining 
this property with further arguments, Schrader29 has ex­
tended (3.30) to show that (tPotPr) is a monotonically de­
creasing function of each IXi I [r = (X I,x2,x3,x4)] separate­
ly. This result means, of course, 

(3.31) 

When Schrader monotonicity is coupled with (3.29) we 
conclude that as the box size goes to infinity, the separation 
I r - s 1 of the minimizing pair in (3.21) goes to infinity, and 
so ft defined by (3.23) and m defined by (3.20) agree with 
each other. (See the Appendix.) 

Another consequence of reflection positivity is that if () 
is a reflection in the lattice hyperplane and F(tPI, ... ,tPn) and 
G(tPI, ... ,tPn) are functions of tPi'S lying all on one side of the 
hyperplane, then the standard reflection-positivity inequal­
ity, 

(F(}F*),O, (3.32) 

where * denotes complex conjugate, can be used to prove the 
Frolich-Lieb30 inequality 

1 (F(}G *) 12< (F(}F*) (G(}G *) , (3.33) 

which in tum leads t031.32 
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I(~~B) _ (~A)(~B)I = I«~A_ (~A»(~B_ (~B»)I 
< (~A(J~A ) 1/2(r/JB(Jr/JB) 1/2 

«(r/J2)A)1/2(r/JB(Jr/JB)1/2, (3.34) 

where A and B are on opposite sides of the hyperplane and 
the last inequality follows in a manner similar to (3.30) et 
seq. By ~ we mean r/JA = llae.4 r/J", where A is a set oflattice 
sites perhaps including repeats. 

Another valuable tool in the study of this model is the 
Fortuin, Kasteleyn, and Ginibre31 inequalities, which has 
been proved for this case. They state that if/(r/JI, ... ,r/J,,) and 
g(~I, ... ,r/J,,) are increasing functions of each argument sepa­
rately, then 

(/g»(/) (g) . (3.35) 

By use of these inequalities following the line of argument of 
Bricmont et a1. 32 and using superstable estimates33

•
34 Sokal35 

has established a cluster property. Superstable means that 
the condition 

(3.36) 

is required, where A is the finite portion of the infinite space 
lattice considered, A > 0, C is real and the partition function 
is given by 

ZA =JexP [ - U(r/JA)] II dp,(r/JA)· (3.37) 
AeA 

This condition can be met easily for (2.2) by adjusting the r/J2 
term, which goes with the site--site interaction, and placing 
the rest in the dp, term. The Sokal cluster property is 

1(~Ar/JB) - (r/JA )(r/JB)I<C Ilnxl a + P - 2x, (3.38) 

where C is a constant, a is the number of members of A and{3 
ofB, and 

x = L L (r/J"~b) - (r/J,,)(r/Jb)· (3.39) 
ae.4 beB 

Note that (r/J,,) = (r/Jb) =Obyther!J--r/Jsymmetryofthe 
model in the absence of spontaneous symmetry breaking. 
Clearly (3.39) implies that if the two-point correlation func­
tion decays exponentially, then so too do the multipoint cor­
relation functions except perhaps for a power of the separa­
tion. 

Suppose now that we have chosen the parameters of 
(2.2) in such a manner that m > 0 (3.20). Let us compute 

as(rl> ... ,r" ) 

aAo 
= L(r/Jr,' ... '~r/t(r/Jt» - (r/Jr" ... ,r/Jr){ft(r/Jt». 

t (3.40) 

The above sum over t breaks up into two parts. In the first 
part there are a finite number of lattice sites t that cannot be 
separated from {rl, ... ,r,,} by a hyperplane. In the second 
part (remainder) this separation can be made. For the sec­
ond part, by (3.34), 

1~(2) (r/Jr"···'~r/t(~t» - (r/Jr,,···,r/Jr){ft(r/Jt»I 

<L (r/J;, , ... ,r/J;) 1/2{ft(r/Jt )(Jdt(r/Jt» 1/2, (3.41) 
t 
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where (Jt is a reflection through that lattice hyperplane 
which separates {rl, ... ,r,,}fromtandmaximizes It - (Jtl. By 
the assumed exponential decay, (3.3) and (3.38), the sum 
over the second part is finite. As there are only a finite num­
ber of terms in the first part it is also finite. Thus as / aAo is 
finite, independent of L, and so also as L-00. Thus we may 
conclude that Y _ is uniformly continuous in Ao. The argu­
ment is the same for the other parameters infi. 

Again, suppose that m > 0, following the analysis at 
(3.17) we find that, for the difference between free and Dir­
ichlet boundary conditions, 

= va- 2 ') {(r/Jr ,···,r/Jr r/J;) 
7t ' • 

- (r/Jr,,··.,r/Jr.) (r/J;)} . (3.42) 

By the application of (3.38) the right-hand side is of the 
order L,,+3 exp( -mL), which goes to zero as L-oo. 
Thus in the infinite volume limit S(rl> ... ,r,,) is independent 
of the boundary conditions. 

For the next discussion I continue to assume that m 
(3.20) is greater than zero. The purpose of this discussion is 
to establish the continuity of the physical mass and ampli­
tude renormalization constants as a function of the param­
eters of the Hamiltonian. Instead of the true mass, I will use 
the second moment definition of the mass. Namely, 

(m )2 = 8 (l:r (r/Jor/Jr)] . 
2 (l:r r2 (r/Jor/Jr )] 

(3.43) 

Since (r/Jor/Jr) >0 by the Griffiths inequality and at least one 
term in the denominator is strictly positive for (2.2) Eq. 
(3.43) is well defined, provided m > 0 to assure the conver­
gence of the sums. Since we have shown at (3.42) that 
(r/Jor/Jr) is a continuous function of Ao, given m > 0, then any 
partial sum of'I.r r2 (r/Jor/Jr ) and 'I.r (r/Jor/Jr) is continuous as the 
sum of a finite number of continuous functions is contin­
uous. For any closed interval II' Al <Ao<A2, in which m > 0 
for all Ao, each partial sum is, of course, uniformly contin­
uous. By the exponential decay of (r/Jor/Jr) >0 the partial sums 
from (3.43) converge uniformly over II and so the complete 
sum is by standard theorems, also continuous and thus the 
limiting function m2 is also continuous in II. 

To complete the control of the two-point function, the 
usual procedure is to scale the amplitude of the field r/Jr as 

t/lr = Z 3- 1I2r/Jr , (3.44) 

where Z3 is the traditional name for this factor. It is deter­
mined by the equation 

(3.45) 

so the result is 

(3.46) 

or m 2 is also frequently used in placeofm in (3.46). Needless 
to say, in the regions where m = 0 it is of course, continuous 
in Ao, etc. The above results do not address the question of 
whether m can drop discontinuously to zero or not, nor will I 
in this paper. 

Next I show that at least for some sets of parameters, m 
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is greater than zero. It is most convenient to use the formula­
tion (2.5) for this demonstration. First, change variables to 

O'r = VrSr ' V = ± 1, O';;;;S';;;; 00 , 

so that (2.5) can be rewritten as 

Z =M- 1 L J'~'JII dSr 
{v,= ±l} 0 

xexp{K L L Vrnr + IISrSr + II 
r {II} 

- ~ [AS; + XoP(Sr ) ] } , 

(3.47) 

(3.48) 

as Pis an even polynomial. Now if we use the standard meth­
od, 

exp{Kvr Vr + IISrSr + II} 

= cosh [ Ksrsr + II ] (1 + Vr,r + II Vr Vr + II ) , 

where 

(3.49) 

vr,r + II = tanh [Ksrsr + II] , (3.50) 

then Fishe26 has proved that, before the integration over Sr 
is performed, 

(O'rO's).;;;;C(r,s), (3.51) 

where C(r,s) is the generating function for all self-avoiding 
random walks between r and s on the lattice. That is, 

C(r,s) = L II vt,u' (3.52) 
rer,s) (t,u)er 

Now to bound (3.52) after the integration, I first observe the 
elementary results, x, y;;;'O, 

tanhx.;;;;x, 

l';;;;cosh Kxy.;;;;eKXY.;;;;exp[! K(x2 + y2)] . (3.53 ) 

It is sufficient to use the lower bound of (3.53) on every bond 
attached to a vertex in the random walk in the denominator 
of the expectation value over the Sr and the upper bound on 
the same bonds in the numerator. This procedure splits the 
total integral into two factors, one over the vertices of the 
random walk and the other over all other vertices. The latter 
cancels between numerator and denominator. The contribu­
tion of each vertex is then bounded by the finite factor, 

fO'x2exp[! qKx2 - Ax2 - XoP(x) ]dx 
V= _ _ , (3.54) 

fO' exp[ -Ax2 -AoP(X) ]dx 

where q is the lattice coordination number. Thus 

C(r,s)';;;;V L (Kv)n(r)=:C(r,'S) , (3.55) 
rer,s) 

the sum is over all self-avoiding walks r, and where n (r) is 
the number of bonds in the walk r. Next, a weaker bound 
will result if the self-avoiding restriction is dropped. Thus 

C(r,s)';;;;V L (Kv)n(r)=C(r,s), (3.56) 
rer,s) 

where the sum is now over any walk which connects rand s. 
The sum defining C has been evaluated. By translation invar­
iance it suffices to consider 

~ V J 1/" J exp(ia- 1s-k)d 49 C(O,s) = -- ... , 
(217')4 -1/" 1 - qVKA(9) 

(3.57) 
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where q is the lattice coordination number, and A (9) is the 
lattice structure function. It is defined by 

A(k)=q-l Lexp(ia-1rk) 
r 

(3.58) 

where the sum over r is over the set of nearest-neighbor lat­
tice vectors. The asymptotic behavior of (3.57) as Isl-oo 
has been computed by Montroll and Weiss.37 It is 

C(O,s) - 2V 2 (!!...)[qVK(1 - qVK) ]112 
(!1TqVK) S 

(2s( 1- qVK)1I2) m2( 2 )3/2 -ms XK1 - ---- e 
a qVK qK 1Tms ' 

(3.59) 

where Kl is the first modified Bessel function ofthe second 
kind and 

m = (2/a)[ (1 - qVK)/(qVK)] 112. (3.60) 

These results are valid for 0 < q VK < 1. From (3.54) it is 
clear that KV(K) is an unbounded, monotonically increas­
ing function of K so there exists a k such that 0 < K < k 
exactly corresponds to the aforementioned range for q VK. 
Thus from (3.59), the definition of the physical mass (3.20), 
and the inequalities (3.51), (3.55), and (3.56), I conclude 
that 

m;;;.m. (3.61) 

By (3.60), and the remark thatK = Ome8!ls (O'rO'.) = Br,. 
so m = 00, it now follows that for O.;;;;K < K, m > O. Thus at 
least in this region the above given analysis holds. 

As a further result, I show that for K sufficiently small, 
the series expansion for f converges. To start with I rewrite 
(2.5) as 

Z = M-1J ~.': J II dO'r exp{ - !KL L (O'r - O'r+/l)2 
- 00 r 2 r {II} 

-~[(.4- ~ qK)O:+loP(O'r)]} 

=M-1J ~.~ J IIdO'r II (1 +I..r+/l) 
- 00 r r,{II} 

xexp{ - ~[(.4 - ~ qK) 0: + loP(O'r)]} 

= L J ~.~ J II dO'r II I.,r +/I 
r - 00 r r,{II}er 

xexp{ - ~[(.4 - ~K) 0: +loP(O'r)]} 

= L{ II l.,r+II)' (3.62) 
r r.{II}er 

where the sum over r is the sum over all subsets of the near­
est-neighbor bonds on the finite portion of the lattice under 
consideration and 

fr,r +/I = exp{ - !K (O'r - O'r + II )2} - 1. (3.63) 
By the well-known combinatorial cluster theorem, 

z=exp{~ (.!t/~,r+II)}' (3.64) 
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where the sum over r is now restricted to connected clusters 
only. If we organize the sum by the number of vertices, then 
by adapting an argument of Glimm and Jaffee38 to four di­
mensions there are at most (2tjq+ I )V different connected 
terms, for v vertices. Next since 

and 

I 
X2X3X4 I 

le- x -ll< x- -+---+ ... 
2! 3! 4! 

<Ixl + Ixl2 + Ix l
3 

+ Ixl
4 

+ ... 
2! 3! 4! 

<Ixl + Ixl
2 

+ Ix l
3 
+~+ ... 

I! 2! 3! 

(3.65) 

expUIKI(O"r -O"r+6)2]<exp[IKI(0; +0;+6)]' 
(3.66) 

it follows that 

If..r+6I<IK I (0; + 0;+6 )exp[ IK 1(0; + 0;+6)]' 
(3.67) 

Thus the contribution to (3.64) from v vertex clusters is 
bounded by 

N(~+ I)V f :.: f IIdO"r IIIf..r+61 

xexp{ - ~[(A - ~qlK I) 0; +loP(O"r)]} 

X If-+ COCO dO"r exp{ - (A - iqK)o; +loP(O"r)} I-V, 
(3.68) 

where the configuration in the numerator is that which 
makes the maximum contribution. Since no more than q 
bonds can meet at anyone site, it follows that for K suffi­
ciently small, independent of the number of vertices, the lar­
gest configuration will be the one with the fewest factors of 
K, i.e., v-I. Thus the numerator integral is bounded by 

IK IV-llf_+co""dq2q[M8X( 1,q2Q)] 

xexp{ - (TA - ~K - qlK I) 0; _ TAoP(O"r)} I v, 

(3.69) 

where use of the fact that (q2r + 2s ) ;;;. (q2r ) (q2s ) was made. 
Thus the contribution of v vertex connected clusters to 
(3.64) is bounded by 

(N /K)(2q2q+ 11K IF(K, IK I »)", (3.70) 

which, by direct computation, goes to zero geometrically 
with v as IJ---+ 00 for some IK I > 0 small enough. Thus, as each 
term in the sum in (3.64) is analytic, and it is absolutely 
convergent for small enough IK I, the sum itself is analytic at 
least in the same region by the standard theorems of complex 
variable theory and so the series expansion in K is a conver­
gent one. The same arguments hold if a sum over a finite 
number of sites, 1:reA O"rHr, is added to the exponents in 
(2.5). If we differentiate with respect to all the Hr , reA, then 
the only terms that remain are connected clusters B such 
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that A CB, and the above argument implies the convergence 
of the K series for IK I small enough for the Schwinger func­
tio~ as well as the free energy per unit volume. 

In addition, as a final result in this section I remark that 
the bound in (3.68) can be extended to complex 1 0, provided 
we hold fixed A > 0 and do not impose (2.7). This case can be 
seen to be appropriate for the normal perturbation theory 
expansion. Clearly, for IK I sufficiently small the 
exp( - Ao;) factor alone suffices to make the integrals of 
(3.68) converge so that we may select any 10 we please with 
Re(lo);;;'O and maintain convergence. If 1101 <AM for some 
definite AM> 0, then the denominator is well bounded away 
from zero. If I now gradually rotate the contour of integra­
tion over O"r by an angle 0, - 11"/4 < 0 < 11"/4, and P is of 
degree 2p, we can extend analytically the bound (3.68) from 
I arg 10 I " 11"/2 without contour rotation to 
larg 101 < (p + 1 )11"/2 by the union of a finite number of 
overlapping functional elements. Consequently, it follows 
that there exists aKo, IKol >0 such that for IK 1< IKol, the 
sum in (3.64) converges absolutely for 10 in the angular 
wedge 1101 < AM' I arg 101 < (p + 1) 11"/2 and so is analytic, in 
10 in compact subsets of this wedge on the Riemann surface. 
The same type of argument, where 10 is real and positive, 
also establishes directly that for IK I > 0 sufficiently small, 
there exists a neighborhood of 1 0, where! and the Schwinger 
functions are analytic in 1 0, These results will be useful in 
Sec. V when we discuss the summability of the perturbation 
series. 

IV. CONTINUUM LIMIT 

In the previous section I established the existence on a 
space lattice with a finite lattice spacing of the infinite vol­
ume or thermodynamic limit of certain boson, Euclidean 
polynomial quantum field theories. A number of properties 
of these limiting field theories were established. In this sec­
tion the limit as the lattice spacing goes to zero, in such a way 
as to maintain control of the two-point Schwinger function, 
is discussed. The two main items to control are the rate of 
exponential decay m [Eq. (3.20)] and the amplitude renor­
malization factor Z3 [Eq. (3.46)]. It will be most conven­
ientto work with form (2.5) with normalization (2.7) of the 
partition function because all the parameters appearing are 
then of order unity with respect to the lattice spacing. It is 
convenient further to introduce the notation 

_ ~< ) e- 2 _ 1:r (r/a) 
2 (0"00",) 

X-£,,; O"OO"r' ~ - , 
r 8X 

(4.1 ) 

which are the corresponding (unsubtracted) magnetic sus­
ceptibility X and correlation length in the analogous, contin­
uous-spin Ising model problem. As long as m > 0 the sums in 
(4.1) must converge. The correlation length S is the dimen­
sionless second moment definition measured in terms of the 
number oflattice spacings. By (2.6) and (3.43), 

(4.2) 

is an identity, and if we replace m by m 2 in (3,45) we get a 
slightly modified amplitUde renormalization constant by 
(2.6) and (3.46), 
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(4.3) 

In order to take the appropriate continuum limit a-o, with 
m2fixed, we must, by (4.2), take $"2_00. This procedure is 
equivalent, on a fixed lattice-spacing lattice, to taking m2, or 
m for that matter, to zero. We have shown for K small 
enough by (3.60) and (3.61) that m-oo as K-o and is 
definitely positive for KV < q-I. By use of a Peierls-type ar­
gumentl9-41 van Beijeren and Sylvester42 have proved in two 
or higher dimensions that there is long-range order 
«uour )_M2 > 0) for K sufficiently large. From this result 
it follows by (3.20) that m = 0, for K sufficiently large, and 
thatx = $"2 = 00 in (4.1). Asp(L) [Eq. (3.21) ] converges 
to m asL- 00, we can, for K large enough andL finite, make 
p (L) as small as we please. But for finite L, p (L) is contin­
uous in Kbecause (tfJrtfJ.) is a finite sum of continuous func­
tions, and p (L) is given by one particular such (r ,s). As K 
changes either (r,s) remains the minimum pair, assuring 
continuity, or there is a crossover to another (r ,s). If there is 
a crossover, it occurs at the value of K where the value of 
p (L) computed from the two pairs is the same, also imply­
ing continuity. The resulting function may, however, only be 
piecewise differentiable. In any such section of differentiabil­
ity, we compute 

ay(L) = L L (uru.utut+ lI ) - (uru.)(ut U t +6) 

aK t {II} (uru.) 

.;;;0, (4.4) 

by the Griffiths-Kelly-Sherman inequality.22.23.42 Thus as 
we have seen p (L) runs continuously and monotonically 
from 00 for K = 0 to 0, for K = 00, for fixed 10 , Hence by 
Bolzano~s theorem, for any fixed given m, there exists 
K(L,m,A,o,a) such thatp(L) = m. By use of (3.46), the am­
plitude renormalization factor Z3 (L,m,xo,a) is also directly 
computable. 

I now define the following limiting process. First, select 
a mass m. Define a correlation length $"(L) in units of the 
lattice spacing by 

p2(L)a2t 2 (L) = I (4.5) 

analogo~s to ( 4.2). Secpnd, select a sequence of correlations 
lengths $" j such that $" j - 00 as j_ 00 and a sequence of 
Tj > 1 such th8;.t Tj-oo asj-oo. F~r eachj choose a box of 
edge L J = Tj $" ja j' where aj = (m$" j) -I. Then solve for 

K j =K(Lj,m,xo,a j ), Z3(j) =Z3(L j ,m,xo,a j ), 
(4.6) 

as explained above, via the u-t/J (2.6) and t/J-rp (3.44) 
transformations, these parameters define a sequence of fields 
rpr (j).Asj-oo, thelimitsL-oo anda-oare taken simul­
taneously. By construction, at every step mass renormaliza­
tion p (L) = m and amplitude renormaIization (3.45) is 
maintained. Since we have demonstrated in the Appendix 
that the pseudomass p converges to the true mass m, the 
limiting field rpr has this preselected physical mass. In the 
absence of rotational invariance, this result is proved only 
along directions perpendicular to lattice reflection symme­
try planes; however, ml >m>!ml restricts the usual mass in 
this case. As all the properties, such as reflection positivity, 
the Griffiths inequalities, and the FKG inequalities, hold 
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uniformly in j, they and their sequela as well, such as the 
cluster property, hold in the limitj-oo. 

It is worth remarking that while the above given limiting 
process proves the existence of a fixed mass m > 0, and am­
plitude renormalized, Euclidean boson quantum field theory 
for any desired positive mass and any even polynomial inter­
action as described and restricted in Sec. II, it does not prove 
that p (K,L) is uniformly continuous in K for all L. In Sec. 
III, it w~ shown that so long as m > 0, continuity results; 
however, 1t does not preclude the possibility that the L-oo 
limit with fixed positive lattice spacing, m (K), can drop dis­
continuously to zero from some finite value. As monotoni­
city still holds, there can be only one such drop. Neverthe­
less, the limiting process still, in this situation, constructs a 
field theory which satisfies all of Nelson's axioms, except 
perhaps rotational invariance. Hence we have demonstrated 
that the field theory exists in the sense that it is defined by a 
convergent limiting process. 

In the subsequent discussion 18 of the question of 
whether the field theory so defined is trivial (i.e., no scatter­
ing) or nontrivial, numerical estimates based on finite length 
series expansions in K will be used. As I remarked at (3.70) 
these series have a nonzero radius of convergence. For that 
method to succeed, it is necessary that m (K) drop continu­
ously to zero. That question and the computation of the two­
particle scattering amplitude in the continuum limit are the 
two principle questions to be addressed by those numerical 
estimates. 
v. PERTURBATION THEORY 

The most important question concerning the perturba­
tion theory is, of course, whether it is useful in the sense that 
it, at least in principle, determines the physical theory. I have 
not yet been able to answer this question in full, but do have 
some partial results. Specifically, starting from the formula­
tion (2.5), for sufficiently small IK I. I can prove that the 
(necessarily lattice cutoff) series is summable and uniquely 
determines the physically correct values of the free energy 
and the Schwinger functions. 

First we observe that the general power counting argu­
ments for these theories, "phantom fields" as described in 
Sec. II, are the same as in tfJ4 theory.2 The point is that when a 
tfJ2n ver:!ex in the diagramatic representation of the expan­
sion in 11.0 about the free field appears, it creates (n > 2) extra 
internal momentum integrations beyond those in a simple tfJ4 
theory. However, in the diagrammatic representation this 
diagram is multiplied by an extra factor of a2

(n - 2) , as we 
saw in Eq. (2.6), which serves to exactly cancel the ultravio­
let divergence as a-o. This fact leads to a superficial degree 
of ultraviolet divergence of 4 - E, where E is the number of 
external lines. 

What is req1li!ed is a bound on the magnitude of the 
coeffieients of the 11.0 expansion. To this end I first treat the 
case: where P(u) = ulp and the lattice is the hyper-simple 
cub1c, for ease of exposition. The expansion of the partition 
function is 

_ 00 1 m 

InZ =lnZ(A.o=O) + L --7LW(Cm ) 
00 m= 1 m. c 

= L zm1;, m (5.1) 
m=O 
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where the sum over Cm is the sum over the labeled m-point 
connected graphs with 2p coordinated vertices, and W( Cm ) 

is 

where the e,. are the four unit vectors in the directions of the 
crystal axes, and v j are the m sets of momenta at each of the 
m vertices. The number of lines is! (each line has two ends) 
times the number of vertices time the vertex coordination 
number, 2p. The magnitude of W( Cm ) is bounded by 

[ 
217' ]m(p-lld 

IW(Cm)l< a(A -4K) , (5.3) 

where the lower bound for the denominators (A - 4K) was 
used. This bound is grossly large as the integrals over k are 
reduced for most cases by a factor of O(a2mp

) but it will 
suffice for our present needs. The total number of connected 
graphs of the class considered is less than the whole number 
of such graphs, which is (2mp)I/{2m (mp)!}. If this bound is 
combined with (5.1) and (5.3) the coefficient Zm oLi ~ is 
bounded by 

(2mp)! [ 217' ]m(p-l)d 

IZm l<Am = 2mml(mp)! a(A _ 4K) , (5.4) 

which is the order [(p - 1)m]! times a geometric factor. 
The addition of the lower-order (in 0') terms in P(O',) add 
contributions less rapidly growing than [ (p - 1) m]! and do 
not disturb significantly the argument. 

Grafli et al.43 give a generalized version of Watson's 
theorem, namely the following theorem. 

Theorem: Let D be a sector of an n-sheeted Riemann 
surface defined as 0< Izi <B, largzl <(), !m17'<()<~m17', 
where m> 1 is an integer. Let Dl be the sector larg zl 
<~<() - !m17' and jj be the sector 0 < Izl < B, larg zl <~. 
Then, given the formal power series 1::= oanz", suppose that 
(i) / (z) is a function regular in D with the formal series an 
asymptotic Series uniformly in D, 

N 

/ (z) = L anz" + RN (z); (5.5) 
n=O 

and (ii) there are 0', C so that 

lanl<C~(nm)!, IRN(z)I<C?+I[m(N+ 1)]!lzIN +I, 
(5.6) 

uniformly in D and N. Then the series 1::= (jan z" is Borel 
summable to F(z) in D. That is 

fez) = 1"" e-tF(ztm)dt, 

where 
00 

F(z) = L anz", an = anl(mn)!, 
n=O 
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(5.7) 

(5.8) 

and F(z) can be continued to a function regular in D 1• 

Note that the statement of this theorem implies unique­
ness inDo 

In order to apply this theorem to our present case, I 
observe that the strong control of the remainder follows by 
differentiation of (3.62) N + 1 times with respect to Xo and 
following the same line of argument to the end of Sec. III to 
bound this derivative. The bound on the remainder then fol­
lows by Taylor's theorem with remainder. Combining this 
observation with the deduction at the end of Sec. III that one 
can select () = !17'(p + 1) and _ m = p - I in }he theorem, I 
conclude for IK I < IKol and 1040 1 <Am' larg 040 1 <~ < 17' that 
the perturbation series in Xo is uniquely summable via (5.7) 
and (5.8) to the physically correct function. Since we also 
have shown at the end of Sec. III that/is analytic for all real 
positive Xo, we may extend the definition of the free energy/ 
by analytic continuation over this whole range and conclude 
that the perturbation series uniquely defines/, provided K is 
sufficiently small. The same arguments apply, with minor 
variations, to the Schwinger functions. Now for Xo real and 
positive we have shown at (3.55) that the free-energy 
Schwinger functions are analytic in K provided KV < 1. 
Thus by analytic continuation in K we can extend the results 
of the summation of the lattice cutoff perturbation series to 
this larger region. Put otherwise, the K series for fixed Xo can 
be constructed from the lattice cutoff series in Xo. The con­
verse, i.e., that the convergent K series implies the Xo expan­
sion is evident by the analytic character in K (5.2) of each 
term in the Xo expansion. So long as the K series for real Xo 
can be analytically continued, we can define, in principle, 
from the cutoff Xo perturbation series the physical quanti­
ties. The mass and amplitude renormalizations are directly 
performable in this region as explained above. For Xo=O we 
have the free-field case and the series expansions in K con­
verge for all O<s < 00, which suffices to construct the free­
field theory. As long as the integral in (5.7) converges abso­
lutely (known for K small enough) for real positiveXo, since 
the terms of the series expansion in Xo are analytic (5.2) in K, 
this construction provides directly the required analytic con­
tinuation to represent the physical, lattice cutoff theory. 

Although it is true that for Xo=O, we have the free-field 
case and here the K series converges for all O<s < 00, which 
suffices to construct the field theory, it does not seem likely 
that we may simply reverse the limits summation of Xo series 
for fixed S and s-oo directly in (5.7) because even in the 
mass and amplitUde renormalized Ao:/r:4 theory it is well 
known2 that the limiting coefficients are not finite term by 
term. Furthermore, of course, it may happen that for Xo > 0 
analyticity in it breaks down before S reaches infinity there­
by limiting this approach. On the other hand, nothing that 
we know so far precludes the possibility that cases exist 
where the field theories we showed to exist in Sec. IV can be 
reached via analyticity in K, and in fact such examples have 
been reported by Baker and Johnson. 1 In such favorable 
cases, where the continuum field theory is an analytic func­
tion in Xo > 0 and the boundary value of an analytic function 
in K, it may be possible (e.g., Baker44 ) to design a single­
limit, summation process to sum directly to the continuum 
limit from the cutoff perturbation series in Xo. In the mean 
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time, the equivalentK-series method for fixedXo is available. 
To illustrate the use of the K series, I will now calculate 

to leading order in Xo the two-particle and three-particle 
scattering amplitudes for the case where P(ur ) is of degree 
6. Specifically (2.5) becomes 

Z = M-1f :.~ f II dur exP[L(K LUrur+& -Ao; 
co r r {II} 

- gOO: - Xoa; + HrUr )]' (5.9) 

As Baker and Kincaids have shown, the dimensionless re­
normalized four-line coupling constant is given by 

__ (~) a2XlaH2 (5.10) 
g - 4 2,E-4' 

a X ~ 

where X and 52 are defined by (4.1) and 

a2X
I --2 = L U4(UO'Ur ,Ut ,Uu), 

aH H=O r,t,u 
(5.11 ) 

where U4 is the four-point Ursell function4s that is, when 
Hr = 0 so there is up-down spin symmetry, in the high­
temperature region 

U4 (uo,ur ,ut ,uu ) = (uourutuu ) - (uoUr) (utur ) 

- (uoUt )(uruu ) - (uouu )(urut )· 

( 5.12) 

In order to study the three-particle scattering amplitude we 
begin with the zero-momentum scattering amplitude l2 

(connected part) 

(0001000) c = Z ~ G ~:':nc (0,0,0,0,0,0), (5.13) 

'which we can reexpress, following Baker and Kincaid,s as 

(0001000) = (~)2m-2(a4XlaH4) 
c 4 3,E-8' 

a X~ 

(5.14) 

and thus define the dimensionless, six-line coupling constant 
as 

A = _ m2(0001000)c = _ (::) a;;:~4, (5.15) 

where a 4xlaH4 is the sum over the six-point Ursell function 
as in (5.11) for a 2xlaH 2. 

This computation will lead to a first-order expansion in 
go andXo of (5.10) and (5.15). I employ the linked-cluster 
expansion method of Wortis.46 This method expresses the 
series directly in terms of the cumulants of the single spin 
distribution as in (2.7). For go = Xo = 0, (2.7) implies that 
A = !, if we set aA = A - !, then it is elementary to compute 
that, to linear order, 

(~) = 1 - 90Xo - 12go - 2aA, 

(u4) = 3 - 900Xo - 96go - 12aA, (5.16) 

(~) = 15 - 10 17<Uo - 9QOgo - 90aA, 

(if) = 105 - 133 560Xo - 10 OSe>go - S40aA. 

By Eq. (2.7), (~) = 1, we solve for 

aA = - 6g1 - 45Xo' (5.17) 

So for this choice, 
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(U4) = 3 - 36<Uo - 24go, 

(~) = 15 - 6120Xo - 360g0, 

(if) = 105 - 95 760Xo - 4940g0, 

and thus the cumulants become 

M~ =1, 

° --M 4 = - 36OAo - 24go, 

° -M6 = -nOAo, 

M~=O, 

(5.1S) 

(5.19) 

plus, of course, terms of order ~,go Xo, and X ~. To compute 
(5.10) and (5.15),lneedxand5 tozeroorder,anda 2xlaH2 

and a 4X I aH 4 to first order in go and Xo. Hence I need to 
consider only those high-temperature graphs that have any 
number of vertices that are the meet of two lines, plus one 
four-line or one six-line vertex. Baker and Kincaid5 have 
computed the four-line vertex case. In this counting oflines a 
derivative a I aHr at a point counts as a line, and there are, of 
course [see (5.12) ], four derivatives ofln Z in a 2xI aH 2 and 
six in a 4XlaH 4. The class of graphs with just one six-line 
vertex to be considered for a 2X I aH 2 isjust (a) polygons with 
one root at which four derivatives act, and (b) polygons with 
one root at which one, two, three, or four linear chains are 
attached. In case (b) one derivative acts at the free end of 
each linear chain and the remainder at the root point. We 
will do the counting on the hyper-simple-cubic lattice. The 
generating functions are 

G = SK 1(1 - SK), 
2". 

P (K) =-I-ffff n~=ld8.. -1 
4 (21T)d [1- (2Kl:~= 1 cos 8 .. )2] , 

o 
(5.20) 

for linear chains and polygons in four dimensions, respec­
tively. Thus the sum of this class of graphs is 

M~P4(K) [±.!.( SK )j]. 
j=oJ11-SK 

(5.21 ) 

The graphs that contribute toa 4X I aH 4 are a single root point 
with 1= 1, ... ,6 derivatives and 6 - I linear chains with a der­
ivative at the free end. The sum of these graphs is 

M~ (1 - SK) -6. (5.22) 

When these results are combined with those of Baker and 
Kincaid,s X = (1- SK)-I, 52 =K(1- SK)-2, we can 
compute (hyper-simple-cubic lattice), to linear order in go 
andXo, 

g = K -2{24g0 + 360Xo + 3<UoP4(K) [24 - 672K 

+ 7424K2 - 36 S64K 3 + 69 632K 4]}, (5.23) 

A = K -46!Xo( 1 - SK). 

By means of (2.6) and (4.2) we note that 

A =90AoIm2, 

(5.24) 

(5.25) 

in terms of the parameters of (2.1). As is evident from 
(5.24), (5.25), and of course (2.6), as K--+l, which is the 
continuum limit as 52--+00 at that value, the value of A goes 
to zero in first order. In addition, for the "phantom field" 
prescription Xo = O( 1) compared to a, Ao--+O as a--+O 
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(s- 00 with a fixed mass m) and so disappears "like a phan­
tom" in the continuum limit. Needless to say, the expansion 
of A does not vanish in all orders in the continuum limit for 
terms involving Xo. An example is given in Fig. 1. 

Nevertheless, referring to (5.23) one sees that if I 
choose, as I am perfectly free to do, 

go< - (15 + iP4(V)XO' (5.26) 

I can make g negative in leading order in perturbation theory 
for all o <K<Xc = A. That this result is uniformly true in 
that range of K follows from (5.20) and (5.21) because (i) 
P4 (K)IK 2 is monotonically increasing inK to a finite value 
at K = 1, and (ii) K 2 times the term in square brackets in 
(5.21) times (1- SK)4is uniformly bounded by its value at 
K = l. This result is in sharp contrast to the case: where 
go> 0, where g is positive to leading order in go and Ao. This 
result demonstrates, as g>O without need for a perturbation 
expansion by the Lebowitz inequalities47

,48 for Xo=O, that 
even though Ao is a "phantom" its effects are quite clearly 
nonvanishing, at least in lowest-order perturbation theory. 

Although I have no proof, there are indications that this 
field theory is not asymptotically free. Namely the contribu­
tion of the Feynman diagram shown in Fig. 2 is proportional 
to 

(a
2Xo)2f :'~:a f dk l dk2 dk3 1T(kl )1T(k2)1T(k3) 

X1T(k - kl - k2 - k3 ), 

where the propagator is 

(5.27) 

[ 
4 4 ( 1 )] -I 1T(p) = m 2 +"2 L sin2 -poeTa , 
a T=I 2 

(5.2S) 

and eT are unit vectors along the crystal axes. This term 
(5.27) in the continuum limit a-o is finite and independent 
of k. The existence of this k-independent term, and, of 
course, many others, suggests that the scattering at high mo­
mentum does not vanish as in the free-field case and so the 
theory is not asymptotically free. We remark that this term is 
numerically different from the corresponding result for the 
hyper-body-centered cubic lattice and so that theory is prob­
ably cutoff dependent. 

A further consideration of the momentum dependence 
of the perturbation expansions suggests that the integration 
over the propagators can be considered in two cases. First, if· 
the integration over p converges, then in the continuum lim­
it, 1T(p)_[m2 + p2] -I so that rotational invariance holds 
directly. Second, the integration over p does not converge in 
the sense that the integral is made finite only by the existence 
of limits to the range of integration. For the Feynman dia­
gram expansion of a mass renormalized theory only logar­
ithmically divergent primitive graphs remain. An example is 
illustrated in Fig. 3. The direct expansion of the propagator 
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FIG. 1. A six-externalleg diagram 
involving six-line vertices which 
does not vanish in the continuum 
limit. 
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FIG. 2. A phantom field Feynman diagram. 

o o 

to second order in (pa) leads in this case to a constant that is 
independent of p and diverges like ( - In a) as a-o plus a 
finite part that depends on p in a rotationally invariant man­
ner in the limit as a-o. Use was made of the lattice symme­
try to derive this result. Elaboration of this result following 
the by now standard methods of Feynmann diagrammatic 
expansions lead to the conclusion that the series expansion in 
Xo, while not finite term by term, is at least rotationally in­
variant. Therefore although, as we have discussed, the direct 
summation of the Xo expansion in the continuum limit has 
not been established and so the conclusion of rotational in­
variance of the theory cannot be deduced from the term-by­
term rotational invariance of the Xo series as it could in 
t,b~ and t,b; theories,28 nevertheless rotational invariance is 
not ruled out by the continuum limit of the Xo series. If, in 
fact, rotational invariance does hold, then all of Nelson'sl6 
axioms are valid for the field theories we have been studying 
and, by his reconstruction theorem, correspond to Minkow­
ski space quantum boson field theories satisfying the Wight­
man axioms. 
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APPENDIX: MASS GAP 

In this Appendix I discuss in more detail the limits in­
volved in the definition of the mass gap. First, to see in Sec. 
III that the definitions ofthe physical mass (3.20) in the 
infinite volume limit agree with the infinite volume limit of 
the pseudomass (3.21), I argue as follows. 

For any box of size L, by (3.21) with fixed lattice spac­
ing (fixed K), 

p,(L)<. -In[ (t,brt,b.)LIB ]llr - sl, (AI) 

with equality at the minimum pair (r,s). Take any desired 
(r,s) fixed and take the limit L_ 00 of (A 1 ). This procedure 
yields 

o o 

FIG. 3. A primitive. logarithmically diver­
gent diagram. 

George A. Baker, Jr. 2391 



                                                                                                                                    

JL<' -In[ (t,6rt,6.) 00 IB ]/lr - 81· 
Now set 8 = 0 and take the limit, 

I
. . f -In[ (t,6otfJr) 00 IB ] 

JL<' 1m In = m, 
r~oo Irl 

which establishes an inequality between JL and m. 

(A2) 

(A3) 

Next I remark that the limit (3.23) selects a sequence 
(rL ,8L ) for which IrL - 8L 1--"'00, as proved in Sec. III. Ifwe 
define 

jl(L) = -In[ (t,6rLt,6.) .JB ]llrL - 8L I, (A4) 

then, if I select Dirichlet boundary conditions, it has been 
shownl9 that the two-point function is monotonically in­
creasing in L so JL (L) >jl (L). Thus, 

JL = lim JL(L);;;o lim jl{L) = jl. 
I.r-oo L-oo 

(A5) 

However, by translational invariance of the ( ) 00 , the limit 
in (A5) is just a particular sequence in the limit (3.20) and 
so neC<esSarily jl;;;om. ThusJL;;;om and hence, by (A3 ),JL = m, 
which completes the proof of their equality. 

In Sec. IV a more involved limiting process is used. The 
argument establishing (A3) is similar to that given above. 
Now B is chosen as a uniform upper bound over the closure 
% of the set of K j' To make the discussion clearer we denote 
the lattice points by i j and k k , where r = a j i j and 
8 = a jkj. Equation (AI) becomes 

(
L K) -In[(t,6aht,6aJr-)L~/B] 

JL j' j <. I' k I ' aj Ij - j 

(A6) 

again with equality holding for the minimum pair (ij ,kj ). In 
this case we fix r and 8 (let i, k vary inversely with a j)' and 
take the limit j--... 00. Since (A6) holds uniformly in j, this 
limit yields 

-1' (L K)/ -In[(t,6rt,6.)j=ooIB] JL - 1m JL " . .... . 
~oo J J • Ir - 81 

(A7) 

As for (A3), it follows that 

I
· . f -In[(t,6otfJr)IB] 

JL<' 1m In =m. 
Hoo /r/ 

(A8) 

Next, I show that the appropriate Schwinger functions 
exist in the limit j--... 00. As I have remarked in Sec. III, 
Schrader29 has shown that the two-point function is a mono­
tonic decreasing function of each component Ix; I 
[r = (X I,x2,x3,x4)] separately. In addition it follows from 
Schrader's29 Corollary 3.6 that if we write the n-point 
Schwinger function Sn' so that it is the expectation value of 
the n t,6's arranged in ilondecreasing order of their ith 
( = 1, ... ,4) position coordinate, then Sn is monotonic de­
creasing as a function of the differences of all the successive 
values of that coordinate. Of course, this result holds what­
ever i was chosen and so for each i. 

By the log convexity [ (3.28) and (3.29) ] and monoton­
icity of the two-point function ('I/1o'l/1r h, any limit j--... 00 

must be continuous except perhaps at r = O. For, if these 
were a discontinuity for Irol > o the derivative would be infi­
nite and there would be by log convexity a region 0 < r < ro, 
where ('I/1ovr ) co = 00, which would contradict the proved 
amplitude renormalization. That such a limit exists follows 
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from monotonicity in the following way. Choose a denumer­
able set of points, dense in {R 4\ Irl <d. From (3.45), Grif­
fiths inequality, and monotonicity, for any point r, Irl;;;OE > 0, 

0<. ('I/10'l/1r)<.4/(11'mc)2. (A9) 

Thus, at the first point there must exist a subsequence ofthe 
j's that converge to a limit by standard arguments. From this 
subsequence we can choose one that converges at the second 
point, and so on. Thus there exists a subsequence that con­
verges on a dense set and by the argued continuity every­
where in {p4\lrl <d. But as E is arbitrary we can define 
('I/1o'l/1r) in R 4 punctured at r = O. By two-point dominance 
we can bound all the higher-order Schwinger functions (on 
disjoint points) and by a repeat of the above arguments, us­
ing the above-quoted monotonicity, we establish the conver­
gence for all the higher-order Schwinger functions on a de­
numerable, dense set of points. This result suffices to prove 
convergence at least in the sense of distributions. The final 
subsequence obtained is what we now choose to be the origi­
nal sequence of (4.6). 

To obtain control of m from above, in addition to the 
lower bound (A8), I use the results of Simon.3 The main 
hypotheses of his theorems are the theory of Markov fields 
and the FKG ineqUalities, which are also available for the 
present case. The point is to study the spectral properties of 
the transfer matrix T = e - H. The idea of the proof is that the 
eigenvalue of the first excited state of H decreases continu­
ously towards the smallest eigenValue zero, as K increases 
for finite L and nonzero lattice spacing. Thus one always can 
select that eigenvalue to correspond to any desired mass gap. 
The decay of the two-point function is expected to follow 
closely this first excited state eigenvalue. 

The eigenvalue of the transfer matrix is related to the 
value of the two-point function along the direction perpen­
dicular to the lattice hyperplane defining the transfer matrix. 
In the notation of (3.24), we define 

JLdL) = min ( -In[ (t,6rt,6r+ nil' )/B ]/nI6'1). (AlO) 
r,n 

Monotonicity tells us that other correlation functions 
(t,6rt,6.) with ihe same projected difference of (8 - r) in di­
rection 6' are less than or equal to (t,6rt,6r + nil' ). Ifwe combine 
this result with lattice symmetry, we find the worst case is on 
the diagonal, so 

(All) 

where if rotational invariance holds, as I think likely but 
have not proved, JL (L) = JL 1 (L). The first inequality in 
(All) follows by comparison of (3.21) with (AlO). 

In the work of Simon3 rotational invariance is not used 
in any essential way as he works in a box finite in spacelike 
directions (1 in his case but he points out his results extend 
to higher dimensions) and infinite in the imaginary-time­
like direction (6' here). Simon proves that the first excited 
state is coupled to the single field operator t,6. If 0 is the 
lowest eigenstate (vacuum) of H [his Theorem 6 establishes 
its existence for our case by (A8)] of eigenvalue 0 [see 
(3.25)], then he defines '1/11 = '1/1- (0,'1/1)0. The unique 
spectral measure for H associated with '1/11 is denoted by 
dJL#. He further defines M(t,6)=inf(Supp dJLI/J1)' Then if 
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E =inf(u(H t {OF») and S is a subset of the Hilbert space 
K over which H is defined, when inf{M( "') It/JES} = E, Si­
mon says S is coupled to the first exciteci state. Under the 
conditions I' (L) = m, we have, by use of (AS), that Simon's 
results hold uniformly for every j in (4.6). By log convexity, 

1'1 (Lj»E(Lj ) >0, (AI2) 

as E(Lj ) is defined by the limit n-+oo in (AIO) and for 
1'1 (L) n is finite. 

Direct computation of the behavior of any eigenvalues 
Ta (L) of the transfer matrix T by standard perturbation 
theory, shows (i) aTa (L) )laK is bounded (but not uni­
formly bounded) for finite L, O<;K < 00, and so it is a contin­
uous function of K, and (ii) Ta (L) is monotonically in­
creasing in K. These results together with Dirichlet 
boundary conditions and our selection of a sequence j for 
which the two-point function converges insure that we may 
take the limitj-+oo of (AI2) to yield 

1'1>E>0. (A13) 

By Simon (Theorem 4, Lemma 2), E = m 1 • By an argument 
analogous to (All) m1 >m>!m1 so 

2p>m, (AI4) 

or, if rotational invariance is assumed, I'>m. Thus combin­
ing (AS) with (AI4) and I' = m by construction we get 

2m>m>m, (AI5) 

and m = m if rotational invariance holds. 
The proof of (AS) easily can be adapted to yield 

m1>1'1' which, when coupled with (AI3), gives the sharp 
result 1'1 = m l' One thus can choose m 1 = m 1 as desired. 
Since the main body diagonal is perpendicular to a reflection 
symmetry lattice hyperplane (HeS and HBee lattices) all 
the above arguments can be applied to the diagonal direction 
by use of a different box shape to establish m D = m D' which 
can be chosen at pleasure instead if desired. Likewise the 
same results are true for any direction perpendicular to a 
lattice reflection symmetry hyperplane. 
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Formal power series solutions of the linear system with one spectral parameter associated to 
the constraint equations for Yang-Mills superconnections on N-extended super-Minkowski 
space are considered. For N = 3 the integrability equations reduce to the supersymmetric field 
equations. The method of approach is identical to that used by Takasaki for the self-dual 
equations, based upon formal power series in a spectral parameter and in spatial variables. The 
problem is reduced to a linear system of equations for a superfield with values in an 00-

dimensional Grassmann manifold. The formal solution is expressed in terms of data on a 
(312N)-dimensional superhypersurface. However, a difficulty arises with respect to the 
Cauchy problem, which becomes formally solvable only for an extended system, breaking the 
relativistic invariance through introduction of additional superfields. 

I. INTRODUCTION 

The maximally extended (N = 3 or 4) supersymmetric 
Yang-Mills theory is remarkable for a number of reasons. 
At the quantum level, it is an ultraviolet finite theory. 1,2 It 
may be derived by dimensional reduction from a ten-dimen­
sional theory which is the low energy limit of the open su­
perstring.3

,4 Classically, it may, very similarly to the self­
dual Yang-Mills theory, be formulated in a geometrical way 
that permits identification of the field equations as integrabi­
lity conditions for a linear, overdetermined system of super­
field equations with a complex spectral parameter.5

-
8 This is 

based on the supertwistor correspondence of Witten5 and 
Manin.6 

It is possible that this latter interpretation may eventual­
ly lead to results on classical solutions analogous to the in­
stanton9 and monopole lO constructions. However, there is 
already a striking structural similarity to the integrable sys­
tems of Zakharov-Shabat type which have been so success­
fully analyzed through inverse spectral methods. 11,12 In par­
ticular, the possibility of determining solutions through the 
matrix Riemann-Hilbert problem has been noted by several 
authors. 13

-
15 For supersymmetric two-dimensional models, 

a straightforward generalization of soliton methods in the 
superfield formulation has been shown to yield analogous 
classes of explicit solutions. 16 Such methods may also prove 
applicable to the four-dimensional, N = 3 extended super­
symmetric Yang-Mills theory,17 giving rise to interesting 
classes of explicitly determined solutions. 

Before beginning such a program, it is useful to carry 
out some relatively simple formal computations, generalized 
from the two-dimensional framework. Recently, Takasaki 18 

developed a new formulation of the self-dual Yang-Mills 
equations, characterizing the formal power series solutions 
in terms of certain infinite-dimensional matrix functions. 

aj On leave ofabsence from Department of Pure and Applied Mathematics, 
Stevens Institute of Technology. Hoboken. New Jersey 07030. 

The method derives from Sato's approach to integrable sys­
tems based on flows in infinite-dimensional Grassmann 
manifolds. 19 It is our purpose to show how this analysis ex­
tends to the case of the supersymmetric Yang-Mills equa­
tions. We find that for this system the equivalence between 
linear flows which are well defined with respect to Cauchy 
data and the associated linear system with one spectral pa­
rameter fails unless a supplementary linear equation is added 
to those governing the flows in the Grassmannian. Unfortu­
nately, this additional condition cannot readily be interpret­
ed in terms of the Cauchy data. Ifit is omitted, however, the 
system becomes equivalent to an extended superfield system 
involving additional nonrelativistic terms that has been in­
troduced by Aref'eva and Volovich, IS and the formal solu­
tions of this modified system are fully characterized by the 
linearized flows. 

II. CONSTRAINT EQUATIONS AND THE LINEAR 
SYSTEM 

In the following, we shall consider complex, affine, N­
extended super-Minkowski space St, which may be identi­
fied as C 414N

) with coordinates 

(2.1) 

where a,/3,a,iJE{I,2} are spinor indices, s,te{l, ... ,N} are in-

I 'di aP I' ap 0 3 terna symmetry in ces, x = X 0'1' ' f.L = , ... , , ex-
presses the Cartesian coordinates {xl'} in a spinor basis 
through the Pauli matrices, and {o ~,o PI} are the usual anti­
commuting spinorial coordinates. The gauge group will also 
be complex and may, without loss of generality, be regarded 
as a subgroup of Gl(n,C) embedded through some faithful 
representation. Reduction and reality conditions will not be 
investigated here. The fermionic right translation vector 
fields are given by 

DS =~+iOpsa . 
a aoa a{3' 

S 

(2.2a) 
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a 'L1a a 
Dpt = - ae pt - 117 t aiJ' (2.2b) 

with 

aaiJ = ~. (2.2c) 
axafJ 

The gauge superpotentials {AaiJ,A ~~Pt} are .com~nents 
of a gl(n,C)-valued one-form ltJ on M, determmed m some 
local gauge from the connection form on the super-Yang­
Mills bundle. The covariant derivatives are given by 

V . ==iJ . +A . (2.3a) a{J - a{J afJ' 

V~ D~ +A~, (2.3b) 

(2.3c) 

where Aap =ltJ(aaiJ), A~ =ltJ(D~), and Apt =ltJ(Dpt )' 
The curvature components {F~fJ,FizsiJt'F~t'F~a,F""izt'F,...v} 
are introduced in the usual way: 

F(X,y) = [Vx'Vy] ± - V[X,Yl± ' (2.4) 

where [ , ] _ denotes a commutator and [ , ] + = { } an 
anticommutator. For example, 

F~ = {V~,Vp}, 
F~t = {V~,VPt} + 2ic5~V aiJ' 

etc. 

(2.Sa) 

(2.Sb) 

In order to reduce the supersymmetry representations 
defined by Lie differentiation of superfields with respect to 
the supersymmetry generatorS (i.e., left-translation vector 
fields), one imposes certain constraints that are invariant 
under supersymmetry and gauge transformations. These 
correspond to the vanishing of the supercurvature compo­
nents along super nulllines5.6: 

F~ +Fifa =0, 

FizsPt + FPsizt = 0, 

(2.6a) 

(2.6b) 

F~i3t = O. (2.6c) 

Depending on the value of N, these equations mayor may 
not have dynamical content. For the cases N = I or 2, they 
merely determine the higher superconnection and supercur­
vature components in terms of the leading ones without im­
plying any field equations. For N = 3, however, they not 
only imply all the field equations but in fact are equivalent to 
them, allowing a unique reconstruction of the constrained 
superconnection in terms of any given solution.8 Conversely, 
all solutions of the field equations may be uniquely deter­
mined from solutions to the constraint equations. The pre­
cise one-one passage between these sets of data is given in 
Ref. 8. For the present, we are concerned with characteriz­
ing solutions to (2.6a)-(2.6c). 

To this end, following Ref. 14, note that (2.6a)-(2.6c) 
imply the local existence of two Gl(n,C)-valued superfields 
(g,h) such that 

A~ =g-ID~ g, Ait =g-IDitg, 

A ~ = h -ID~h, Ait = h -IDith, (2.7) 

Ali =g-I ali g, A2i = h -I a2i h. 

After a gauge transformation by g-I, the transformed poten­
tials vanish, 
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Ali =0, A~ =0, Ait =0, 
and, in terms of the gauge invariant quantity 

B =gh -I, 

we have 

A2i = B a2iB-1, 

A ~ =BD~B-I, 

Ait = BDitB -I. 

The remaining equations in (2.6) then read 

D~ (BD~B -I) +D~ (BD~B -I) = 0, 

Dis (BDitB -I) + D it (BDisB -I) = 0, 

D~ (BDitB -I) + 2ic5~Ali = 0, 

Dit(BD~B-I) +2ic5~A2i =0. 

(2.8) 

(2.9) 

(2.1Oa) 

(2.1Ob) 

(2.1Oc) 

(2.11a) 

(2.11b) 

(2.11c) 

(2.11d) 

In this gauge, the constraint equations appear as the integra­
bility conditions for the following linear superfield system: 

(AD~ +D~ +AnR =0, (2.12a) 

(A2Dit+Dit+Ait)R=0, (2.12b) 

(A 3 ali + A 2 a2i + A ali + a2i 

(2.12c) 

where R is an invertible matrix function on M depending on 
the spectral parameter A. 

The system (2.12) is formulated this way in Refs. 7 and 
14. It may be interpreted as covariant constancy conditions 
conditions for sections along super null lines, restricted to a 
certain (SI4N) -dimensional submanifold within t~e 
(61 4N) -dimensional supermanifold of pairs of {points peM, 
super null lines throughp}. However, it would appear that 
no relevant data are lost by this restriction, since the integra­
bility conditions are the same as on the full (614N) space, 
and the superconnection satisfying (2.10) and (2,11) can be 
uniquely determined from R, In the next section, we shall 
derive these solutions by considering formal power series 
expansions of R in the spectral parameter. 
III. SPECTRAL PARAMETER EXPANSIONS AND THE M­
MATRIX 

We now follow a procedure analogous to that used by 
Takasakp8 for obtaining formal power series solutions of the 
self-dual Yang-Mills equations. Since much of the analysis 
is logically equivalent to Ref. 18, we shall omit many of the 
details. Consider solutions to (2.12) in the form ofa formal 
power series in A - I: 

00 

R(A) = L R j A -j, (3.1 ) 
j=O 

with normalization 

Ro = 1. (3.2) 

[To make precise many of the procedures implicit in the 
following, the coefficients Rj must also be regarded as formal 
series in the coordinates (x,e).] 

Introducing (3.1) in (2.12) and identifying like powers 
of A gives 

D~ Rj+1 +D~ R j +A~ R j =0, 

D it R j + 2 + Dit R j + Ait Rj = 0, 

J. Hamad and M. Jacques 

(3.3a) 

(3.3b) 

2395 



                                                                                                                                    

ali Rj+3 + a2i Rj+2 + ali Rj+ I + aii RJ +A2i Rj+2 

+Ali Rj+ I +A2i RJ = O. (3.3c) 

These equations are also valid for j < 0, provided we set RJ 
= 0 forj < O. Thej = 0, - 1, and - 2 equations allow us to 

express the connection components in terms of the leading 
coefficients of the expansion as 

A~=-D~RI' (3.4a) 

Ait = - Dit R 2, (3.4b) 

A2i = - ali R I , (3.4c) 

Ad = - ali R2 - a2i RI -A2i R I, (3.4d) 

A2i = - ali R3 - a2i R2 - ali RI -A2i R2 -Ad RI 
(3.4e) 

and also imply the equation 

Dit RI = O. (3.4f) 

Thus (3.3a)-(3.3c), with the connection components given 
by (3.4a)-(3.4e), may be regarded as a nonlinear superfield 
system for R, whose solution yields the solutions of (2.8)­
(2.11) determined by (3.4a)-(3.4e). 

To solve the system (3.3a)-(3.3c), it is convenient also 
to introduce the formal expansion for R -I (A), 

co 

R -I(A) = L R j A -J, (3.5) 
J=O 

where R ~ = 1 and the remaining coefficients {R j} are 
uniquely recursively determined from those of the expansion 
(3.1) by the condition 

R(A)R -I(A) = R -I(A)R(A) = 1. (3.6) 

Instead of considering either the system (3.3a)-(3.3c) 
or the correpsonding system for {R j}, we introduce, as in 
Ref. 18, an <Xl -dimensional matrix M, consisting of n X n 
dimensional blocks {Mi. _ J _ I } i = 0 •...• co.J = 0 ..... co defined by 
the generating function expansion 

co 

R -1(p)R(A)=1 + (A -p) L Mi._J_IP-i-IA -J-I. 
i.J=O 

(3.7) 

(This definition should be compared with the finite-dimen­
sional M-matrix defined for the soliton sector of integrable 
systems ofZakharov-Shabat type in Refs. 16 and 20.) More 
explicitly, Mi. -J- I is defined by the bilinear sums: 

-I 

M i.-J- I = L Rr_kRk+j+I' (3.8a) 
k= -J-I 

This suggests extending the definition to negative i as 

M y =8y , i,j<O. (3.8b) 

It follows, by equating leading terms in (3.7), that R (A) and 
R -I (p) are determined from My by 

co 

R(A) = 1- L Mo._J_IA -J-I, 
J=O 

R -I( ) -1 + ~ M -i-I P - ~ i.-IP , 
;=0 

(3.9a) 

(3.9b) 

and, consequently, that My satisfies the quadratic con­
straints 

Mi+ 1.-J-1 -Mi.-J- 2 =Mi._ 1 M o.-J- I · (3.10) 
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Conversely, given a semi-infinite matrix M satisfying the 
constraints (3.10), it follows that it may be determined from 
its Oth row and ( - l)th column through relations (3.9a), 
(3.9b), (3.7), and (3.8). The factthatR (A) andR -I(A) so 
defined really are formal inverses of each other also follows 
from Eqs. (3.7) and (3.8). 

We can now derive a set of equations for M that are 
equivalentto (3. 3), whose solution therefore determines the 
superconnection components satisfying (2.10) and (2.11). 
Applying the operators pD~ +D~, p2Dit +Dit' and 
p 3 ali +p2a2i +pal2 +a22 to both sides of Eq. (3.7), 
and usingEqs. (2.12), (3.9), and (3.10), we deduce that M 
satisfies the equations 

D~Mi+I._J_I +D~Mi._J_I -Mi._ID~Mo._J_I =0, 
(3.11a) 

DitMi+2.-J-I +DitMi.-J-I -Mi._IDitMI._J_I 

-Mi.-2DitMo.-J-2 =0, (3.11b) 

aliMi+3.-J-1 + a2iMi+2.-J-I + ati M /+ I.-J-I 

+a2iMi.-J-I -Mi+2.-laliMo.-J-1 

- M i+ I.-I (aliMo.-J-2 + V 2i M o.-J-I) 

-Mi.-I (aliMo.-J-3 + V 2iM O.-J-2 + VliMo.-J-I) 

=0, (3.11c) 
plus the additional equation 

DItMo. -I = 0, (3.11d) 

which follows from (3.4f). For i = 0, in view ofEq. (3.9a) 
and the constraints (3.10), Eq. (3.11) reproduces (3.3a)­
(3.3c) and (3.4a)-(3.4f). We thus have: 

Proposition 3.1: The system of equations (3.3a)-(3.3c) 
and (3.4a)-( 3.4f) is equivalent to the system (3.11)­
( 3.11 d), with Mi. _ J _ I subject to the constraints (3.10). 

It may appear as iflittle is gained by this, since the sys­
tem (3.11a)-(3.11c) seems, if anything, more difficult to 
analyze than (3.3a)-(3.3c). We shall see, however, in the 
following section that the matrix Mi. _ J _ I' together with 
Eqs. (3.11a)-(3.11c) and constraints (3.10) have a simple 
interpretation in terms of infinite-dimensional Grassmann 
manifolds, which leads to a linearization and formal integra­
tion of the system. 

IV. GRASSMANN MANIFOLDS AND LINEARIZATION 

We now turn to a geometrical interpretation of the M­
matrix which will be used to linearize and formally integrate 
Eqs. (3.11a)-{3.l1c). Consider the linear space 
C[[A,A -I]) ® cn= V of formal Laurent series in the vari­
ables (A,A -I) with values in cn; i.e., 

v= LXI ViAi, vieCn
, leZ}. 

Decomposing V into components consisting of positive and 
negative powers 

V= V+ + V_, 

V_ = {. f ViAiev} , .= -I 
we may correspondingly decompose the endomorphisms 
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End(V) = End(V+) + Hom(V+,V_) 

+ Hom(V_,V+) + End{V_). 

We shall refer to the groups of invertible endomorphisms of 
V,V+, and V_, respectively, as 01(2n00), Ol+(noo), and 
01- (n 00 ). The Lie algebra gl (2n 00) may be identified as 
End( V), with the Lie bracket defined by commutators of 
maps. Referring all maps to the natural basis 
{A.1®ej}iEZ,j= I, ... ,n' where {e) is the standard en basis, we 
have the matrix representation 

-00 -1 0 00 

{ ~ 7( T _ _: T _ + )} 
End( V) - 0 ------t------ , 

T+_ I T++ 
00 I 

where the ranges of indices are as indicated: 

T __ = {Tij' i,j<O} 

T_+={Tij' kO, j>O} 

T+_={Tij' i>O, j<O} 

T++ = {Tij' i,j>O} 

-End(V_), 

-Hom(V+,V_) 

-Hom(V_,V+), 

-End(V+). 

To make sense as maps on V, each column in T __ and each 
row in T _ +, T + + must have only finitely many nonvanish­
ing elements, and all but a finite number of rows in T _ + 
must vanish. Now, consider the Grassmannian Or _ (2n 00 ) 
of subspaces of V modeled on V _; i.e., the 01 (2n 00 ) orbit of 
V_or, equivalently, the images of injective maps 
TeHom ( V _, V). (A more rigorous formulation of these 
loop spaces and Orassmannians may be found in Ref. 21.) 
As in the finite-dimensional case, these may be represented 
by homogeneous coordinates consisting here of semi-infinite 
rectangular matrices of the type (~::::), with linearly inde­
pendent columns {T(A. i)}i= -I, ... , _ "" defining a frame for 
the given space. The points of Gr _ (2n 00 ) are identified with 
equivalence classes [T] under change of frame; i.e., 

[T] = {Toh, heGl-(noo), TeHom( V_,V)}. 

The affine part 0r4_ (2n 00 ) COr _ (2n 00 ), conSisting of 
those points for which T _ _ is invertible, may be identified 
with Hom ( V _, V + ) through the affine coordinates 
M+_ = {Mij}i>O,j<O defined by 

( 4.1) 

For such points, T- (~::::) has the equivalent representation 
(1 .. _ )==M, (l)ij = Bij' i,j<O. 

Now consider the element of 01 (2n 00 ) defined by mul­
tiplication by A. -1: 

(4.2) 

This has the matrix representation 
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where 

- 00 0 

A = 

-1 0 
- 00 

-1 0 

o 

0 

. . 

1 

o 
00 

-1 

00 

, A+_ =0. 

. The action of Gl(2noo) on ~ (2noo) may be ex­
pressed in affine coordinates, as usual, by linear fractional 
transformations: 

G: M+_~(G++M+_ + G+_)(G_+M+_ + G __ )-1, 
(4.5) 

provided the image is also in Gr4_ (2n 00 ). 
We may now interpret the results of the previous section 

in terms of flows in Or _ {2n 00 ). We regard the values ofthe 
M-matrix as defining the affine coordinates of a point in 
Oc (2n 00) as above. The quadratic constraint (3.10) may 
be expressed in the above notation as 

A++M+_ =M+_A __ +M+_A_+M+_. 

This is equivalent to the relation 

A[M] = [M] 

or, explicitly 

AM=MC, 

where 

C~A __ + A_+M+_, 

(4.6) 

(4.7) 

(4.7') 

which means that the linear space spanned by the columns of 
M is invariant under the map (4.2). The set of such fixed 
points in Or _ (2n 00) under this map will be denoted 
O~ (2n 00 ). The set of XeEnd (V) commuting with the 
map (4.2) leaves O~ (2n 00 ) invariant and forms a subalge­
bra of g1(2noo), which may be identified with the formal 
loop algebra 

f',J 

gl(n)=gl(n) ®q[A.,A. -1]] 
r--J 

through the map 4>: g1(n)_gl(2n 00) defined by 
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<I>(XA) = X ® A. (4.8) 

We may now express Eqs. (3.l1a)-(3.llc) in a matrix 
form which is more readily interpretable on Gr _ (2n 00 ). 

Proposition 4.1: The system of Eqs. (3.11a)-(3.11c), 
together with constraints (3.10) is equivalent to the follow­
ing matrix system: 

(AD~ +D~)M=MUs, 

(A2Di, +Di,)M=MV" 

(A3 a li +A2a2i +Aali +a2i )M=MW, 

where the matrices Us, V" and W are defined by 

US==A_+D~M+_, 

V,=(A __ A_+ + A_+A++)Di,M+_, 

W=(A2 _ _ A_+ + A __ A_+A++ 

+ A_+A2+ + )aliM+_ 

+ (A __ A_+ + A_+A++)a2i M+_ 

(4.9a) 

(4.9b) 

(4.9c) 

(4.1Oa) 

(4.1Ob) 

+ A_+ aliM+_, (4.1Oc) 

and M satisfies (4.7'). 
The proof of this equivalence is a straightforward com­

putation. The upper (T __ ) block is in fact an identity, in 
view of Eqs. (4.1Oa)-(4.1Oc), whereas the lower (T_+) 
block may be written 

A++D~M+_ +D~M+_ =M+_Us, 

A2+ + Di,M+_ + Di,M+_ =M+_V" (4.11) 

(A3+ + ali + A2+ + a2i + A++ ali + a2i )M+_ 

=M+_W. 

Expressed in components, (4.11) is seen to be equivalent to 
(3.11a)-(3.11c) in view of the constraint (3.10) and its de­
rivatives. • 

The explicit form of the matrices Us, V" and W given in 
(4.1Oa)-(4.1Oc) is, in fact, irrelevant ifEqs. (4.9a)-(4.9c) 
are interpreted in Gc (2n 00 ). They are determined by the 
particular choice of affine coordinates in which M takes the 
form (1- ). Another choice among the homogeneous co­
ordinat~,-defined by the change of basis 

(4.12) 

where H is the matrix representation of some heGL (n 00 ), 

leads to equations of the same form as (4.9) with Us, V" and 
W replaced by 

fls H-'UW +H-'C(D~H) +H-'D~H, 

V, H-'V,H +H-IC2Di,H +H-1Di,H, 

W==H-'WH +H-IC3(aliH) +H- 1C 2(a2i H) 

+H-IC(aliH) +H- I(a2iH). 

The condition (4.7) implying that MeG~ (2noo) still 
holds, of course, for M -MH, but the coordinate representa­
tion (4.7') is replaced by 

AM=MC, (4.7") 

where 

C==H-'CH. 
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In fact, Eqs. (4.9a)-(4.9c), correctly interpreted, sim­
ply state that the superfield function on super-Minkowski 
space with values in Gr _ (2n (0), whose expression in affine 
coordinates is given by the values of the M-matrix, is annihi­
lated by the differential operators AD ~ + D ~, A 2Dit + Di" 
andA3 a li +A2a2i +Aali +a2i . We summarize this re­
suIt as follows. 

Proposition 4.2: The system (4.9a)-(4.9c) may, by a 
transformation of the type (4.12), be reduced to the form 

( 4.13a) 

(4.13b) 

(A3 ali + A2 a2i + A ali + a2i )M = 0, (4.13c) 

whereM = (!::) withM __ invertible. Conversely, all so­
lutions to (49a)-( 4.9c) with M satisfying constraint (4.7') 
maybe deduced from a solution to (4. 13a)-(4. 13c) bypass­
ing to suitable affine coordinates through 

M = MM = '-- . ( 4.14) 

Geometrically, this equivalence is immediate from the 
form ofEqs. (4.9a)-( 4.9c), since the right-hand side may be 
interpreted as an infinitesimal change of homogeneous co­
ordinates for the same point. However, it may also be proved 
explicitly as follows. Notice that (4.9a)-( 4.9c), together 
with (4.7) and the fact that M represents an immersion, 
implies that {Us, Vt , W} satisfy the integrability conditions 

{CD~ +D~ + Us, CD~ +D~ + U'} =0, (4.15a) 

{C2Dis + Dis + v., C 2Dit +Di, + Vt} =0, (4.15b) 

{CD~ +D~ + Us, C 2Dit +Di, + V,} 

= 2i8:[C 3 ali + C 2 a2 i + C a l2 + a2i ] + 2i8:W. 

[CD~ +D~ + V S, C 3 ali 

+C2a2i + cali +a2i + W] =0, 

[C 2Dis + Dis + v., c 3 ali 

+C2a2i +cal2 +a2i + W] =0. 

( 4.15c) 

(4.15d) 

( 4.15e) 

It follows that Us, V" and W may be expressed in the form 

US= - [(CD~ +D~)H]H-', 

Vt = - [(C 2Dit +Dit)H]H- I, 

(4.16a) 

(4.16b) 

W= - [(C 3 ali +C2a2i +Ca12 +a2i )H]H- 1, 
( 4.16c) 

for some invertible H. Applying transformation (4.12) with 
this H, the resulting M satisfies (4. 13a)-( 4.13c). • 

We now consider the formal Cauchy problem for Eqs. 
(4.9a)-(4.9c), with {us,Vt,W} defined by (4.1Oa)­
( 4.1 Oc ), and M of the form (1-+ _ ) satisfying the constraints 
( 4. 7). Let K be the "hyperplane": 

K = {(x,O) I x2i = 0, 0: = 0, Oit = O}. 

Consider two solutions to (4.9a)-( 4.9c) M I, M2 taking the 
same values on K 

MilK =M2IK =MO(X1i,x2i,xli,0:,Oit). 

We then also have 
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a a 
a(JI Mlly = a(}1 M21y, 

s s 

and 

aa,8Mlly = aa,8M2Iy, for (ail) =1= (22). 

Moreover, since the definitions (4.lOa)-( 4.lOc) do not con­
tain any derivatives with respect to (X2i,(}:,(} it), the corre­
sponding quantities (U ~ ,Vw WI)' (U;, V2t , W2) derived 
from M I , M 2, respectively, also agree on JY: 

Uj Iy = U; Iy, VtI Iy = Vt2 ly, Wdy = W21y· 

It follows from Eqs. (4.9a)-( 4.9c) that the other derivatives 
also agree: 

a22 M lly = a22 M21y, 

a a a a 
a(}1 Mlly = a(}2 M21y, a(}it Mlly = a(}it M2Iy . 

s s 

Proceeding inductively, we conclude that all higher deriva­
tives also coincide, and hence that if M» M2 are formal pow­
er series solutions in (x,(}), they are equal. 

Conversely, let MO = (!,-o ) be given on JY, subject to 
+-

the constraint (4.7). Introduce the new coordinates 
(V I,V2,V3,x22,(} !,(}:,(} it,(}2t) defined by 

VI = xli + i(} :(} 2t, 

v2 = xli _ i(}:(} it, 

V3 = x2i _ i(}:(} it, 

and the matrix differential operators: 

~ I = - A2 {(VI - 2i(} :(}2t) ~ 
&2 

(4.17a) 

(4.17b) 

(4.17c) 

+ (X22 _ i(}2(}2t) ~ + (}2t~} (4.18a) 
t aV3 a(} It ' 

~ = _ A {(X22 + i(}2(}2t) ~ + (}2~} (4.18b) 
2 t &1 s a(}! ' 

(4.18c) 

Now define, in the formal power series sense (cf. Ref. 18), 

M = exp ~ I exp ~2 exp ~~O(VI,V2,V3(} !,(} it). 
(4.19) 

Proposition 4.3: The matrix M satisfies Eqs. (4.13a)­
(4.13c) and the constraint (4.7). Moreover, decomposing 

M=~--)' 
+-

the infinite matrix M __ is invertible, in the formal power 
series sense. 

The proof that M so defined satisfies Eqs. (4.13a)­
( 4.13c) follows by repeated application of the identity 

[D,~] = ~[D,xJ, 

valid for operators X, D, with X even, satisfying 
[[D,xJ,xl = O. The factthatM __ is invertible and the exis­
tence of C such that (4.7') holds is proved using the same 
arguments as in Ref. 18. • 

Now, combining these results with Proposition 4.2, we 
conclude that the formal Cauchy problem for Eqs. (4.9a)-
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( 4.9c) has a unique solution for data M I y = MO given on 
the initial data hypersurface JY. 

Summarizing, we have the following. 
Theorem 4.4: The unique formal power series solution 

to Eqs. (4.9a)-(4.9c), (4.10a)-(4.1Oc) for M satisfying 
constraint (4.7), with initial values on JY, 

M Iy = (M O: _ ) ==M
0

, 

is given by M = MM = ~ , where M is determined from MO 
by Eq. (4.13). 

Note that in all of the above we have established equiv­
alence with the system ofEqs. (3.11a)-(3.11c) only. The 
formal solutions of the original linear system (2.12a)­
(2.12c) with spectral parameter ,A. are all expressible in the 
form given by Theorem 4.4. However, the latter do not nec­
essarily satisfy the additional linear equation (3.11d), and 
hence, for arbitrary initial valuesMo, will not determine so­
lutions to (2.12a)-(2.12c) nor, consequently, the superfield 
constraint equations (2.6a)-(2.6c). On the other hand, the 
additional equation (3.11d), though it may be added to the 
linear system of Proposition 4.2 [or equivalently to the sys­
tem (4.9a)-(4.9c) of Proposition 4.1], does not define an 
involutive system of first-order operators and hence does not 
readily translate into additional conditions determining the 
Caucpy data. 

The actual content ofEqs. (4.9a)-(4.9c), without the 
extra condition, may be expressed in terms of a modified 
superfield system introduced by Aref'eva and Volovich. 1s 

This is obtained by modifying Eqs. (2.12a)-(2.12c) 
tllrough the introduction of an additional set of superfields 
{Zt}t= I ..... N' such thatR(,A.) satisfies (2.12a)-(2.12c), plus 
the following modified form of (2.12b): 

(2.12b') 

The integrability conditions for this system are given again 
by (2.lOa)-(2.1Oc) and (2.11a), together with the follow­
ing modified form of (2.11b)-(2.11d): 

Dis (BD2tB -I) + Dit (BDisB -I) + {Zt,ZJ = 0, 
(2.11b') 

Dj (BDitB -I) + 2i8: AI2 + V;Zt = 0, 

Dit(BD~B-I) +2i8:A2i +DjZt =0, 

together with the additional equation 

(2.11c') 

(2.11d') 

VatZ 2 + VasZt = O. (2.lle') 

This system reduces to the usual one by setting Zt = O. 
Unfortunately, it is not relativistically invariant and does not 
have any clear connection with the supersymmetric field 
equations. The effect, however, of this modification is to re­
place Eq. (3.3b) by 

Dit Rj+ 2 + Zt Rj+ I + Dit Rj + A2t Rj = 0, (3.3b') 

which implies, in particular, that instead of DitR I vanishing, 
(3.40 becomes a definition of Zt: 

Zt = - DitRI' (3.4f') 

All the following analysis remains unchanged, except that 
Eq. (3.11d) is no longer necessary as an additional condition 
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and the solutions of the system (4.9a)-(4.9c) given by 
Theorem 4.4 do in general determine all formal power series 
solutions of the modified system (2.12a), (2.12b'), and 
(2.12c). 

This, however, only relegates the problem to the deter­
mination of appropriate initial data such that the condition 
Zt = 0 holds; i.e., for which the original constraint equa­
tions and supersymmetric field equations are recovered. 

v. DISCUSSION 

We have shown how to characterize formal power series 
solutions to the linear system (2.12a)-(2.12c) associated to 
the constraint equations in terms of a linear infinite-dimen­
sional matrix problem with formal solution given in terms of 
the Cauchy data by Theorem 4.4. Notice, however, that this 
is not the Cauchy data for the original problem (2.11), 
which would involve specification of the superconnection 
components on the initial data surface plus the imposition of 
the additional condition (3.11d). In fact, for the N = 3 su­
persymmetric field equations, the data should involve fields 
and their derivatives on a hypersurface in ordinary, rather 
than super-Minkowski space. The relation between theSe 
data and the superconnection components is a rather deli­
cate one involving the elimination of nondynamical parts of 
the constraint equations and a partial gauge specification 
eliminating O-dependent gauge transformations, as de­
scribed in Ref. 8. Thus, our results cannot be regarded as a 
solution of the formal power series Cauchy problem in the 
usual sense, since the initial data M I K are partly redundant. 
Nevertheless, all formal power series solutions of the ex­
tended system (2.11a) and (2.11b')-(2.l1e') can be repre­
sented in the form given by Theorem 4.4, and this is the 
precise analog of the solutions determined by Takasaki for 
the self-dual case in Ref. 18. 

As in Ref. 18, it is possible to develop the transformation 
theory and relate the results to solutions of the Riemann­
Hilbert problem. Since the analysis is basically identical, we 
shall just state the results. Transformation!! of the type (4.5) 
map solutions to solutions provided the matrix G is annihi­
lated by the same operators as those in Eqs. (4.13a) - ( 4.13c ) 
and commutes with A. This allows a formal characterization 
of G in terms of its initial data GO = G I K identical to that of 
Sf in Eq. (4.13). The commutativity with A implies an iden­
tification, through the map (4.8), with a formal A-power 
series expansion 

g(A)= l:g;A;++G=== l:g;N, 
iEZ iEZ 

with g(A) satisfying 

(AD ~ + D 2 )g = 0, 

(A 2Dit + Dit)g = 0, 

(A 3 al i + A 2 a2i + Aali + a2i )g = O. 

(5.1) 

(5.2a) 

(5.2b) 

(5.2c) 

It follows that g is actually a function of the following 
4 + 2N variables (in terms of the coordinates of Sec. IV): 
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g = g(A, VI - A (x2i + iO;Oit), V2 - A 2(VI - 2iO :Oit), 

V3 - A 2(X2i - iO;O it), 

0; _AO;,Oit_ A 202t). 

The resulting g(x,O,A) may be regarded as the formal ana­
log of the transition function determining a bundle over a 
( 412N) -dimensional submanifold of the (512N) -dimension­
al superambitwistor space. The Riemann-Hilbert factoriza­
tion condition 

g(A) =R+(A)R_(A)-I, 

for R ± (A) holomorphic in suitably defined coordinate 
patches, guarantees that these may be regarded as covariant 
constant sections along super null lines, i.e., solutions ofEqs. 
(2.12a) - (2.12c) for some globally defined superconnection. 

The passage, however, from the formal problem to the 
holomorphic one requires much deeper analysis. In any case, 
the difficulties associated with the additional condition 
(3.ltd), and the formal Cauchy problem suggest that to 
retain full equivalence with the supersymmetric Yang-Mills 
equations it would be better to return to the original su­
pertwistor formulation of Witt ens and Manin,6 based on two 
spectral parameters. 

Note added in proof: In a recent preprint Tafel22 has 
reached a similar conclusion regarding the necessity of re­
turning to the full, two spectral parameter linear system, by 
examining the Riemann-Hilbert factorization problem di­
rectly. There are additional cocycle conditions for the patch­
ing functions in the general case, however, which do not 
seem implementable within the present Zakharov-Shabat 
framework. On the other hand, this fact appears not to pres­
ent an obstacle within Manin's algebrogeometric approach.6 
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The positive-energy theorem is formulated in the context of Kaluza-Klein theories. Different 
cases are considered, including the situation in which no symmetry is assumed. This work offers a 
new technique for stability considerations in Kaluza-Klein theories. 

I. INTRODUCTION 

A few years after the final formulation of the theory of 
general relativity based on a four-dimensional Riemannian 
manifold, Kaluza I suggested a unified view of gravitation 
and electromagnetism by means of considering a Rieman­
nian space of five dimensions. In this case just the considera­
tion of a Killing symmetry in the extra dimension introduces 
a Maxwellian field in the expression of the Ricci tensor. 

This initiative was of considerable interest in the follow­
ing years, resulting in work by Klein2 and others. Exposition 
of the ideas of this period can be found in Ref. 3 by Bergmann 
and Ref. 4 by Lichnerowicz. 

Within the framework of Kaluza-Klein theories in five 
dimensions, Thirring5 has presented a discussion involving 
spino! particles, which apparently are provided with an elec­
tric dipole moment. 

The natural trend of these kinds of ideas led to the study 
of higher-dimensional spaces in conjunction with non-Abe­
lian gauge fields. This has been the subject of work by 
DeWitt,6 Kerner,7 and Trautman.8 Later Ch09 gave a pre­
sentation in which the total space P was required to have the 
structure of a principal fiber bundle; a connection was also 
given to P and subsequently a metric (i.e., a direct sum of a 
trivial metric in the fiber and a general metric in the base 
space M) was introduced in the total space. Under this as­
sumption the symmetry group G turned out to be a group of 
Killing symmetries for the metric of P. 

Salam and Strathdee lO and Percacci and Ranjbar­
Daemi II also discussed the case of Killing symmetries, they 
considered those for which the total space P is given the 
structure of a bundle over the space-time M with its typical 
fiber a coset space G / H, instead of a principal bundle. 

In Ref. 12 the requirement of a bundle structure for the 
total space P and of Killing symmetries for the metric g was 
relaxed, so that only from the condition of conformal sym­
metries (with possible linear dependence among them) was 
it shown that there naturally appear Yang-Mills fields, 
along with Brans-Dicke-like scalars, which contribute to ex­
pressions of the Riemann tensor and Ricci tensor and scalar, 
and so a very general method was obtained for dealing with 
gravity coupled with these other fields. 

Today the belief is widespread that one should not re­
quire symmetries on the extra dimensions from the begin-

ning, since they would appear to be just put in by hand. 
Instead one takes the Ricci scalar of the ( 4 + n) -dimension­
al space as part of the total Lagrangian. Then one supposes 
that due to some "dynamical mechanism" the "space of min­
imum energy" will look like MOXA, where MO is the four­
dimensional Minkowski space and A is an n-dimensional 
compact manifold, which must be characterized by a small 
parameter in order to be undetected, at normal energies, 
from the four-dimensional point of view. 

Some modelsl3 have been constructed that illustrate the 
so-called phenomenon of spontaneous compactification. 
Unfortunately all such models require the introduction of 
nongeometrical fields coupled to the curvature tensor, and 
so one loses the beauty of Kaluza's model, since now there 
are fields that have to be put in by hand. 

Also by mentioning a space of minimum energy one im­
plicitly assumes that one knows what energy means in spaces 
of higher dimensions; but, as can be seen in the following 
sections, this is not a trivial question. 

There is an endless number of questions to be answered 
in the consideration of a Kaluza-Klein approach to unifica­
tion; but one can adopt the attitude that if there is something 
right about these ideas then it is worthwhile to pursue the 
study of the classical theory. So this work intends to develop 
some understanding of the geometrical ideas involved in the 
Kaluza-Klein approach, by studying the extension of the 
positive-energy theorems to spaces of higher dimensions. 

In the case of the four-dimensional space-time M, positi­
vity is obtained essentially by making use of Stokes' theorem 
on a hypersurface N, which stretches out to spacelike infin­
ity, to which one attaches an asymptotic boundary aN. The 
idea is that one defines a two-form E, which, when integrated 
on aN, gives the ADM mass l4

; then since Stokes' theorem 
says that 

'E=' dE, JaN JN 
(1) 

one will get positivity if one can assure that the right-hand 
side has the appropriate sign. 

Using the two-form suggested by Nester,15 that is, 

(2) 

where b.c. means "bar conjugate," the ADM momentum is 
determined by 
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r E = - 817" P~DM 'iiora'l'o, JaN 
(3) 

as long as the Dirac spinor 'I' behaves as 'I' = '1'0 + O( lIr), 
where '1'0 is a covariantly constant spinor at spacelike infin­
ity. 

The three-form dE under the integral sign can be given 
by 

dEm. = (lI3!)Eom. [2D'('ii)yOD, ('I') 

+2D,('ii)HydDst'l'+G~r,'I']; (4) 

where {I, jz, ... = 1,2,3 refer to the spacelike components of an 
orthonormal tetrad in which the timelike vector is orthogo­
nal toN. 

The Einstein equation, with the conventions used here 
[G=c= l,g= (+---)],is 

Gab = - 817" T~b , (5) 

where T~b is the "total" energy-momentum tensor. Then 
one observes that the dominant energy condition, along with 
the Einstein equation, implies that the third term in Eq. (4) 
is negative. 

By imposing the equation 

ydDst'l' =0, (6) 

on the hypersurface N, one obtains that the whole expression 
in Eq. (4) is negative, which implies that the ADM momen­
tum is a future-directed timelike vector. 

This approach to the positivity ofthe ADM mass relies 
then on the possibility of having solutions ofEq. (6) with the 
behavior 'I' = '1'0 + O( lIr)-a fact that already has been 
established. 16 

It is also possible to formulate a theorem in which it is 
proved that the energy determined at null infinity, that is, 
the Bondi mass, 17 is positive. IS This result has an interesting 
physical content, since it assures us that if an isolated system, 
that has at certain retarded time u mass m (u), is losing ener­
gy in the form of gravitational waves, then energy lost in the 
future of u cannot exceed m (u), since the Bondi mass cannot 
become negative. 

The definitions of the ADM and Bondi mass are stated 
for spaces that are asymptotically flat at spacelike and null 
infinity, respectively. To fix ideas, from now on "asymptoti­
cally flat" will be meant at spacelike infinity in the sense of 
Ref. 19; although it should be remarked that one needs much 
weaker conditions for the theorem to go through, as is dis­
cussed in the second paper of Ref. 16. 

The positivity of mass is expected from a theory that 
intends to describe attractive gravitational interactions, 
since, for example, test particles are repelled by compact 
objects with negative mass. 

The description of physical phenomena is up to now 
carried out by making use of the notion of a smooth four­
dimensional space-time. In the Kaluza-Klein approach it is 
conjectured that actually there are other spacelike dimen­
sions that we have not detected yet. The idea is that at every 
point of the normal four-dimensional space-time M there is 
an "internal" space that extends M to a ( 4 + n) -dimension­
al space-timeP. The principles of general relativity inM then 
require that the internal space at any point of M should be 
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(at least) topologically the same; in other words, P should be 
a fiber bundle over M. If the "real" space-time is actually P, 
then one wants to see that this description is not incompati­
bleWith our present experience. In particular one can ask: 
Are the effective gravitational interactions detected in M 
still attractive? In answering this question one immediately 
is led to a formulation of the positive energy theorem in P. 

In the following sections the spinorial techniques used 
for the case of the four-dimensional space-time M will be 
extended to the case of a higher-dimensional space-time P. 
That is, a form E is defined in a way that gives the energy 
momentum vector of P. Then applying Stokes' theorem one 
studies the exterior derivative of E, which will be given by 
expressions analogous to Eq. (4). The appearance in these 
expressions of the corresponding Einstein tensor of the 
space-time P is particularly significant due to the fact that it 
is still not known which are the "correct" field equations in 
the Kaluza-Klein approach, so the treatment developed in 
the following sections will be done without using the field 
equations for the Einstein tensor in the ( 4 + n) -dimensional 
space-time P. On the contrary, one believes that one knows 
the appropriate field equations in the four-dimensional 
space-time M; so they will be assumed to hold. In this way 
the expressions analogous to Eq. (4) will have terms involv­
ing the matter fields, which will be subject to some condi­
tions in order to obtain the desired positivity. 

In Sec. II, the space P will be considered to be a five­
dimensional space-time with a cyclic symmetry. 

The case in which the total space is a non-Abelian prin­
cipal fiber bundle over the four-dimensional space-time M is 
treated in Sec. III. 

The more general case in which P is not required to have 
global symmetries will be discussed in Sec. IV. This treat­
ment is also applicable to cases in which P has symmetries, 
but which have not been covered in previous sections. 

Although the following results will be concerned with 
the notion of mass at spatial infinity (ADM mass), every­
thing can be extended to consider the notion of mass at null 
infinity (Bondi mass), by for example, using the techniques 
described in the last paper of Ref. 18. 

Objects defined on the four-dimensional space-time M 
will be normally in boldface, in order to distinguish them 
from similar objects defined on P. 

II. POSITIVE-ENERGY THEOREMS IN 4 + 1 
DIMENSIONS 

In this section, the total space P is taken to be a five­
dimensional manifold with metric g, which has signature 
- 3 and a global cyclic Killing symmetry K I (K 1 is V I of Ref. 
12). Furthermore P is assumed to have the structure of a 
bundle over the four-dimensional manifold M with fiber S I. 
The integral lines of the vector field Klare the fibers of P. 

The metric g can be expressed by 

g=gaboa®Ob+F(]1®OI, (7) 

where the notation developed in Ref. 12 is being used. The 
indices a, b, ... , which here label tensors in the orthogonal 
space to K I , are the same abstract indices used to label ten­
sors on M. In Eq. (7) the abstract indices that would remark 
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the tensor character of the metric g are being omitted for 
reason of simplicity. In this way () a is a one-form in P with 
an extra index "a"; in particular it explicitly gives the pull­
back of a one-form Wa in M to a one-form 1T*(W) in P by 
Wa () a = 1T* ( w), where 1T is the projection map in the bundle 
P. The function F is the scalar product of K 1 with itself. 

Since gab is Lie-derived by the Killing vector K l' it is the 
lift of a metric g from the base manifold M. The space-time 
(M,g) is assumed to be asymptotically fiat. 

Let N be a spacelike hypersurface in M, which stretches 
out to spacelike infinity, with asymptotic boundary aN. The 
inverse image under the projection 1T of N to the space P 
defines the hypersurface N with boundary aN. 

The appropriate three-form E to be integrated on aN is 

E ASC ==! iilr[ArSrDC]'I' + b.c., (8) 

where now A,B,C, ... are abstract indices for tensors in P; and 
the elements r A are the generators of the Clifford algebra in 
P, that is, 

rArS + rSrA = 2gAS I, 
where I is the identity element of the algebra. Also r is given 
by 

r=(1/5l)~SCOE rArSrCrOrE , (9) 

where E is the volume form, and 'I' belongs to a space of 
representation of the Clifford algebra, that is, 'I' is a spinor. 
The bar operation is defined analogously as in the case of 
four dimensions. (A detailed study of Clifford algebra repre­
sentations, spinors, spin connection, and Lie derivative of 
spinors is found in Ref. 20.) 

Assuming the spinor 'I' behaves as '1'0 + O( lIr), where 
'1'0 is a covariantly constant spinor at aN and where lIr can 
be taken as 0 1/2 of Ref. 19, then the integral of the three­
form E on aN gives 

r E = - 81TOiilo(p~DMra + SQErs - SQM )'1'0' (10) 
JaN 
where 0 is the length of the fiber, s is a free parameter, and 
QE and QM are the electric and magnetic charge of the elec­
tromagnetic field Fab . To obtain Eq. (10) it was assumed 
that F = - 1 + O( lIr) for large values of r, and also that 

Rab 1 = 4sFab , ( 11 ) 

where Rab 1 is Rab a of Ref. 12 for a = 1, which is the curva­
ture of the connection in the principal fiber bundle P defined 
by the orthogonal complement of the Killing symmetry. 

From Stokes' theorem one obtains 

r E=i dE; 
JaN N 

(12) 

so, similarly as was done in the case of four dimensions, one 
wants to study the expression of dE under the integral sign, 
which is given by 

dE~~9! = (1/4!)E~~~fl [2D g(iiI)yDDg ('I') 

+ 2DE (iiI)~yDy-DF'I' + G°EqlrE'I'] , 
- - (13) 

where A,B, ... refer to the spacelike components of an ortho­
normal-basis in which the timelike vector is orthogonal to 

2404 J. Math. Phys., Vol. 27, No.9, September 1986 

the hypersurface N. Note that Eq. (13) is the exact analog of 
Eq. (4); in particular now DAis the Riemann connection in 
P, and GAS is the Einstein tensor of the metric g of P. 

Then from Eq. (12), to get a statement about a definite 
sign for the right-hand side of (10), one has to require a 
definite sign for ( 13), which in particular forces one to make 
a decision about what to do with the third term of Eq. (13). 
The essential difference with the case of four dimensions is 
that, while many people agree about using the Einstein equa­
tion for the Einstein tensor in four dimensions Gab' there is 
no general agreement on what should be the field equation 
for GAS. To get some insight, in the rest of this section two 
different situations will be considered. 

Case (aj: Assuming F = - 1, one wants to mimic the 
conditions imposed in the four-dimensional case; namely to 
ask for 

(14) 

(15) 

which then will imply that the expression (13) is negative. 
But, what are the allowed values of S! To answer this 

question one has to look more closely at GAS. 

In this case one has 

Gab = Gab + 81T(2s)2T;r , (16) 

Gaa = 2sVbFba , a = 1 , (17) 

where 

T;r=- (lI41T)(FaCFbc - (gab/4)FcdFCd) (18) 

is the energy-momentum tensor of the electromagnetic field. 
It should be emphasized that Eqs. (16) and (17) are not 
field equations, they just represent the calculation of certain 
"components" of the Einstein tensor in five dimensions as­
suming the identification (11) with F = - 1. 

It is reasonable to require that the appropriate field 
equation for GAS should have as a consequence the standard 
Einstein-Maxwell equations on the four-dimensional space­
time M, namely 

Gab = - 81T(Tab + T;r) , 

V[aFbc] = 0, 

VbFba = 41TJa , 

where Tab is the energy-momentum tensor of matter. 

(19) 

(20) 

(21) 

If one, on the contrary, substitutes these equations in 
(16) and (17), one gets 

Gab = - 81T{Tab + [1 - (2s)2]T;r}' (22) 

Gaa =81TsJa , a=l. (23) 

Then one observes that, since T;ruavb>O for any two fu­
ture-directed timelike vectors ua and Vb, one will get condi­
tion (15) imposing 

(24) 

for any two future-directed timelike unit vectors ua and Vb, 

along with the condition 

(25) 
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Summarizing, one gets that conditions ( 14), (24), and (25) 
imply that (10) is negative, which has a consequence that 
the ADM mass satisfies 

(26) 

This result cannot be the optimum result, since one knows of 
the theorem of Gibbons and Hull,21 where they get (26) but 
with lsi replaced by 1. 

It is interesting to note that for the maximum allowable 
value of lsi in this case, i.e., lsi =!, Eqs. (22) and (23) take 
the form 

geometry = matter; (27) 

so in particular, when there is no matter, one would have 
equations involving only "geometry" that couple gravity 
and electromagnetism. 

Case (b): Here one wants to change the conditions so 
that one gets inequality (26), but with lsi not bounded by!. 

So, again consider the case F = - 1, and assume the 
Einstein-Maxwell equations (19)-(21) to hold. 

Now one defines 

DA'I' DA'I' + rA (s/4)pabrarbrS'" , (28) 

and the Lie derivative of spinors20 in the direction of a vector 
vby 

(29) 

!fvrA =D(AVB)yB· (30) 

Then one observes that by imposing the conditions 

!fK,"'=O, (31) 

rD, '" = 0, (32) 

one obtains 

dE11l9! = (l/4!)E11lq~0{2D'(~)yOD, ('I') 

- 817"( TOe + (1 - S2) T~M ) ~re 'I' 

+ sJ°~r5'1']} . (33) 

One requires condition (32) by applying a technique de­
scribed in Ref. 22 that maximizes the allowable values of s. 

It then can be deduced easily that the additional condi­
tion (24), now with Isl<1, assures that the expression (33) 
is negative, which implies the following result. 

Theorem: Let P be a five-dimensional manifold with 
metric g that has signature - 3 and a global cyclic Killing 
symmetry K 1, such thatg(K1,KI) = - 1. 

Let P also have the structure of a bundle over the four­
dimensional manifoldM with fiber S I, which are the integral 
lines of the vector field K I' 

Under these conditions then the restriction of the metric 
g to the orthogonal complement of K 1 is the lift to P of some 
metric g from M. The space-time (M,g) is assumed asymp­
totically flat, and the Einstein-Maxwell field equations 
(19 )-( 21) are satisfied in M. 

Then the condition on the matter field 

(24) 

for any two future-directed timelike unit vectors ua and Vb, 
and with 
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Isl<1, (34) 

implies that the corresponding energy-momentum vector of 
P, that is, (P ~M ,sQE ), is nonspacelike and future directed 
and also implies that 

m>lsl ~QE2 + QM2 . (35) 

This result can be completely restated in terms of objects 
intrinsic to the four-dimensional space-time M. In particular 
it has been shown in Ref. 22 that since there is an experimen­
tal bound to the ratio of charge density to mass density given 
by Ie/me I, where "e" and "me" are the charge and mass of 
the electron, then one can find for each physical system a 
value So such that the matter condition is automatically satis­
fied. 

III. POSITIVITY OF ENERGY IN A PfllNCIPAL FIBER 
BUNDLE OVER THE SPACE-TIME M 

Let P now be (4 + n) -dimensional manifold with met­
ricg, which has signature - (n + 2) and admits n pointwise 
linearly independent Killing vector fields K a , a = 1, ... ,n 
(the Ka are the Va of Ref. 12). Letthese vector fields form a 
Lie algebra of a semisimple compact Lie group G. Let KafJ be 
the negative definite Killing-Cartan form of G. Then it will 
be assumed that 

(36) 

Furthermore let P have the structure of a principal fiber 
bundle over the four-dimensional manifold M, where the 
vector fields Ka span the tangent space of the fibers at each 
point of P. 

Similarly as was done in the previous section, the metric 
g can be expressed 12 by 

(37) 

Since gab is Lie-derived by the Killing vectors Ka , it is the lift 
of a metric g from the base manifold M. The space-time 
(M,g) is assumed to be asymptotically flat. A space with all 
these characteristics will be denoted by P(g,G,KafJ,M). 

As was done before, the spacelike hypersurface N, of P, 
with boundary aN, is constructed by the inverse image, un· 
der the projection of the bundle, of the spacelike hypersur­
face N, of M, which stretches out to spacelike infinity and 
has asymptotic boundary aN. 

The (2 + n)-formE, whose integral on aN will give the 
energy-momentum vector of the space-time P, is the natural 
extension ofthe ope defined by Eq. (8), namely, 

EA, ... A2 +" 

=:[l/(n+l)l]Wr[A"'rA r!P A l'l'+b.c., (38) 
1 1 +11 "+2 

where r A is a generator of the Clifford algebra in the space· 
time (P,g), 

(39) 

and 'I' as before is a spinor in P. 
The connection !P cannot be taken to be the Riemann 

connection when G is a non-Abelian Lie group. This is so 
because following the model used in previous !!ections, one 
wants to require the spinor 'I' to be asymptotically constant; 
which implies 
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(40) 

But this condition at spacelike infinity requires that the cur­
vature of the connection ~ has to be zero there, which is not 
the case of the Riemann connection of the metric g. 

There are two natural metric connections in this case23 

that will do the job; in this section ~ will be taken to be the 
metric connection with torsion 

T=capuoa®OP®OKu' (41) 

where caP u are the structure constants of the Lie algebra 
generated by the Ka 's, that is, 

(42) 

Then ifthe spinor 'II behaves as '11o + O( 1/r), where '110 is a 
covariantly constant spinor at aN, the integral of the 
(2 + n )-form E on aN gives 

r E= _ 81T!l( _1)n(n+l)/2 
JaN 

x'iiO(PADMaYa + SQEaYa + SQMaYSYa )'110 , 

(43) 

where the electric and magnetic Yang-Mills charges can be 
defined by 

and 

81TQM 'iioYsYa'llo= r 'iiFaysYa'll, JaN 

(44) 

(45) 

!l denotes the volume of the fiber, and s is a free parameter 
that relates the geometric objectRab a defined in Ref. 12 with 
the Yang-Mills field Fab a at the space-time M by the equa­
tion 

Rab a = 4s Fab a . (46) 

In analogy with the four-dimensional case, the energy-mo­
mentum vector of the total space-time P is defined by 
(P~DM' S QE a

); the aim is then to establish that it is non­
spacelike and future directed. 

In applying again Stokes' theorem [Eq. (12)], one 
wants to study the spacelike components of the exterior deri­
vate dE of the form E defined by (38). Here it is convenient 
to make use of the experience of the last section, so below one 
will follow the model of case (b). 

The Einstein-Yang-Mills equations are assumed to 
hold, that is, 

Gab = - 81T(Tab + T~~) , (47) 

where 

T~bM = (l/41T)(Fa cUFbcu - !gabFcduFCdu) , (48) 

and also 

VbFbaP = 41TJaP, (49a) 

V[aFbct = o. (49b) 

Equation (49b) is actually a consequence of ( 46 ). Defining 

DA 'II==~ A'll + YA (s/4 )FabaYa Yb Ya 'II, (50) 

one requires 
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(51 ) 

Also it is assumed that the spinor are Lie-derived in the di­
rection of the Killing symmetries, that is, 

(52) 

It can be proved that the integrability conditions ofEq. (52) 
are automatically satisfied, and that (52) is compatible with 
(51 ). 

Then using Eqs. (47), (49), (51), and (52), and after a 
very long calculation, 20 one obtains 

(_ l)n(n+ 1)/2 __ _ 

= (n + 3)! EO~I"·An+J2D/il'llyOD/il'll 

- 81T(Tob + (1 - S2) T~M )'iiYb 'II - 81T s JOP\iiyp 'II 

+ s V u (FaM ) 'iiy[oyayh Jyu~'II] . (53) 

Since the first term is negative, and the term involving the 
energy-momentum tensor of the Yang-Mills field is nega­
tive, too (for Isl< 1), it is only left to impose some condition 
on the matter tensor Tab in order to get the desired result. 
This condition is 

Tabua 'iiYb 'II 

> Isl'ii(JaPua YP 

- (1/81T)Vu(FaM)y[cyayhJyu~uc)'II, (54) 

for any future-directed timelike vector ua 
• One then has the 

following result. 
Theorem: Let the (4 + n)-dimensional space-time 

P(g,G,KaP,M) be defined as at the beginning of this section. 
Then condition (54) on the matter fields implies that 

the energy-momentum vector of P, defined at spatial infin­
ity, is nonspacelike and future directed, and also implies that 
the ADM mass satisfies 

m>lsl~(Q~)2+ (QM)2 (summed over a) (55) 

with 

Isl<l. 

In (55) one has assumed without loss of generality that 
the Killing-Cartan form KaP is minus the Kronecker delta. 

It is then observed that to get the nice result expressed 
by inequality (55), one has to introduce the second term on 
the right-hand side of (54). The physical significance of this 
term is not clear yet: it is an effect of the non-Abelian charac­
ter ofthe Lie group G. On the contrary, the first term on the 
right-hand side of (54) is expected, and in fact it is the analog 
ofthe one appearing in Eq. (24). 

It is important to note that Eq. (52) determines the 
behavior of the spinor along the fibers, so that Eq. (51) is 
effectively an equation on the hypersurface N of M, which 
then permits24 us to use the arguments of Ref. 16 to prove the 
existence of solutions of (51 ) . 

To consider the case in which black holes are present in 
the interior of the space-time M, one has to use the procedure 
described in Ref. 25. 
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IV. POSITIVITY WITHOUT SYMMETRIES? 

Here one wants to formulate the positive-energy 
theorem for a space P that is not assumed to have global 
symmetries. 

As was mentioned already the minimum that is required 
in a Kaluza-Klein description of space-time is that at any 
point of our experienced four-dimensional space-time M, 
there is an internal space of n dimension that extends M to a 
total space P. In other words the minimum physical assump­
tion on P is that it has the structure of a bundle over M with 
fiber B. It is generally believed that B should be a compact 
space. 

As in the case of four dimensions one needs the notion of 
asymptotic flatness in order to be able to formulate the posi­
tive-energy theorem. The least that has to be understood by 
asymptotic flatness is that the metric g of P can be expressed 
by 

g = gO + O( lIr) , (56) 

where gO has Killing symmetries K Q ., a' = 1, ... ,p, p>n, 
which spans the fiber B asymptotically. Furthermore gO is 
supposed to be expressible by 

gO = gab(} a ® (} b + ga/J(}Q ® (}/3 , (57) 

where gab is the lift of a flat metric ~b from M. As before the 
function r can be identified with r from M. 

It is clear then that this notion of asymptotic flatness 
does not mean that P is flat at infinity since there is no condi­
tion on the curvature of the internal space. Instead one 
should look at this notion as the least one expects from a 
space P that describes an isolated system, i.e., an isolated 
system from the M point of view. 

Next one needs to have a (n + 2)-form E such that 
when it is integrated at infinity it gives the corresponding 
energy-momentum vector. As before, one takes E to be 

EA ... A = [lI(n+l)!]'VY[A"'YA y9JA ]'I'+b.c., 
1 "+2 I n+1 "+2 

(38) 

where 9J also has to have zero curvature at infinity. Then for 
spinors 'I' that are asymptotically constant, the energy-mo­
mentum P A of P is defined by 

(58) 

Here one touches the most critical point in this procedure, 
since even if one has a definite prescription on how to calcu­
late 9J at infinity, there will be in general no canonical way 
of extending 9J to the interior of P, which is necessary for the 
application of Stokes' theorem. In other words there will be a 
high degree of arbitrariness in the calculation of the exterior 
derivative dE; and so if one wants to require its integral on 
the hypersurface N to have a definite sign, this necessarily 
will involve an arbitrary condition on the Einstein tensor 
GAB of P. This condition depends on how one extends the 
connection D to the interior of P. 

This difficulty makes it very hard to give any physical 
meaning to positivity of energy when the space (P,g) has 
only the structure of a bundle in the interior. If, on the con­
trary, g has global Killing symmetries, 9J naturally can be 
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extended to the interior and this difficulty disappears. 
In what follows then, one has in mind two cases: one in 

which no symmetries are assumed at all, and the other will be 
the spaces with symmetries not treated in the previous sec­
tions. 

By the requirement of 9J to be a metric connection, one 
knows that it is completely determined by its torsion TAB C. 

One can express the exterior derivative dE in terms of 9J and 
T 

dEA, ... An + 3 = 9J [A,EA, ... An + 3] 

+ [(n + 2)/2]T[A,A, BE1B1A)".An+3] • 

(59) 

This expression suggests taking the torsion such that 
TAB ° = 0, where 0 is the direction orthogonal to the space­
like hypersurface N. By doing this one obtains that 

dE~""~n+J 
( _ l)n(n + 1)/2 

= (n + 3)! €o~''''~n+3 

X {29J ~ 'V~yOJ'-!9J ~ 'I' + 29J~'VyO 9J A 'I' 

+ 'l'y[0yByDl [i ReD EF YE YF 'I' + TeD E 9J E '1'] } . 
(60) 

One can always express the curvature R by 

(61) 
A 

where R is the Riemann curvature and R depends on the 
torsion T and its derivatives. Then the last two terms in Eq. 
(60) look like 

(62) 

where A,A is an operator that depends on T and its deriva­
tives. Then one observes that by requiring 

~9J A 'I' = 0 (63a) 

and 

(63b) 

for any future-directed timelike vector u, one concludes that 
the energy-momentum vector defined by E in Eq. (58) is 
timelike and future pointing. 

One should note that the last term in Eq. (60) involves 
derivatives of the spinor and so does A, A in inequality (63b). 
It is convenient then to use the same technique as in the case 
discussed in the previous section, namely to fix the Lie deri­
vative of the spinor in the vertical direction. This again natu­
rally can be done if one has available global Killing symme­
tries onP. 

V. FINAL COMMENTS 

It may appear that the cases treated in Secs. II and III 
are too special, but actually they may be the most important 
situations to be considered, since they make use of the mini­
mum number of fields necessary to describe a nontrivial Ka­
luza-Klein space-time. 

In case (a) of Sec. II it was observed that a condition as 
natural as ( 15) leads to an inequality where the parameter s, 
described before, is constrained by the condition lsi <!. In 
case (b) of Sec. II it was shown that one can obtain a better 
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inequality by relaxing the condition on the Einstein tensor of 
P, and by imposing conditions directly on the matter fields 
instead. It can also be seen, by methods similar to those of 
Ref. 26, that zero mass implies that P is flat. It is worthwhile 
to remark that "flat" in this case does not mean five-dimen­
sional Minkowski space, since one of the spacelike dimen­
sions is compact. Therefore considerations of stability in Ka­
luza-Klein space-times are meaningless unless one refers to 
some specific topology. In fact, Witten has speculated27 that 
the MoXS 1 five-dimensional Kaluza-Klein space-time 
might be unstable against "a process of semiclassical barrier 
penetration." Unfortunately, it is still not known what is the 
appropriate theory that incorporates quantum and gravita­
tional effects on the same footing, and so one really does not 
know yet how to treat the stability properties of a space-time 
that come from quantum effects. In any case, one can consid­
er the example given in Ref. 27 by Eq. (6) and ask what is the 
assumption of the positive-energy theorem in five dimen­
sions that is not satisfied by it? The answer is that this exam­
ple does not have the structure of a bundle over a four-di­
mensional space-time M with fiber S 1. Even if one concen­
trates on the asymptotic region, the example of Ref. 27 fails 
to be asymptotically flat at null infinity since one cannot 
construct a complete scri. 

Section III shows the convenience and necessity of in­
troducing a torsion metric connection when dealing with 
non-Abelian gauge fields. The case treated in this section 
also points out the kind of complicated conditions that have 
to be required on the matter fields when one starts to consid­
er more general situations. 

In Sec. IV, the general procedure for the positive-energy 
theorem in the Kaluza-Klein context has been formulated, 
without assuming a particular field equation or the existence 
of symmetries. If one has more structure, and if one knows 
the field equation, then conditions (63) are supposed to be 
changed in order to adapt them to the available structure. 
Assuming the wish of having a positive-energy theorem for a 
Kaluza-Klein theory, the resulting conditions on the matter 
field can be used to measure how physically reasonable the 
field equations are; since conditions that are physically diffi­
cult to understand should be avoided. 

Finally, the techniques described above offer a new pos­
sibility in considerations of classical stability in Kaluza­
Klein theories, since for a complete theory (that is, where 
the field equations are known), one can apply the methods 
used for the case of the standard four-dimensional space­
time M discussed in Ref. 26, in order, for example, to study 
the manifold of solutions with zero energy. 
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Conformally covariant quantization of non-Abelian gauge theory is presented, and the invariant 
propagators needed for perturbative calculations are found. The vector potential acquires a richer 
gauge structure displayed in the larger Gupta-Bleuler triplet whose center is occupied by 
conformal QED. Path integral formulation and BRS invariance are shown on a formal level in one 
covariant gauge. 

I. INTRODUCTION 

Conformal invariance of nontrivial QED1
-
s introduces 

an extra scalar field A +' which corresponds, in the classical 
theory, to a Lagrange multiplier needed to fix the gauge in a 
conformally invariant way.s Setting A + = 0 destroys the co­
variance of the theory or makes it equivalent to a trivial one 
that has only longitudinal photons. The five-component vec­
tor potential (A,..,A +) forms a nondecomposable represen­
tation of the conformal gtoup. In the presence of interaction, 
A + couples to an extra current component of degree 4, de­
noted by J _. The formal gauge~invariant, minimal coupling 
introduces unphysical field components in J _. Taking 
J _ = 0 violates conformal invariance; therefore, we intend 
to deal with these unphysical fields and quantize them along 
with the physical ones. 

Recently,S.6 it was shown that these unphysical compo­
nents are part of a gauge field whose physical subspace is the 
matter field. This gauge phenomenon reinforces the impor­
tance of conformal symmetry in quantum field theory since 
gauge theories are the most successful ones in describing the 
interactions of elementary particles. Moreover, the appear­
ance, in a natural way, of these new field components intro­
duces new perturbative diagrams that may have a positive 
outcome in the renormalization program. Therefore, at this 
point in the development of the theory, a. careful study of 
renormalization can be very fruitful. Another pressing point 
is the following: believing in the benefit$ of the foregoing 
analysis, which is brought about by requiring conformal in­
variance of the interaction, then looking at a gauge theory 
with self-coupling under the same requirements may pro­
duce interesting results even on a deeper level. As an exam­
ple of such a theory, we deal in this paper with conformal 
Yang-Mills having local SU(N) gauge symmetry. Again, 
we find that unphysical components of higher degree appear 
as part of a current that is generated by self-interaction and 
couples to A +. We believe that this phenomenon of field 
components doubling is a general property of conformal 
charged fields. For example, in Sec. II, it is shown that the 
conformal electromagnetic potential describes the photon 
without the need for doubling. However, when the vector 
potential is charged and self-coupled, new field components 
surface to enlarge the gauge structure and make it richer 
than in the Abelian case. The appearance of these new com­
ponents in the charged fields can be viewed as ·Il recasting of 
the anomaly in the conformal degree of these fields into high­
er degree components. It also suggests an alternative to our 
definition of the unphysical components in which they are 

multiplied by a weight that depends on the coupling constant 
and vanishes when the coupling goes to zero. Moreover, the 
fact that these unphysical fields always couple to A + still 
holds and is very interesting when taken at the level of mini­
mal breaking together with the remarkable property that 
(OIA+ (x) A+ (x') 10) is a constant. In this context, minimal 
breaking means that the vacuum is not invariant under the 
action of special conformal transformation but still dilata­
tion invariant (hence, no mass generation is involved). Al­
though it is not shown here, it is believed that the new unphy­
sical components will not contribute to the unitarity of the 
theory while playing a major role in the renormalization. 

In this report, we employ the manifest conformal invar­
iance formalism 7 modified by defining an extension off the 
Dirac six-cone, which was introduced by us5 and indepen­
dently by Ichinose.8 In Sec. II, we define this extension and 
show that using this formalism we recover conformal QED. 
The covariant propagators and the underlying nondecompo­
sable representation of the conformal group are found in Sec. 
III. The Yang-Mills Lagrangian and nonlinear field equa­
tions are written in Sec. IV, where we also outline the path 
integral formulation and Becchi-Rouet-Stora (BRS) invar­
iance. 

The manifest formalism is based on the isomorphism of 
the conformal group 9!J to SO ( 4,2). Therefore, the action of 
9!J in Minkowski space can be linearized by the action of 
SOC 4,2) in R 6, with coordinates {ya}, a = 0,1,2,3,4,5, and 
preserving y = Yo2 - 'j2 + y/. The two extra dimensions 
are subsequently eliminated by a constraint (y2 = 0) and a 
projection (AY"",,,Y, for A #0). The result is the projective 
Dirac cone-the compactified Minkowski space. Minkow­
ski space is a dense open submanifold whose complement is 
the light cone at 00, and with coordinates xl-' defined in the 
transformation 

(xI-',x+ ,x- )=<v" /y+ ,lny+ ,y2/(y+ )2) , 

where y ± = T ± y4. In the coordinates y,.. ± , the metric 

(71a{3 ) = (71,..v) Ell (~ ~), 
where 71,..v = diag( + - - - ) and a,/3 = 0,1,2,3, + , - . 

If {LaP = - LfJa} is a basis for the algebra soC 4,2), 
then the generators of the conformal group are represented 
by 

(J,..v,P,..,K,..,D)-(L,..v,2L_,..,2L+,..,2L + _ ), 

where (J,..v'P"') are the Poincare group generators and 
D,K,.. are, respectively, the generators of dilatation and con­
formal boosts. 
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Minimal weight, K-finite, irreducible representations of 
SOC 4,2) are denoted by D(Eo,jl,j2)' where Eo is the "con­
formal energy" andjl - j2 is the helicity. Please see Ref. 1 for 
details. The conformal scalar and spinor fields carry the fol­
lowing nondecomposable representations (Gupta-Bleuler 
triplets) of ~, respectivelys: 

D(3,0,0)-D(1,0,0)_D(3,0,0) , (1.1) 

D (M,O,)-D n,Q,!)-D (M,O), (1.2) 

and its helicity conjugate. The arrows denote semidirect 
sums referred to as "leaks." 

II. CONFORMAL QED OFF THE CONE 

The incompatibility of conformal invariance with un­
restricted gauge invariance in the five-component electrody­
namics is evident in the work of many authors. 1

-
s.9 The sca­

lar A + is introduced at the level of gauge fixing, but not 
before. We intend to deal with this problem in the "extended 
manifest formalism." 

On the projective cone, the electromagnetic action and 
wave equation arel 

S[a,j] = J (dy) [~ aaa 2aa -a:i], 

(dy) =d 6y8(y2), a 2aa =ja' 

In Minkowski notations, they read 

S [A,J] = J d 4x[ ~ A"DA" + 2A_DA+ - 4A_ a·A 

-SA_2_A"J"-2A+J_ -2A_J+], 

DA" + 4a"A_ = J" ' 

DA+ - 2a·A - SA_ =J+, 

DA_ =J_, 

where 

- ax
P 

A - -x+ (V-I) P'A a --- p=e P a aya a 

and 

A ± =! (As ±A4) . 

(2.1) 

(2.2) 

(2.3) 

The free action is invariant under the gauge transformation 

(A".A+.A_)_(A" + a"A.A+.A_ - lOA) (2.4) 

if A is restricted to satisfy 0 2 A = O. Unrestricted gauge in­
variance of the interaction (a:i) gives the following current 
conservation: 

aJ+!OJ+ =0. 

The Lorentz condition is 

y.a=A+ =0, 

and A + is a dipole ghost, 02A + = O. 
The solutions of the free wave equation a 2aa = 0 form 

the followng Gupta-Bleuler triplet (zero-center modulelO
): 

D (q,!)_[ D(2'~~(~~,~;0,1) ]_D (l,!,p. (2.5) 

Note the presence of the identity representation in the phys­
icalsector which has no analog in (1.1) or (1.2). 
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At this point, we attempt to bridge the gap between con­
formal invariance and unrestricted gauge invariance. We 
start with a full gauge-invariant, conformally invariant-free 
action and subsequently introduce gauge fixing that recovers 
(2.1 ) . We begin by defining an extension for the vector field 
aa off the cone in a similar manner to that of the scalar field 
in Ref. 5. So we modify (2.3) by retaining terms up to order 
y2 in the expansion of the fields 

aa(y(x»)==e- x + (V-I)a P [Ap(x,,) +x-Bp (x,,>1. 
(2.6) 

The action of special conformal transformation on these 
fields is 

K"A+ = ~"A+ , 
K"Av = ~I'Av + 2(xvA" -1J"vx .A ) + 21Jl'vA + , 

K"B+ = ~"B+ - a"A+ , 

K"Bv = ~"Bv + 2(xvB" -1J"vx .B ) 

+ 21J",,(B+ - 2A_) - allAy , 

K"B_ = ~"B_ - B" - a"A_ , 

where 

~"=X2a,, -2x,,(x.a+n). 

Therefore, due to (2.6)-(2.S), the object 

F aP = aaap - apaa 

(2.7) 

(2.S) 

is a well-defined tensor on the cone-the electromagnetic 
tensor. Using this tensor, we can construct the following 
conformally invariant-free action 

(2.9) 

One has to be careful when doing integration by parts, since 
the integration measure (dy) contains 8 <y). Therefore, it is 
better to write the expressions in Minkowski notation first, 
then do the manipUlation later. 

The action (2.9) is invariant under the unrestricted 
gauge transformation 

aa-aa + aa{J) , 

where (J)(Y(x») = A(x,,) + x-X(x,,), This transformation 
is equivalent to the following: 

(A".A+.A_)-(A" + a"A.A+.A_ + X) , 

(B".B+.B_)-(B" + a"X.B+,B_) . 

The first set is exactly that in (2.4) if we set X = - lOA 
(i.e., a 2{J) = Q). Gauge invariance of the interaction gives the 
following set of conservation laws: J + = 0, a" JP = O. Now 
we propose to fix the gauge in (2.9) by adding the usual 
gauge fixing term - ! (a·a) 2 plus some possible invariant 
piece 2': 

Sola] = J (dy) [ - ! FaPFaP + 2' OF] , 
where 

2' OF = -! (a-a)2 + 2' . 

A. D. Haidari 
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In Minkowski notation, this action takes the form 

So[A,B ] 

= J d 4x[2"o+!f -2A+a.B-2B+(a·A +4A_)], 

where 2"0 is the free Lagrangian in (2.2) with J ± p. = O. 
Using the conformal transformation (2.7) and (2.8), one 
can evidently show that the part of the action written expli­
citly is invariant. So we make the choice 

!f = 2A+ a·B + 2B+ a·A + SA_B+, (2.11) 

in which case we recover the free action in (2.1 ) or (2.2). So 
we conclude that in the Abelian case it is possible to write an 
action with built-in gauge fixing, which is intrinsic on the 
projective cone, and no auxiliary fields (Ba ) are needed for 
covariant quantization. However, in the non-Abelian theory 
this is not the case, as we shall see in Sec. IV. 

III. THE HOMOGENEOUS PROPAGATORS 

The action (2.1) is invariant under the following 
"gauge" transformation, which we will refer to as the "cone­
gauge" (c-gauge, for short) : 

Oa~a + y2ba , 

where ba is an arbitrary vector field of degree 3. This is 
because on the cone (y2 = 0) 

a 2(oa + y2ba ) = a20a + 4(y.a + 3)ba = a20a . 

In fact, the solutions (2.5) of the free wave equation form the 
quotient of the nondecomposable representation of ~ 

{CQED}_{D (3,!,!)_D(4,0,0)} , 

where {CQED} is the module (2.5) and the invariant "c­
gauge" subspaces are all of the formy2ba • To find the exten­
sion to the full triplet, we investigate the free propagator 
KafJ (y.y') = (oa (y) op (y'», where the Oa (y) are the 
quantum field operators. An immediate candidate for this 
propagator is suggested by comparing the free wave equa­
tion with that of the scalar (a 2<1> = 0). That is, we set 
Kap = - 'f/apK, where K is the scalar propagator: 

K = (y.y') -I + A.yy'2(y.y') -3, 

and A. is a dimensionless real parameter. Then, Kap carries 
the representation 

D6® [D(3,0,0)-D(l,0,0)-D(3,0,0)] , (3.1) 

where D6 is the finite-dimensional vector representation of 
SO(4,2). 

However, this propagator is not "clean," in the sense 
that it contains "spectator ghosts" carrying representations 
that are not Weyl-equivalent l to the physi~ ones and ap­
pear as direct sum representations. 

A 

Proof: Let CafJ be the second;,order Casimir operator in 
the vector representation. Then Cap - c'f/ap = 0 in an irre­
ducible representation for some constant c. !l0wever, if the 
representation ~ nondecomposable, then (C - c) is nilpo­
tent and only (C - c)n = 0 for some positive integer n less 
than or at most equal to the number of levels of leak in the 
representation. One can easily check that 

A p A { 
[(C-c)n]a Kpr=[(C-c)n]arKi=O, V n,c}. 
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In our search for the free propagator, we require that it satis­
fies the following conditions: (i) SO ( 4,2) invariant; (ii) ho­
mogeneous of degree I and linear in y; (iii) contains the 
physical and Weyl-equivalent representations; and (iv) sat­
isfies the Casimir equation [( C - c) n ] a fJ K ~;) = O. These 
requirements fix KafJ uniquely modulo c-gauge. The third 
one implies that c = 0, since the physical representation 
D(2,1,0) EIlD(2,0,l) is Weyl equivalent toD(O,O,O) as seen 
in (2.5). The following propagators are solutions to the Ca­
simir equation: 

K <,;J = y2y '2yay'p (y.y') -4, 

K~ = y2y'2 ['f/afJ (y.y')-3 - y'aYfJ(y.y')-4 

+ SYay'p(y.y,)-4] , (3.2) 

K~ = 'f/afJ(y·y,)-1 +! (Yay'fJ - y'aYp) (y.y')-2 

+ y2y'2{A.'f/afJ (y.y') -3 + [SYay'fJ 

-(A.+j)y'aYfJ] (y.y')-4}, n>3, (3.3) 

where A. and S are arbitrary constants whose values can be 
chosen later to eliminate the most singular distributions. 

It is evident that K ~ is the "c-gauge" propagator, since 
it is made up of modes all of the form y 2ba • The nontrivial 
propagator (which contains a nonvanishing transverse 
part) is K ~ in (3.3). Therefore, the free propagator is de­
termined, up to a "null propagator," by taking KafJ = K ~~. 

It is interesting to note that restricting (3.3) to the cone, 
we recover the propagator for "gradient-type" gauge theory 
found by Binegar et 01.1 in describing conformal QED, and 
denoted by K'!xi . Here, q = ~, which is just the right value 
needed to remove one of the two ghosts in (3.1). The propa­
gator (3.2) withouty2y,2 factor is what they call the propa­
gator for "current-type" gauge theory, K'!J; (here q = s), 
which carries the triplet 

D(4,0,0)-D (3,M)-D(4,0,0) . 

Now KafJ satisfies the following equations (mody2): 

aaKafJ =0, 

yaa 2K afJ =0. 

(3.4) 

(3.5) 

These conditions actually eliminate the "junk" in (3.1). 
Analysis of the modes in the Fourier expansion of KafJ shows 
that the triplet (2.5) forms the center of a larger Gupta­
Bleuler triplet: 

D(4,0,0) 

~ 

D (3,M) 

~ 

b (q,!)_ { D(2,I,0) EIlD(2,0,1) } _D (q,!) 1 , 
l Ell Id J 

~ 

D (3,!,!) 
~ 

D(4,0,0) 
(3.6) 

where the representation Aa is (2.6) carries the top j of the 
triplet. The free propagator (3.3) is equivalent. to the follow-
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ing set of nonvanishing two-point functions 
(A. +~ =S'= - D: 
(AIL (x) Av(x'» =r-2 (-1JILv +1rILrVr-2), 

(AIL (x) A+(x'» = 1rILr-2, (AIL (x) A_(x'» =! rIL r-
4

, 

(A+(x)A_(x'» = _~r-2, (A+(x)A+(x'» =j, 
(3.7) 

(BIL (x) Bv (x'» = t 1JILv r-6, (B+ (x) B_ (x'» = 1 r-6 , 
(3.8) 

(AIL (x) Bv(x'» =r- 4 (-1JILv +trILrJ-2), 

(AIL (x) B+ (x'» = (BIL (x) A + (x'» = j rIL r-
4 

, 

(AIL(x)B_(x'» = (BIL(x)A_(x'» =1rILr-6, (3.9) 

(A+(x)B_(x'» = _jr-4
, 

where 

IV. CONFORMAL YANG-MILLS 

Conformal Yang-Mills was considered by Zaikov,l1 
who also found it necessary to introduce auxiliary fields. 
Fradkin and Palchikl2 found a nonlinear, nonlocal transfor­
mation of the fields. In this paper, we deal with conformal 
Yang-Mills in the extended manifest formalism. 

The problem here is the same as the one in conformal 
scalar and spinor QED. The free Lagrangian is "intrinsic" 
on the cone, which means that the unphysical fields do not 
contribute, but the interaction is not. 

The general form of the pure Yang-Mills Lagrangian is 

!f = !fo+g!f l +g2!f2 , 

whereg is a dimensionless coupling constant, !f 0 is quadrat­
ic, !f 1 cubic, and !f 2 quartic in the field. The !f 0 and !f 2 

can be written intrinsically on the cone, but not !f I. The 
general form of !f 1 is (aa aP Daap), where Da is a linear 
differential operator of degree 1. The only such operator in­
trinsicon the cone isDa = Ya a 2 - 2 (y·a + 2) aa, which is 
not satisfactory since it does not reproduce the three-gluon 
vertex, while D a = a a does. Therefore, an extension off the 
cone is needed and the unphysical field Ba will contribute. 
So we adopt (2.6)-(2.8), whereas usual the vector potential 
aa is in the adjoint representation ofSU(N): 

aa(Y) =a/(y)T;. i= 1, ... ,(N 2 -l). 

The {Tj } are the Hermitian generators ofSU(N) with a Lie 
algebra and normalization 

[T;,1)] = ie/Tk , Tr( T; 1) = ! c5ij . 

Define the covariant derivative and its commutator 

~ a = 1 aa + igaa , 

FafJ=(1/ig) [~a'~P] =aaap -apaa +ig[aa,ap], 

where 1 is the unit matrix. 
The pure Yang-Mills invariant action is 

S [a] = f (dy) Tr[ - ! FafJ Fap] 

= f (dy) Tr{ - ~ aaap(a aaP - apaa) 
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- ig[aa,aP] aaap + ! g2 [aa ,ap ] [aa,aP]} , 

(4.1 ) 

S[A,B] = f d 4x [(!fO-!fOF ) +g!f l +g2!f2], 

(4.2) 

where !f OF is the trace of (2.10) and (2.11), and in the free 
theory !f OF = !1' since a·a = 0 as shown in (3.4): 

!fo = Tr(!aaa 2aa) 

= Tr(! AIL DA IL + 2A_DA+ - 4A_ a.A - SA_ 2), 

!f 1 = - i Tr{[A IL.A V] aILAv + 2 [AIL .A+] aILA_ 

+ 2 [AIL .A-] aILA+ + 1.4+ (AIL.BIL] 

+ 4A+ [A_.B+]), 

!f2=TrH [AIL .Av ]2_2[A+.A_]2 

+2[AIL.A+] [AIL.A_]}. 

Each term in (4.2) is separately invariant. Note, however, 
that the unphysical fields Ba that appear in !f 1 cannot be 
extracted into an invariant piece as in the Abelian case. 

The action (4.1) is invariant under the gauge transfor­
mation 

aa-OaaO - 1 
- (i/g) 0 caa 0- 1

) , 

where 

(4.3) 

O=exp( -ig{J), (J)(Y(x») = (N(xIL ) +x-X;(xIL)]T;. 

The infinitesimal form of ( 4.3) is 

c5aa = aa{J) + ig[ aa,{J)] = [~a,{J)] . 

In the Abelian case, there is no self-coupling and the free 
field, by virture ofEq. (3.4), satisfies a·a = o. Therefore, in 
the gauge transformation c5aa = a a (J), this requires a 2{J) = 0, 
which reads X = - iDA; in agreement with the choice made 
in Sec. II for QED. 

The infinitesimal gauge transformation amounts to the 
following: 

and 

c5AIL =aILA+ig[AIL,A] = [DIL,A], 

c5A+ = ig[A+,A], c5A_ = X + ig[A_,A] , 

c5BIL =ig[BIL,A] + [DIL,X], 

c5B ± = ig{[ B ± ,A] + [A ± ,X]} , 

DIL = 1 aIL + ig AIL . 

We fix the gauge in (4.1) and (4.2) by adding !f OF' 

and get the following conformally covariant nonlinear equa­
tions upon variations of Aa : 

[Dv'/vIL] + aIL a·A + 4aILA_ - 2ig{[A+,[DIL.A_]] 

+ [A_,[DIL.A+]] + [BIL.A+]} =JIL ' (4.4a) 

[D" ,[DIL.A_]] - ig{[AIL.BIL] + 2[A_.B+]} 

+ 2g2[A_,[A_.A+]] =J_, (4.4b) 

[D" , [DIL.A+]] - 2a·A - SA_ + 2ig[A+,B+] 

+ 2g2[A+,[A+.A_]]=J+ , (4.4c) 

where 
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,4v =a!-,Av -avA!-, +ig[A!-,.Av ], 

and sources have been included. Variations with respect to 
Ba give the equation gA + = 0, which is not an equation for 
the free theory and can only be imposed as initial conditions 
on the physical subspace. 

The propagators for the free quantum fields are just 
those given in (3.7)-(3.9) with superscripts i,j, and cSll mul­
tiplying the right side. The last set (3.9) is incompatible with 
two of the free wave equations obtained from (4.4a) and 
(4.4b) withg = O. The reason is as was stated below (3.6) in 
that the Aa carry the "physical" modes that do satisfy the 
free wave equations, but they also carry the "scalar" modes 
that do not. To cure this, one may follow one of two proce­
dures presented in Ref. 5. The first makes use of dimensional 
regularization and the second introduces logarithmic modes 
in the "scalar" sector. However, we will not pursue this any 
further in this report since it does not pose any problem to 
the physics and it only amounts to a better choice of field 
variables that splits Aa into its two components, the "phys­
ical" and "scalar." 

In the presence of matter, gauge invariance ofthe inter­
action Tr(a:i) gives the following set of conservation laws 
for the current: 

J+=O and [D!-"J!-'] +2ig[A+,J_] =0. (4.5) 

The spinor action and six-current ares 

S [tP,o'] 

= Jd4X[ - ~ ~itP+~AtP+g(~A+O'+UA+tP)], 
J+ I = 0, J/ = _iiirr!-,T'tP, 

J_ I = - (g/2) (~T'O'+uT'tP), 

and (4.5) is satisfied by virture of the field equations. The 
action of special conformal transformation on these spinors 
is 

K!-'tP=~2!-,tP_! [r!-',x'r] tP, 
K!-'O'=¥2!-'O'-! [r!-',x'r]O'-r!-'tP. 

The homogeneous two-point functions are 

(tP(x) ~(x'» = ir'r r- 4 
, 

(tP(x) u(x'» = i r- 4
, 

(O'(x) u(x'» =0. 

The total Yang-Mills Lagrangian is 

.Y YM =.Yo +g.Y1 +g2.Y2 - (i/2)~»tP 
+ g(~A+O' + uA+tP) . 

The new vertices are 
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k 
I B+ 
I 
I 
I 

A , , 
I , 

I \ 

A 1/ \ A j 
+ -

where 

k 21gC1j 

Rljmll = Clmk~lIk + Clllk~mk 
and a,b = 1, ... ,N. 

Notice that the unphysical fields Ba and 0' always cou­
ple to A +. It remains to be shown that the coupling of the 
unphysical fields do not contribute to the physical processes. 

Finally, we outline the path integral formulation in one 
gauge using the Faddeev-Popov ansatz and indicate the re­
sidual BRS invariance. 

The generating functional for the Green's functions is 

Z[j] 

=5 J (.@'aa)eXPi{J(dY)Tr[ -~Fa,8Fa,8-a:i]); 
then insert 1 = f (.@'w) 4pp [aa '" ] cS(a-a'" -;), which de­
fines the Faddeev-Popov determinant 4pp • 

Gauge invariance leaves a meaningless infinite volume 
integral in gauge space that is absorbed in the normalization 
factor 5. Then, the constant 

is inserted and integration over; is carried out to result in 
the following amplitude: 

Z[j] =JY" J (.@'aa) 4 pp [a] 

xexPi{J (dY)Tr[ - ! Fa,8Fa,8 

- ~ (a-a)2 - a:i]) . 

Hence 4 pp [a] = det{M[ a]}, where M[ a] is the operator 

cS(y2)M(y,y') = cS6 (y - Y') (aa.@' a) . 

Then, we express the determinant as the integral 

4 pp [a] = J(.@'l1i) (.@'l1i t ) 

xexp i{J (dy) Tr(l1t aa [.@' a,l1]>} 
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over 2 (N 2 - 1) Grassmann scalars 7] i and 7] it, referred to as 
FP ghosts. Finally, we obtain the generating functional 

Z[j,k,k t ] =% f (~a~7]~7]t) 
Xexp is [a,7],7]t,j,k,k t ] , 

S = f (dy) Tr{ - ~FaPFaP - ~ (a·a)2 + 7]t aa [~a,7]] 
- a-j-7]t K -7]Kt}, (4.6) 

where we have included sources for the ghosts. 
The effective action (4.6) is not invariant under the 

gauge transformation (4.3), but it is invariant under the rig­
id BRS transformations 

{jaa =O[~a,7]], 

{j7] = (g/2i)O [7],7]] , 

{j7]t = O(a·a) , 

and 0 is a Grassmann constant parameter. This invariance is 
used to derive the Ward identities, which may differ from 
Slavnov-Taylor identities for ordinary Yang-Mills. But this 
question is beyond the scope of this paper. We also leave, for 
a possible future study, the question of choosing a better 
gauge fixing term (e.g., .!t' OF ) and the resulting BRS invar­
iance. Therefore, no attempt is made here to write (4.6) in 
Minkowski notation and further the investigation. 
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Any (N + M)-parameter Lie group G with an N-parameter subgroup H can be realized as a 
global group of diffeomorphisms on an M-dimensional base space B, with representations in 
terms of transformation laws of fields on B belonging to linear representations of H. The 
gauged generalization of the global diffeomorphisms consists of general ditreomorphisms (or 
coordinate transformations) on a base space together with a local action of H on the fields. The 
particular applications of the scheme to space-time symmetries is discussed in terms of 
Lagrangians, field equations, currents, and source identities. 

I. INTRODUCTION 

The theory of Yang and Mills 1 provides a prescription 
for "gauging" an internal symmetry group. The linear action 
of the group on physical fields is generalized from a "global" 
action to a "local" action by the introduction of auxiliary 
fields-the so-called Yang-Mills potentials or connection 
coefficients for the group in question. This idea was applied 
to the group of Lorentz rotations of an orthonormal tetrad 
(in a metric space-time) by Utiyama2 and Sciama.3 1t is nat­
ural to regard the connection coefficients in this case as the 
anholonomic components of the linear connection of the 
space-time. The holonomic linear connection is then metric 
compatible and asymmetric (the space-time is a U4 , in 
Hehl's terminology4). 

The Poincare group (group of isometries of Minkowski 
space-time) lies outside the scope of the original Yang-Mills 
theory because it acts on the space-time as well as on physical 
fields. Nevertheless, as was shown by Kibble,s it can be 
gauged. The auxiliary fields consist of a tetrad and a connec­
tion for the Lorentz rotations of the tetrad. The action of the 
gauged Poincare group is the action of general coordinate 
transformations (or, interpreted actively, space-time ditreo­
morphisms) together with Lorentz rotations of the tetrad. It 
is natural then to define the space-time metric to be the one 
with respect to which the tetrad is orthonormal and to define 
the linear connection of the space-time to be the one arising 
from the Lorentz connection. We obtain again the U,;, theory 
of Uti yam a and Sciama. However, the tetrad and the general 
coordinate transformations arise out of the gauge principle 
in Kibble's approach; moreover, the metric (and not just the 
linear connection) is constructed from the auxiliary fields­
in the Lorentz gauge theory of Utiyama and Sciama, the 
tetrad, the metric, and the general coordinate transforma­
tions were presupposed ab initio and were extraneous to the 
gauge principle. 

The effect of an infinitesimal space-time diffeomor­
phism (or general coordinate transformation) on an anho­
lonomic field (i.e., a set of scalars that transform linearly and 
homogeneously under tetrad rotations) is the same as the 
effect of an infinitesimal parallel transport combined with an 

infinitesimal tetrad rotation. The work of von der Heyde6 

and the subsequent developments of Poincare gauge theory 
by Hehl and co-workers4 have revealed that it is this parallel 
transport action, rather than space-time ditreomorphisms or 
coordinate transformations, that should be regarded as the 
translational part of the gauged Poincare action. With this 
interpretation, the tetrad is itself a set of Yang-Mills poten­
tials, constituting the connection for the translational sub­
group. The Yang-Mills "field strengths" are the torsion 
(translational part) and the curvature (rotational part) of 
the U4 • 

Kibble's approach can be applied to more general 
groups. Some general aspects of the gauging of space-time 
ditreomorphisms have been worked out by Hamad and Pet­
titt. 7 

As was shown by Lord, g the gauge theory of the affine 
group, together with a space-time metric imposed as an ex­
traneous field, is equivalent to a purely holonomic metric­
affine theory. 9 Of course, the affine extension of the action of 
the Poincare group on Minkowski space-time cannot be a 
symmetry group for a physical theory, but that does not rule 
out the possibility of the existence of gauge potentials for the 
group. Indeed, there are some indications that the affine ex­
tension of Poincare gauge theory may be the correct exten­
sion required for an understanding of the relationship 
between strong and gravitational interactions. 10 Poincare 
gauge theory has been treated as a limiting case of a de Sitter 
gauge theory in the work of MacDowell and Mansouri. 11 

Th~ gauging of the conformal group (group of diffeomor­
phisms of Minkowski space-time that preserve the light­
cone structure) is usually discussed in the language of fiber 
bundles, employing second-order frames. 12 As will become 
clear from the present work, the concept of second-order 
frames is by no means essential in a gauge theory of the con­
formal group. 

Apart from the extensions mentioned above, there is 
also the interesting possibility of extending the Poincare 
gauge theory so as to include internal symmetries in a nontri­
vial way. 13 

For a more exhaustive survey of the literature on Poin­
care gauge theory and its extensions, the reader is referred to 
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the review article of Ivanenko and Sardanashvily.14 
We shall present a general geometrical framework that 

includes the above-mentioned theories as particular cases. 
The central idea is the following: Let G be an (N + M)­
parameter Lie group possessing an N-parameter subgroup 
H. Let t/J be a set of fields on an M-dimensional space B. 
belonging to a linear representation of H. Then G can be 
realized as a global group of diffeomorphisms on B together 
with a representation in terms of transformation laws for t/J. 
Moreover. this can be done in such a way that the gauging of 
the global diJfeomorphism group leads to a local transforma­
tion group consisting of general diffeomorphisms on B to­
gether with an intrinsic action of H on t/J. 

Some aspects of our formalism have been foreshadowed 
in the work of Hamad and Pettitt,1 However. the present 
work goes beyond the scheme of Hamad and Pettitt in sever­
al respects. and our approach is diJferent. We do not begin 
with a global group of diffeomorphisms and attack the prob­
lem of gauging it-we begin with a full-fledged gauge theory 
and come to a global diffeomorphism group as a limiting 
case. 

II. STRUCTURE OF THE GROUP AND ITS POTENTIALS 

Consider an (N + M)-parameter Lie group Gwithgen­
erators 1Ta. Ga satisfying the commutation relations 

[1Ta.1Tp] =ca/1Y1TY +ca{/Gc' 

[1Ta.Gb] =Cab
Y1Ty +cabcGc' (2.1 ) 

[Ga.Gb] =cabcGc' 

The Greek indices a,/J .... are M-fold indices and the Latin 
indices a.b .... are N-fold. The N-parameter subgroup gener­
ated by the Ga will be called H. We shall also employ 
(N + M)-fold indices A.B ..... in terms of which (2.1) is 

[G,40GB] = CAB CGc (2.2) 

(where 1Ta = Ga. Cab Y = 0). 
We shall set up a gauge theory of the group G on an M­

dimensional base space. We shall take M = 4 with a view to 
the physical applications in which the base space is space­
time. However. it should be borne in mind that the geometri­
cal framework is valid for any M and thus has potentially 
wider applications. 

To begin with. we regard G as a group that acts on fields 
over space-time but not on space-time points. The infinitesi­
mal action of G on a field 'I' belonging to a linear representa­
tion of G will be written 

15\11 = E\II. 

where 

E = ~GA = ~1Ta + ~Ga' 

(2.3) 

(2.4) 

Here. 11' a and G a denote the matrix representatives of the 
corresponding generators. 

The group G is gauged in the standard Yang-Mills way 
be introducing Yang-Mills potentials. which are the coeffi­
cients of a connection 

(2.5) 

The Latin letters i.j .... will be used for holonomic space-time 
indices. The covariant derivative of a field \II. 
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(2.6) 

transforms like 'I' under the action of an element of G with 
space-time-dependent parameters provided the connection 
has the transformation law 

I5rl = VjE = ajE - [r;oE]. (2.7) 

which corresponds to the transformation law 

I5r/ = Vj~ = aj~ + ~r/CBcA. (2.8) 

for the Yang-Mills potentials. The Yang-Mills field 
strengths are the coefficients of the curvature 

GIj = ajr} - ajr j - [r;orj] 

= GIjAGA = Glja1Ta + GljaGa• (2.9) 

which leads to 

G/ = a/r/ - ajr/ - r/r/cBc
A. (2.10) 

The fields strengths have a linear homogeneous transforma­
tion law 

I5GIj = [E.GIj]' I5GIj A = ~GIj cCBC A 

and satisfy the Bianchi identities 

V[iGjk IA = O. 

(2.11 ) 

(2.12) 

Now let t/J be a field belonging to a linear representation 
R of the subgroup H. We write the infinitesimal transforma­
tion law of t/J under the action of H in the form 

(2.13) 

where the G a are the matrix representatives of the genera­
tors. in the representation R. In general. it is not possible to 
extend R to a representation o/G. Three particular represen­
tations of H. deducible from the structure constants of G. are 
an (N + 4)-dimensional representation T. a four-dimen­
sional representation S, and an N-dimensional representa­
tion C (the adjoint representation of H). generated. respec­
tively. by the matrices Ta. Sa. and Ca defined by 

(Ta)B c = CBa C. (Sa )pY = CPa Y. (Ca h c = Cba c. 

(2.14 ) 

(The relations [Ta.TbJ =cabcTc• [Sa,sb] =CabcSc' and 
[Ca.Cb] = Cab cCc are consequences of the Jacobi identities 
for the generators of G.) 

Observe that if 

Cab c = o. (2.15 ) 

the representation T is just the direct sum of the representa­
tions S and C. The relation (2.15) holds. for instance. when 
G is the Poincare group. the affine grouP. or the de Sitter 
group. If (2.15) does not hold. then Tis reducible but not 
completely reducible. An example of this is G = SO (4.2). a 
circumstance that leads to interesting special features for the 
gauge theory of the conformal group. 

The infinitesimal transformation laws for fields belong­
ing to the representations T. S. and C of H. under the action 
of H. are. respectively. 

&/JA = ~CAb ct/Jc. I5Xa = ~Cab YXy ' 

l5t/Ja = ~Cab ct/Jc' (2.16) 

The contragredient representations T. S. and C have the cor-
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responding infinitesimal transformation laws 

8t/1A = - £,t/lCCCb A, 8x'" = - £'XYCyb a, 

81/1' =:= - £'¢fCCb a. 

(2.17) 

Observe in particular that, if X a transforms according to S, 
we can extend it to a XA transforming according to T, simply 
by defining X a = o. 

Under the action of H, the Yang-Mills potentials of G 
have the transformation laws 

(2.18) 

8r/ = alE" + £'r/Cbc a - €'e/cYb a. (2.19) 

In regions of space-time where the 4X 4 matrix (el
a

) is non­
singular, its inverse (ea

l) specifies a tetrad field, which be­
longs to the representation S of H: 

8eai=£'cabYe/- (2.20) 

We shall employ these matrices to convert holonomic in­
dices i,j, ... to anholonomic indices a,{3, ... (which are asso­
ciated with the representations S and S of H), in the usual 
way. For example, XI = elaXa andxl = x'"ea

i are space-time 
vectors, invariant under H. 

The third term in (2.19) shows that in general the ria 
are not Yang-Mills potentials for H; they are Yang-Mills 
potentials only if the condition (2.15) holds. Nevertheless, 
we shall employ the r/ to define a parallel transport of a 
field, and an associated generalized derivative 

Dif/! = alf/! - rif/!, r i = r/Ga, (2.21) 

which is not a true covariant derivative (transforming like f/! 
under the action of H) unless (2.15) holds. Nevertheless, it 
plays a crucial role in our gauge theory of the group G. We 
have shown elsewhere'S how such a noncovariant derivative 
arises when the conformal group is gauged following Kib­
ble's method of gauging the Poincare group. In Sec. IV, we 
shall see that DI is actually a constituent of a "generalized 
covariant derivative." 

The transformation law of DI f/! under the action of His 
easily found. It is 

8Dif/! = £'(GbDIf/! + e/cYb aGa f/!). (2.22) 

The rule for constructing the generalized derivative DiX of a 
field variable is to subtract from aix the expression obtained 
by replacing £' by - rib in the infinitesimal change 8X 
brought about by the action of H. Applying this rule, we find 
that 

[Di,Dj]f/!= -F;/Gaf/!, (2.23) 

where 

F;/ = air/ - ajr/ - r/r/Cbc a 

+ (e/r/ - e/r/)Cyb a. (2.24) 

This important quantity will be called H-curvature. Equally 
important is the H-torsion defined by 

D;eja -Dje;a = Fija. (2.25) 

That is, 

Fija = a;e/ - ajet + (e/r/ - e/r/)cYb a. (2.26) 

Comparison of (2.10) with (2.24) and (2.26) shows that 
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the H-curvature and H-torsion are related to the field 
strengths for G through the relations 

G/ = F/ - e/e/cpy A. (2.27) 

In particular, if the 1r a generate an Abelian subgroup of G 
(as is the case, for example, for the Poincare group and con­
formal group), then G/ = F/. 

III. SPACE· TIME DIFFEOMORPHISMS 

The Yang-Mills potentials riA transform as a covariant 
vector under general coordinate transformations or space­
time diffeomorphisms. That is, under an infinitesimal space­
time diffeomorphism x;-.x; - S i, combined with an infinite­
simal action of the group G, 

8r/=s;ajr/+r/a;sj+v;~ (3.1) 
[ where 8 denotes the substantial variation, 
8X = X' (x) - X(x) ]. In terms of the new parameters 

AA=~+s;r/, (3.2) 

this is just 

(3.3) 
We now link the action of the infinitesimal generators 1r a 

to the space-time diffeomorphisms by making the identifica­
tion 

(3.4) 

This step is of central importance in our approach. The 
gauge group G now has an action on the space-time points as 
well as on field components. Equation (3.3) now becomes 

8r/ =APFp/ +DIAA +A be/ cby A, 

or, more explicitly, 

(3.5) 

(3.6) 

(3.7) 

This change is exactly the change brought about by a space­
time diffeomorphism combined with an action of H [as is 
obvious from the fact that (3.4) is €" = 0]. It can therefore 
be associated with the change 

8f/!=s;al f/!+€'Gaf/! (3.8) 

in a field f/! belonging to a linear representation of H, scalar 
under the diffeomorphisms. In terms of the new parameters 
(3.2), this is 

8f/!=A aDa f/!+A aGaf/!. (3.9) 

In this form, we see that the action of the generators 1r a is 
associated with parallel transport of f/!. 

The transformation laws (3.5) and (3.9) are thefunda­
mental equations in our gauge theory of the group G. 

IV. THE MODIFIED LIE ALGEBRA 

From (2.20) and (2.22) we can deduce the transforma­
tion law, under H, of the anholonomic generalized derivative 
Da f/! = ea ID;f/!; we find 

8Da f/! = £'(GbDaf/! + Cab yDyf/! + Cab cGcf/!)· (4.1) 
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Observe also that, under H, 

8Gaf/! = Ga8f/! = E'iGJibf/! = €>(GbGa + Cab cGc )f/!. (4.2) 

These two transformation laws can be combined in the single 
expression 

8QA f/! = €'(GbQA f/! + CAb CQcf/!) , (4.3) 

where the generators QA are defined by 

Qaf/!= -Daf/!, Qaf/!= -Gaf/!· (4.4) 

Thus, the components of QA f/! transform according to the 
representation T ® R of H. 

Now, the QA are the operators that generate the changes 
(3.9) in f/!, 

(4.5) 

We shall now look for the commutation relations satisfied by 
these operators. 

The transformation law of QA f/! under H is 

€'QbQA f/! = - 8QA f/! = - €>(GbQA f/! + CAb cQcf/!)· 

Hence, 

QbQaf/!= (GbGa + cabCGc)f/! = GaGbf/!· 

Therefore, 

[Qb ,Qa ] f/! = [Ga ,Gb ] f/! = Cab cGc f/! = Cba cQc f/!, 
establishing that 

[Qa,Qb] = Cab cQc· 

Also, from (4.3), we have 

QbQa f/! = GbDa f/! - Cab CQcf/!. 

(4.6) 

(4.7) 

Since the Gb are constant matrices, their generalized deriva­
tive vanishes 

[D;Gb =a;Gb -r;a(GaGb -GbGa -ca/Gc) =0]. 

Therefore 

QaQbf/! = DaGbf/! = GbDa f/!. (4.8) 

Subtracting (5.8) from (5.7), we find that 

[Qa,Qb] =CabYQy +CabcQc' (4.9) 

The relations (4.6) and (4.9) fortheQA are just like the 
commutation relations (2.1) with which we set out. How­
ever, the first commutator (2.1) is modified in a manner 
already familiar from Poincare gauge theory.4 We have 

But 

[Da,Dp]f/!=e/D;(E/Dlf/!) - (a++f3) 

= (Dae/ - Dpe/)DJf/! + ea;e/[ DoDj]f/! 

= (Dae/ - Dpe/)Djf/! - Fap cGc f/!. 

Fa/ = e/ea ;ep k(D;ek Y - Dke; Y) 

- e l(e kD eYe ;D e Y) - Del Del - Y P a k - a p; - p a - a p' 

Therefore, 

[Da,Dp] = -FapYDy -FafJcGc, 

which establishes that 

[Qa,Qp] = FapYQy + FafJcQc· 
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(4.10) 

(4.11 ) 

The H-curvature and H-torsion have taken the place of 
structure constants, in a modification of the Lie algebra of G. 

We shall now write the commutation relations for the 
QA , that we have just found, in the more concise form 

[QA>QB] =FABCQC' (4.12) 

where the F afJ C are the H-curvature and H-torsion and the 
remaining components of FAB C are the original structure 
constants of G. Observe that, if the curvature Gij vanishes, 
the commutation relations (4.12) reduce to those of the Lie 
algebra of G [see (2.27)]. 

The fact that the appropriate derivative operator D a for 
the gauge theory of G is not in general a covariant derivative 
operator is at first sight disturbing. However, recall that the 
covariant derivative operator associated with a gauge group 
H is by definition an operator that acts on a field f/!, belonging 
to a linear homogeneous representation R of H, to produce a 
derivative of H that transforms linearly and homogeneously. 
In the present context, such a covariant derivative operator 
does in fact exist, namely the operator 

(4.13 ) 

which produces a derivative transforming according to the 
linear homogeneous representation T ® R. Thus, we have an 
interesting extension of the usual notion of covariant differ­
entiation. 

Now let tP A and tPA be quantities belonging to the repre­
sentations T and Tof H. We define a new derivative operator 
for such quantities, suggested by the relations (4.12) and the 
usual structure of "covariant derivatives of the adjoint and 
coadjoint representations of a Lie group": 

tP;tPA =a;tPA -r/FABctPC' 

tP;tPA = a;tPA + tPcr/FCB A. (4.14) 

Unlike the quantities D;tP A and D;tPA, we find that these de­
rivatives are true covariant derivatives in that they trans­
form like tP A (resp. tPA) under the action of H. The geometri­
cal significance of the operator tP; is at present obscure. 
However, as we shall see, it leads to striking formal simplifi­
cations of some of the fundamental relationships of our the­
ory. 

v. THE SOURCE IDENTITIES 

Any gauge theory has two distinct aspects: the purely 
geometrical aspect and the physical aspect. The physics is 
introduced by means of Lagrangians, and, in the case of 
gauge theories of space-time groups, by means of hypotheses 
concerning the relationship between the potentials and the 
metric and affine properties of space-time. In the preceding 
sections, we have set up the formalism for the geometrical 
aspect of a gauge theory of the group G. We now relate this to 
physics by postulating the existence of Lagrangian theories 
invariant under the action of the gauge transformations. 

Suppose there exists a Lagrangian density .!f (f/!, 
a; f/!,r; A) whose field equations are form-invariant under 
the action of the transformations (3.5) and (3.9). The inter­
esting question of what are the possible forms of Lagrangian 
densities (if any) for a given group G will not be dealt with 
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here; we simply assume the existence of ~ and examine the 
consequences of that assumption. 

The covariance requirement is 

a.(e-i~)=~~= a~ ~.I.+ a~ ~.I.+ a.? ~r.A. 
I !> af/I V' a aif/l IV' ar/ I 

Define the sources of the Yang-Mills potentials 

1: 1_ a.? 
A - ar.A 

I 

and employ the field equations 

~.? a~ I 
0= -- = -- -aiD' 

~f/I af/l 

We find that 

al(sl.? - Oi~f/I) = 1:Ai~r/. 
Now, 

Sl.? - nt~f/I =A A(J/, 

where 

(J/ = .?ea
i - OIDaf/l, 

(5.1 ) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

These quantities are recognizable as a canonical energy-mo­
mentum density and a set of (intrinsic) currents associated 
with the subgroup H. We find that (J A I belongs to the repre­
sentation T of H, 

~(JA i = A bCAb c(Jc l (5.8) 

(and is a vector density under space-time diffeomorphisms) . 
We now have 

al (A A(JA I) = DI (A A(JA I) 

= 1: I(A aF .A + D.A A +A be.rc A) A al I I br • (5.9) 

Equating coefficients of DIAA identifies the sources of the 
Yang-Mills potentials as the canonical currents, 

(5.10) 

Equating coefficients of A a and Aa gives the source identities 

(5.11) 

(5.12) 

The first of these is recognizable as a generalized energy­
momentum conservation law, the right-hand side being a set. 
of "Lorentz forces" constructed from the currents and field 
strengths. 

The relations (5.10) are explicitly 

a.? =.? e 1_ a.? D .1. 
ae.a a aa .• I. aV' 

I IV' 

(5.13) 

and 

a.? _ a~ G .1. 5 14 
ar.a - - aa .• I. aV" (. ) 

I IV' 

They imply that the Lagrangian density has the form 

~ = eL (f/I.Da f/I), e = letl. (5.15) 
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VI. THE FIELD EQUATIONS 

Let us now suppose the existence of a Lagrangian den­
sity r (rl A ,qj r i A) for the Yang-Mills potentials, and add it 
to .? Covariance requirements impose the restriction 

. ar A i" A 
~r=a.(e-Ir) = -~r. +K.Y~a.r., (6.1) 

I !> ar.A I n J I 
I 

where 

KIj- ar 
A - a.rA · 

J I 

(6.2) 

(The possibility of constructing such Lagrangians will be 
considered in Sec. VII.) 

The field equations obtained from variation of riA in 
..? + rare 

~r = ar -a.KAIj= -(J/. (6.3) 
~r.A arA J 

I I 

Hence 

aj(sjr - KAIj~r/) = - (J/~r/, 

i.e., 

Dj [A A!f / - KAIjDIA A] 

= -(JAi(APFpiA+D;AA+AbelrCbrA), 

where 

!f / = re/ - KAPjFa/JA, 

!f / = - KA pjca,/. 

Equating coefficients of ai ajA A gives 

KAIj= _K/i 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(which shows that derivatives of the r/ have to be con­
tained in r in the combination G;/ ), and equating coeffi­
cients of DjAA gives the field equations for the Yang-Mills 
potentials in the Maxwellian form 

DjKA Ij = (J/ + !fA i. (6.9) 

Observe that the !fA i are the energy-momentum density and 
H-currents for the Yang-Mills potentials. Equation (5.4) 
can be regarded as a definition of the energy-momentum and 
the H-currents. Applying this to the Yang-Mills Lagran­
gian, we find 

e-jr _ ar ~r.A = A A~ j + terms inD.A A. 
!> a~r.A I A I 

J I 

(6.10) 

The peculiar derivative operator g i introduced in Sec. 
IV can be used to cast some of our equations into a particu­
larly elegant form. For example, the transformation law 
(3.5) for the Yang-Mills potentials is just 

~riA=giAA, (6.11 ) 

the source identities (5.11) and (5.12) are 

gi(JAI=O (6.12) 

and the field equations (6.9) are 

~iKAIj=(J/+eAir (6.13) 

(where ea i is defined to be zero). Note that the expressions 
on the right and left in (6.12) and (6.13) transform linearly 
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and homogeneously under the action of H (they belong to the 
representation T), but this was not the case for the source 
identities and field equations as originally given, unless 
Cab c = O. Note finally that the definitions (5.6), (5.7), 
(6.6), and (6.7) of energy-momentum densities and H-cur­
rents can be written in the "manifestly covariant" forms 

0,/ = .2"e/ + nIQA¢', (6.14) 

(6.15) 

VII. STRUCTURE OF LAGRANGIANS 

So far, we have not proposed any particular form for the 
Lagrange density r. We have found that it has to be a func­
tion of r l A and G ij A. An obvious choice is the Maxwell-type 
Lagrange density quadratic in curvature, 

r = (lIK)gI/2g1igkiG1k
AGj /rAB' (7.1) 

where K is a constant, the matrix (gij) is constructed from 
the tetrad according to 

(7.2) 

where (1Jap) is some nonsingular symmetric matrix, (gil) is 
the inverse of (gij)' and g is its determinant. The matrix 
(rAB) is the Cartan form for G, 

rAB= -CEAFCFB E. (7.3) 

Clearly, gij transforms as a tensor under coordinate 
transformations or diffeomorphisms of space-time (and can 
be interpreted as the space-time metric). The function (7.1) 
is a scalar density under coordinate transformations or 
space-time diffeomorphisms. It will be invariant under the 
action of H provided 

Cab Y1Jyp + Cpb Y1Jya = !1JaPCYpY, (7.4) 

This can be regarded as a restriction on the choice of the 
group G when 1J is given. In terms of the four-dimensional 
representation S of H, it can be written more succinctly as 

S1JST = ISII/21J. (7.5) 

In the following section we shall show that the gauge 
theory of the group G that we have set up can be obtained by 
gauging a global group of space-time diffeomorphisms. This 
will of course only lead to plausible physics if the global 
group of diffeomorphisms is related to the geometrical prop­
erties of the space-time on which it acts (e.g., Poincare or 
conformal transformations on Minkowski space, de Sitter 
transformations on de Sitter space). The Poincare gauge the­
ory, de Sitter gauge theory, and conformal gauge theory all 
havegroupsG that satisfy a condition of the form (7.5). The 
affine group does not, but in the affine gauge theory8 an 
independent dynamical metric field gij' unrelated to the tet­
rad, is introduced into the structure of Lagrangians. Of 
course, in some cases (7.1) will not be the uniquely possible 
choice for r. For example, as is well known, in Poincare 
gauge theory a curvature scalar is a possible choice,5 and so 
are terms quadratic in torsion.4 

The possible forms for the matter Lagrangian present a 
more complicated problem, which will not be dealt with 
here, except to mention that matter Lagrangians with the 
required transformation laws can be constructed for the 
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gauge theories of the Poincare, de Sitter, and conformal 
groups. 

The gauge theories of the de Sitter and conformal 
groups that arise as particular cases of our formalism will be 
presented in a sequel to the present work. 

VIII. REALIZATION OF G AS A GLOBAL GROUP OF 
DIFFEOMORPHISMS 

We consider now what happens when the curvature Gij 

vanishes. We have noted already that the operators QA then 
satisfy the commutation relations of the Lie algebra of G. Let 

o A r l = r l GA (8.1) 

be a connection, with vanishing curvature, whose coeffi­
cients are given functions of space-time (note that el a is 
required to be a nonsingular matrix, so rj = 0 is not an ap­
propriate choice). The transformations (3.5) that preserve 
the given form of the riA are 

(8.2) 

We have a set of N + 4 linear differential equations to be 
solved for the N + 4 parameters A.A. The integrability condi­
tions are G ij A = 0, which are satisfied. The general solution 
can be written in terms of an element u of the group G, satis­
fying 

Blu + uri = O. (8.3) 

The integrability conditions for these equations are Gij = O. 
Now denote the matrix that represents u in the adjoint repre­
sentation by E B A • Then 

BIEBA + EB crlDCCDA = o. (8.4) 

Since the matrix EBA is nonsingular, its columns provide 
N + 4 linearly independent solutions of (8.2). The general 
solution is therefore 

A.A=aBEBA, (8.5) 

where the aB are constants. 
The transition law of If, under these specialized trans­

formations, is 

tj¢'=aBMB, 

MB =EBaDa +EBaGa. 

(8.6) 

(8.7) 

In order to establish that (8.6) corresponds to a representa­
tion of G, with aB as parameters, we have to show that 

[MA.MB] =CABCMc' (8.8) 

LetA. A = aBE B A andp,A = b BE B A be two arbitrary solutions 
of (8.2). Then, since aB and b B are constants, we have 

aAb B (M,.toMB] 
a a- P b-= [A. Da +A. Ga,p, 'Dp +p, Gb ] 

= (A. aDa p,P - (A.++fl»)Dp +A. ap,p [Da,Dp] 

+ (A.aDap,b- (A.++fl»)Gb +A.aA.b[Ga,Gb]. 

Now, (8.2) can be written 

DaA. A = - A. BCBa A, (8.9) 

and we have an identical equation in p,A. Therefore 

aAbB[MA.MB] =A.Ap,B(CABYDy +CABcGc) 
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(in arriving at this, we make use of Cab Y = 0). Therefore 

[MA,MB] =EAEEBF(CEFYDy +CEFcGc). 

Since E A B belongs to the adjoint representation of G, it satis­
fies the identity 

EAEEBFCEFC = CABDED c. 

The result (8.8) then follows immediately. 
An alternative form for the M B is 

MB =BBiai +BBaGa, 

where the coefficients are defined by 

E a B iO a E a B a Biro a B = B ei , B = B + B i' 

(8.10) 

(8.11 ) 

(8.12) 

Th~ commutation relations (8.8) imply the following identi­
ties: 

(8.13) 

B iaB a B iaB a CB a B e1J f. a A i B - B i A = CAB C - A B Cel . 
(8.14) 

The first of these relations shows that the group G is now 
realized as a global group of diffeomorphisms Xi ~Xi - Si, 
with 

Si = aBBB
i. (8.15) 

The relations (8.14) were given by Hamad and Pettitt 7 as 
the necessary conditions for the transformation law (8.6) 
[with M B given by (8.11)] to represent a global group of 
diffeomorphisms of the form (8.15). 

The procedure adopted in this section is the inverse of 
the usual one-we started with a gauge theory and "un­
gauged it," ending up with a global group of transforma­
tions. The Lagrangian density (5.15), if it exists, gives rise to 
a Lagrangian density 

Y(1/1,ai1/1,xi) = eL (1/1,Da 1/1), (8.16) 

where 

Da 1/1 = ea i(ai1/1 - I'i aGa 1/1), ( 8.17) 

for a theory that is covariant under a global group of diffeo­
morphisms (the I'i A are invariant specified functions of the 
coordinates, not fields). The Noether currents for this the­
ory are defined by 

siy - lli~1/1=aBJBi. 

They are 

Ji =BB
i8/ +BBA(J/, 

where 

8/ = Y~/ - ll} ai1/1, 

(J/ = - llJGa 1/1. 

They satisfy 

aj Ji=O. 

( 8.18) 

(8.19) 

(8.20) 

(8.21 ) 

(8.22) 

Alternatively, the Noether currents can be written in the 
form 

Ji=EBA(J/, 

where 

(J/ = Ye/ - lljDa1/1. 

The conservation laws (8.22) then take the form 
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(8.23) 

(8.24) 

a(J i rOB C(Jl j A = j CAB c, (8.25) 

which are of course the limiting cases of the source identities 
(5.11). The quantities (J / are "intrinsic" currents for the 
group G and the J / are the "total" (intrinsic + orbital) cur­
rents. 

The covariance of (8.16) is of course lost when the pa­
rameters aA are made space-time dependent [which is tanta­
mount to making theA-A independent space-time-dependent 
functions by abandoning the constraint (8.2) ]. The change 
in the Lagrangian is now 

(8.26) 

Obviously, the covariance can be maintained by introducing 
auxiliary fields riA so as to revert to the original theory of 
Sees. V and VI. 

Important particular cases of the foregoing theory arise 
when the 1ra commute (ca,8 C = 0). The Poincare group 
gauge theories and conformal gauge theory belong to this 
class. An appropriate choice for the I'i A in these cases is 

(8.27) 

The distinction between Latin and Greek indices, and the 
distinction between the generalized derivative and the ordi­
nary partial derivative, now disappear. The constraint (8.2) 
on the transformation parameters is now 

arA- A + A- BCBr A = O. (8.28) 

The matrix C7 that solves (7.3) is 

(8.29) 

so that 

(8.30) 

where the four matrices Ca are the adjoint representatives of 
the 1ra , 

(ca )B
A = CBa A. (8.31) 

On account of car B ~ 0, we have 

EafJ = ~afJ, Ea b = 0, 

and consequently 

sa = aa + abEb a 

and 

~1/1 = aa aa 1/1 + ab(Eb a aa + Eb aGa )1/1. 

The Noether currents in these cases are 

(8.32) 

(8.33 ) 

(8.34) 

J/ = (J/, J/ = Eb a(J/ + Eb a(J/. (8.35) 

The two pieces of the right-hand side of the final expression 
correspond to the "intrinsic" and "orbital" parts of the cur­
rent. 

ACKNOWLEDGMENT 

We wish to thank the University Grants Commission of 
India for the financial support of this work. 

Ie. N. Yang and R. L. Mills, Phys. Rev. 96,191 (1954). 
2R. Utiyama, Phys. Rev. 101, 1597 (1956). 
3D. W. Sciama, in Recent Developments in General Relativity, Festschrift 
for Infeld (Pergamon, New York, 1962). 

4F. W. Hehl, Four Lectures on Poincare Gauge Field Theory, in Proceedings 

E. A. Lord and P. Goswami 2421 



                                                                                                                                    

o/the 6th Courseo/the International School o/Cosmology and Gravitation, 
edited by P. G. Bergmann and V. de Sabbata (Plenum, New York, 1978). 

sT. W. B. Kibble, 1. Math. Phys.2, 212 (1961). 
6p. von der Heyde, Phys. Lett. A 58, 141 (1976). 
71. P. Hamad and R. B. Pettitt, 1. Math. Phys. 17, 1827 (1976). 
BE. A. Lord, Phys. Lett. A 65, 1 (1978). 
9p. W. Hehl, G. D. Kerlick, and P. von der Heyde, Phys. Lett. B 63, 446 
(1976); P. W. Heh1, G. D. Kerlick, E. A. Lord, and L. L. Smalley, Phys. 
Lett. B 70,70 (1977); P. W. Hehl and G. W. Kerlick, Gen. Relativ. Gra­
vito 9, 691 (1978); P. W. Hehl, E. A. Lord, and L. L. Smalley, ibid. 13, 
1037 (1981). 

2422 J. Math. Phys., Vol. 27, No.9, September 1986 

lOp. W. Hehl, E. A. Lord, and Y. Ne'eman, Phys. Rev. D 17, 428 (1978); 
Phys. Lett. B 71, 432 (1977); Y. Ne'eman and D. Sijacki, Ann. Phys. 
(NY) 120,292 (1979). 

"S. MacDowell and R. Mansouri, Phys. Rev. Lett. 38, 739 (1977). 
121. P. Hamad and R. B. Pettitt, in Group Theoretical Methods in Physics, 

Proceedingso/the V International Colloquium, edited by R. T. Sharp and 
B. Kolman (Academic, New York, 1977). 

13K. P. Sinha, Pramana 23, 205 (1984). 
14D. Ivanenko and Sardanashvily, Phys. Rep. 94,1 (1983). 
ISE. A. Lord and P. Goswami, Pramana 25,635 (1985). 

E. A. Lord and P. Goswami 2422 



                                                                                                                                    

Scalar formalism for non-Abelian gauge theory 
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The gauge field theory of an N-dimensional multiplet of spin-~ particles is investigated using 
the Klein-Gordon-type wave equation {II· (1 + iu) • II + m2}ct> = 0, "I'==a label' - eAI" 
investigated before by a number of authors, to describe the fermions. Here <I> is a 2 X 1 Pauli 
spinor, and u represents a Lorentz spin tensor whose components u I'V are ordinary 2 X 2 Pauli 
spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are 
derived starting from the conventional field theory of the multiplet and converting it to the 
new description. The equivalence of the new and the old formalism for arbitrary radiative 
processes is thereby established. The conversion to the scalar formalism is accomplished in a 
novel way by working in terms of the path integral representation of the generating functional 
of the vacuum 1'-functions, 1'(2,1, ... 3 ... )==(0 - IT(lI'in (2)'iiin (l) ... AI' (3 )in ... S) 10 - ), 
where lI'in is a Heisenberg operator belonging to a 4N X 1 Dirac wave function of the multiplet. 
The Feynman rules obtained generalize earlier results for the Abelian case of quantum 
electrodynamics. 

I. INTRODUCTION 

The use of the "second-order" Dirac equation I 

{II. (l + iu) • II + m2}ct> = 0, III'==~ - eAI' ' (1.1) 
aul' 

to describe a spino! particle has been investigated earlier. 2-14 

In Eq. (1.1) ct> is a 2 X 1 Pauli spinor, and u is a spin tensor 
whose Lorentz components u I'V are ordinary 2 X 2 Pauli spin 
matrices [see Eq. (2.16)]. The useofEq. (1.1) to describe a 
spino! particle brings out a close parallel between the quan­
tum theory of a spino! particle and the quantum theory of a 
simple scalar particle. Indeed, Feynman rules for a quantum 
electrodynamics based on Eq. (1.1) are essentially the rules 
of scalar electrodynamics, aside from a modification of the 
one-photon vertex to incorporate spin effects. These Feyn­
man rules have been derived using the c-number formalism4 

and again from the formalism of quantum field theory using 
a variety of approaches. 5.14 The similarity between this "sca­
lar formalism" for quantum electrodynamics and scalar 
electrodynamics extends to the types of divergent graphs 
and to the renormalization prescriptions as well. 

We will here extend the Feynman rules for quantum 
electrodynamics in the scalar formalism to include a non­
Abelian gauge theory of an N-dimensional multiplet of fer­
mions. Our method will be to start with the conventional 
gauge field theory of the multiplet employing the linear 
Dirac equation and to then convert to the new formalism, 
thereby establishing for arbitrary radiative processes the 
equivalence of the new and the old formalism. 

In Sec. II a unitary transformation of the conventional 
linear Dirac equation for the fermion multiplet is performed, 
enabling us to write the Dirac equation of the mUltiplet in a 
second-order form, Eq. (2.14). This second-order form par­
allels closely Eq. (1.1). Accordingly, the derivation of the 
wave equation (2.17) of the dual state of the fermion multi­
plet and the derivation of a conserved transition current, Eq. 
(2.18), can be carried out just as in the simple one-particle 
case. 

0) Permanent address: Physics Department, Wilkes College, Wilkes Barre, 
Pennsylvania 18766. 

The new representation of the fermion multiplet derived 
in Sec. II is employed in Sec. III, where the Dirac field de­
scribing the multiplet is second quantized in the usual way 
with path integral techniques. Conversion to the language of 
the scalar formalism is accomplished by first formally per­
forming the path integral over the fermion degrees of free­
dom. This step is made possible by using an abstract operator 
notation due to Schwinger. 15 The resulting proof of equiv­
alence is quite striking for its simplicity and generality. The 
Feynman rules obtained generalize earlier results for the 
Abelian case of quantum electrodynamics.4,5,14 In the Ap­
pendix the equivalence proof is reconsidered briefly using 
the method of Ref. 14. 

The model considered is one without symmetry break­
ing. The Feynman rules, summarized in Sec. III, Table I, are 
basically the rules for a corresponding mUltiplet of scalar 
particles; except for a modification of the "gluon-quark" 
vertices to incorporate spin effects. Such vertex modifica­
tions are needed in the non-Abelian case for both the simple 
gluon-quark vertex and for the double gluon-quark vertex 
(seagull vertex); in contrast to the quantum electrodynam­
ics case in which all spin effects reside in the one-photon 
vertex. 

The motivation for this work stems from an interest in 
seeing a familiar theory recast in a new language. This new 
language may be of some heuristic andlor calculational val­
ue for elementary particle physics. A Bethe-Salpeter equa­
tion for two interacting fermions provides an example in 
which the scalar formalism may have an advantage over ear­
lier methods, since the Bethe-Salpeter wave function for the 
two fermion system is a 2 X 2 matrix in the scalar formalism, 
as opposed to a 4 X 4 matrix in a description based on the 
familiar first-order Dirac equation. 

II. SECOND-ORDER DIRAC EQUATION FOR AN N· 
DIMENSIONAL MULTIPLET OF FERMIONS 

As indicated in the Introduction, our starting point will 
be the conventional gauge theory of an N-dimensional multi­
plet of fermions. The first-order Dirac equation for such a 
system reads 
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{r . ( - ia - eA) - im}'I' = 0 , 

where 

(2.1 ) 

(2.2) 

is an N X 1 matrix of 4 X lone-particle Dirac spinors. The 
transition to the desired second-order form of Eq. (2.1) is 
brought about most simply by working in a representation 
for which the one-particle Dirac matrix Ys is diagonal. Such 
a representation of the one-particle Dirac matrices is ob­
tained by choosing 

r O. J ia] 
'Y=l~' P [01 1] 

Y4= =[ilO]' (2.3) 

In Eq. (2.1) the r I' are N X N matrices of 4 X 4 matrices. 
When written out in block form with 2 X 2 blocks, they have 
the following appearance: 

~ 0 ia 
. 

-ia 0 
0 ia 

-ia 0 . 
. 

.. .. 
(2.4) 

1"0 1 
. 

1 0 
0 1 

1 0 
0 

0 

. o • 

Taking our cue from Ref. 14 we split each one-particle 
Dirac spinor in Eq. (2.2) into two 2 X 1 blocks as follows: 

'l'a==[~; ] , 
<Palm 

(2.5) 

thereby defining the Pauli spinors <P a' a = 1,2, ... ,N, and dual 
spinors <i> a' Equation (2.2) now takes the form 

'1'= (2.6) 

<PN 

<i>1,lm 

in which the spinors <P alternate with their duals <i>. Next a 
canonical transformation is performed in which all spinors 
<P in Eq. (2.6) are brought to the top. The transformed state 
'l'T will have the form 
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<P\ 

(2.7) 

The expressions for the transforms r I' T of the matrices r I' 
are 

ia 
ia 

ia rT = I--~---------------------___ r----------------~ -ia 
-ia 

-ia 

1 

1 
rT-

4 - 1 (2.8) 

In terms of Kronecker products we have the relations 

rp = I NXN ®Yp 

and 

rpT=Yp®INxN' 

We may write the matrices (2.8) in an abbreviated form 

rT = [ 0 I ia] rT = ~ _ ia 0' 4 rtTOJ ' (2.9) 

in which factors of the N X N unit matrix are understood. All 
subsequent occurrences of '1', W, and rp shall refer to the 
transformed quantities. Note the similarity in structure 
between the expressions (2.9) for the r pT and the expres­
sions (2.3) for their one-particle counterparts y p' This simi­
larity in structure makes it possible to work with the fermion 
multiplet essentially as we did before in the one-particle case. 
Thus in terms of the variables <P and Ci> of Eq. (2.7) our field 
equation (2.1) takes a familiar form 

( -AE + m2 )<p = 0 (2.10) 

and 

Ci> = <PtE, 

in which 

A = - ill4 + a o "==Tp"p, 
and 

(2.11 ) 

(2.12) 

B= -ill4 -a o ll=-Tp llp • (2.13) 

The system of equations (2.10) and (2.11) is entirely equi-
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valent to the original field equation (2.1) fr.om which we 
started and forms the foundation of our scalar formalism for 
the fermion multiplet. The parallel with the Klein-Gordon 
equation is brought out most clearly by writing out Eq. 
(2.10) more explicitly: 

{". (1 + iu) ." + m2 }<I> = 0, (2.14) 

a form that exploits the identityl6 

T,.rv = lj,.v + iu,.v , (2.15) 

involving the self-dual spin tensor 

0 U 3 

(2.16) 
-U3 0 

U,.v = 
U 2 -UI 

-u l -U2 -U3 0 

Equation (2.14) is the second-order Dirac equation that 
we are looking for to describe our N-dimensional multiplet 
of fermions. As in the one-particle case investigated before, 
the dual wave function CI) plays a role in the new formalism 
analogous to the role of'P = 'l'tr4 in the theory of the first­
order Dirac equation. The self-adjointness properties of A 
andB, (A<I»t = <l>t A, (B<I»t = <l>t ii, make it quite simple 
to obtain the wave equation for the dual state~. We take the 
adjoint of Eq. (2.10) obt~ning <l>t( - iiA + m2

) = 0 and 
then act on the right with B. The resulting wave equation is 
<l>t ii( - A ii + m2

) = 0, equivalently 

CI){fi. (1 + iu) • fi + m 2
} = O. (2.17) 

Ifnow Eq. (2.14) for a state <I> A is multiplied on the left by a 
dual state CI) B obeying Eq. (2.17), then Eq. (2.17) for CI) B is 
multiplied on the right by <I> A' and the two resulting equa­
tions are subtracted; then a conservation law emerges: 
a,.j,. = 0, where j,. is the transition current 

j= (1lm2
) Cl)B {fi • (1 + iu) + (1 + iu) • ii }<I> A' (2.18) 

We shall identify the transition current (2.18) with the fer­
mion number. 

III. SECOND QUANTIZATION 

As indicated in the Introduction, we start out with the 
conventional path integral treatment of the gauge multiplet 
based on the linear Dirac equation. Since the path integral 
technique has been discussed extensively elsewhere,t7 our 
discussion can be brief, concentrating on the essential new 
points. We work in terms of the generating functional, G, of 
the vacuum r-functions, 

(0+ IT('I'H (2)'PH(1) ... A,.(3)H ... )10- )/(0+ 10-), 

where'l'H is the exact Heisenberg field operator for the array 
(2.7). The expression for G is 

G == f [dA,.][d'P c/'II]det( - ia· ~) 

xexp(i f d 4x('y EFF + J,. A,. + 'PA + 1\11»), 
(3.1 ) 

+ .YDIRAC ' 
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in which 

.Y DIRAC = 'P( - iR - m)'I', R = r,. nIl , 
(3.2) 

nIl = - i a,. - gA,., A,. =A,.cTc . 

The matrices T c are the generators of the symmetry group, 
and obey the equations of a Lie algebra, [TA ;TB ] 
= ifABCTC' with structure constants fABc' The operators 
~,. are defined by 

(~,. )AB== - i a,.ljAB - g[ Fc1AB A,.c , (3.3) 

where the matrices [F c ] are the matrices of the adjoint rep­
resentation [F c ] AB = - if CAB . 

For fixed A,. the functional integral in Eq. (3.1) over 
the quark degrees of freedom can be formally performed in 
closed form: 

f [d'P d'l']exp( f d 4x('P(R - im)'I' + 'PAi + a'l')) 

= C det(R - im)exp( - f d 4x d 4y a(x) 

x (x I H ~ im I y) iA ( y) ) . (3.4) 

Here and subsequently we employ a notation in which 
propagators are visualized as matrix representatives of ab­
stract operatorsY We write, for example, SF (2,1 ) 
= (21 (p2 + m2) -111), in which p,.= - i a,., therepresen­

tation being with respect to a basis of space-time coordinate 
eigenkets 11) == I T I ,f I) defined through the equations 
x,. 11) = (X,.) Ill) and 

(211) = 1)4(2,1)=:I)(t2 - f l )lj3(T2 - TI ). 

The time coordinate is thus treated on the same footing as 
x,y,z. 

In Eq. (3.4), H is defined as in Eq. (3.2) except that 
now A,.c represents the abstract operator 

(3.5) 

in which A,.c (5') is the c-number potential over which the 
functional integral f [ dA,.] in Eq. (3.1) will be perfol1l!.ed. 

Next we specialize the Grassmann parameters A,A as 
follows: 

[mAl - -A = 0 ' A = [A,O] . (3.6) 

In view of the relation (2.7) and a similar one for 'P we have 
the identity 

'PA + 1'1' = Cl)A + A<I> . (3.7) 

After this specialization of the parameters of the "Fourier 
transform" (3.1) it will be possible by functional differenti­
ation to generate only a restricted subset of vacuum r-func­
tions of the type 

(0-IT(<I>in(2)CI)in(1) ... A,.(3)in ,,,S)IO-) 

involving the quark degrees of freedom only through the 
<l>in's and Cl)in's. These are, however, exactly the vacuum r­
functions of interest for the scalar formalism. 

When the parameters A,1 are restricted in this way, the 
right-hand side of Eq. (3.4) can be transformed into an 
expression relating it to the second-order Dirac equation. 

Levere C. Hostler 2425 



                                                                                                                                    

The relation (8-im)-'=(88+m2)-'(8+im) is 
used in conjunction with the expressions (2.9) for the r I' to 
obtain 

1 [g+im g+FfoTI] 
~-- (3.8) 8 - im - -g_iTo n g_im ' 

in which 

g+ = (To TIT 0 TI + m2)-1 

and 

g_ = (To TIT 0 TI + m2)-I. 

When the expectation value 

f d 4xd 4yl(x)(xl(8 -im)-'ly)A.(y) 

in the exponential ofEq. (3.4) is computed using Eq. (3.8) 
and using the restricted forms (3.6) of A.,x, the exponential 
goes over into an expression involving the propagator of the 
scalar formalism: 

f d 4x d 4y l(x)(xl (8 - im) -II y)A.( y) 

= f d 4x d~ A(x) 

X (xlim2(TI 0 (1 + iu) • TI + m2)-11 y)A( y) . (3.9) 

This relation uses the identity T 0 TIT 0 TI = TI 0 (1 + iu) 0 TI 
[seeEq. (2.15)]. 

The next step is to rewrite the determinant det( 8 - im) 
on the right-hand side ofEq. (3.4) in terms relating it to the 
scalar formalism. This is achieved through use of the matrix 
identity 

det [~ ~] = det(A. 2 - CD) , (3.10) 

in which A. signifies a square matrix proportional to the iden­
tity matrix, and C and D are arbitrary square matrices hav­
ing the same dimension asA.. Formal application of the iden­
tity (3.10) to the operator 

[ 
-im 

8-im= . 
-IToTI 

yields the identity 

iTo.TI] 
-1m 

det(8 - im) = det( - (T 0 TIT 0 TI + m2») 

= det( - (TI 0 (1 + iu) 0 TI + m2
). (3.11) 

When the results (3.9) and (3.11) are incorporated in Eq. 
(3.4), and Eq. (3.4) is incorporated in Eq. (3.1), we obtain 
the generating functional G in the form 

G= f [dAI' ]det( - ia 0 ~)exp(i f d 4x(2' OB + JI' AI') C det( - (TI 0 (1 + iu) 0 TI + m2) 

X exp(f d 4x d 4y ;A(x) (xl ( - im2)(TI 0 (I + iu) 0 TI + m2)-11 y) iA( y»). (3.12) 

Here 2' OB signifies the Lagrangian density for the gauge degrees of freedom. 
Performing the functional integral S[ dAI'] in Eq. (3.12) gives 

G = C exp{ - i f d 4
x Ove( - i al' )g[ FclABO~OvB + i f d 4

x ~ [FclAB [FclDEO~OvBOiJDOvE 

- f .!..tr(p-2pl'g[Fc ]0I'c)n- f .!..tr«p2+mo2)-'rr 
n=,n n=ln 

+ f d 4x d 4y iA(x)(xl( - imo2)(TI 0 (1 + iu) 0 TI + mo2)-11 y) iA( y)} 

xexp{! f d 4x2 d 4xI iJaJ(2)( - i)DF (2, l)aP iJPK (1)} . (3.13) 

The notations here are 

r g(p 0 (1 + iu) 00 + 0
0 (1 + iu) 0 p) 

-rOo (1 + iu) 00, 

TIl' = - i al' - g0l" 01' = 0I'C T c , 

0l'c= f d 4t It )(t l°l'c(t) , 

0l'c(t)==618iJl'c(t) , 

( I - i [ kl' kv ] I ) - iDF (2,1):5 2 k2 81'v - (1- a)!;2 1 , 

kl'=-ial" 

The representation (3.13) provides a convenient means of 
generating compact analytic representations ofFeynman in-
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tegrals. The two infinite series in Eq. (3.13) contain the 
closed loop diagrams for "ghosts" and quarks, and arise 
from an expansion of determinants using the matrix identity 
det(M) = exp(tr(ln(M))). 

Table I provides a summary of the Feynman rules ob­
tained by the perturbation expansion ofEq. (3.13). As indi­
cated in the Introduction, the rules of Table I generalize 
earlier results obtained for the Abelian case of quantum elec­
trodynamics.4

•
s
,'4 In order to avoid dealing with complicat­

ed mass counterterms we have worked above entirely in 
terms of the bare mass mo. Accordingly, Feynman integrals 
obtained by expanding Eq. (3.13) would come out at first in 
terms of the bare mass. Conversion to the physical mass is 
carried out quite simply by replacing each occurrence of the 
propagator 1/( p2 + mo

2) by 1/( p2 + m2 - 8m2) and then 
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TABLE I. Scalar formalism for gauge theories. Feynman rules for the calculation of r-functions.· 

Graph Name Factor 

• quark line l/(P2 + m2 ) 

internal gluon line f d4k - i [ kl' k v ] ---- a -(l-a)-- a,4B 
(217)4 k 2 I'v k 2 

------- _l/p2 ghost line 

simple quark 

gluon vertex 

g(p. (1 +iu)Tcelk'%+elk'%Tc(l +iu) ,plv 

V2C2 : 

double quark 
gluon vertex 

three gluon vertex 

, 
v,c 1 : "3C3 -----+-----, , , 

four gluon vertex - ;gz [fEC .. C2 fEe.c, (6"11'" 6",,1': - 8"."26"lV" ) 

+ fBeJe2 fEC"c, (6"4"'36"1"2 - 8'/14"'2 6"1'" ) 
+ fEC,C .. fEe.el (8"1",6"'2"" - 8"1"''' tJ"'2'" )] :v4C4 

, 
k ... -_,vC P ghost gluon vertex 
- - - - ~ -+ - --

)E • mass counterterm 

"The rules give rl( - im02)Q, where Qisthe number of external quark lines, and 

r==(0 -IT(~(2);n$(1);n •.• AI' (3) ",SIIO - )/(0 -lslO -) . 
In addition to the rules of Table I, we must insert a factor ( - I) for each closed fermion loop, including ghost loops. Both quark and ghost particles are 
treated using an abstract operator notation in which p== - ia [see the discussion after Eq. (3.4)]. For a quark loop a trace over space-time, spin, and internal 
degrees of freedom is required. For a ghost loop a trace over space-time and internal degrees offreedom is required. 

expanding in powers of 6m2
• This is the origin of the 6m2 

vertex in Table I. 
As a final step in our treatment of gauge field theory by 

the scalar formalism, we note that the integrand of Eq. 
(3.12) has a representation in terms ofa path integral over 
Grassmann fields <I>,~. We thus arrive at a representation of 
the generating functional in the form 

G = J [dA~ Hd~ d<l>]det( - ia· ~)exp(i J d 4x 2'), 
(3.14) 

2'=L (- ..!...F~vC F~vC - _l_(a~ A~C)2) 
c 4 2a 

- (1/mo2)~(fi. (1 + iu) • Ii + mo
2 )<I> , 

O~ = - ia~ -gA~, A~ =A~cTc, 

in which an effective "Lagrangian density" 
2 -..... ...... 2 

2' DIRAC = - (limo )<1>(0· (1 + IU) ·0 + mo)<I> (3.15) 

of the second-orderDirac equation (2.4) appears. Theeffec­
tive density (3.15) has the same general structure as the 
Lagrangian density introduced by Brown4 for the Abelian 
case of quantum electrodynamics. 

2427 J. Math. Phys., Vol. 27, No.9, September 1986 

ACKNOWLEDGMENTS 

Part of this work was carried out in the summer of 1985 
while the author was a Visiting Scientist in the Physics De­
partment at Cornell University. I am grateful to the Physics 
Department at Cornell University for their hospitality. 

This research was supported by the National Science 
Foundation under Grant No. PHY-841S543. 

APPENDIX: TREATMENT OF THE FERMION DEGREES 
OF FREEDOM BY THE CANONICAL FORMALISM AND 
THE DYSON-WICK EXPANSIONS 

The equivalence of the new and the old formalism may 
be established treating the fermion degrees offreedom by the 
canonical formalism and the Dyson-Wick expansions, 18 

along the lines of Ref. 14. Since the gauge field is most simply 
quantized by path integral techniques, we shall first go over 
to an intermediate interaction picture in which the virtues of 
both approaches may be exploited. 

We once again begin with the conventional gauge field 
theory of the multiplet. Therefore we start by second quan­
tizing the fermion field \11 of the linear Dirac equation (2.1) 
in the usual way. Then second-quantized fields <I> and ~ are 
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defined through the prescription (2.7). The desired Feyn­
man rules are obtained by then rewriting all in terms of the 
arrays of Pauli spinors 4> and <1>, and using the Dyson-Wick 
expansions. 

We start out in the Coulomb gauge, since the canonical 
formalism is particularly straightforward to implement in 
this gauge. We shall use the shorthand notation q,p to refer 
to the canonical variables of the gauge field. The total Hamil­
tonian of the system is written in a usual way as 
H=HoB(q,p) +HQ('II,'V) + HI (q,p,'II,'V). We assume 
all variables q,p,'II,'V to be in the Schrodinger picture, de­
fined to coincide with the Heisenberg picture at a time t; so 
far in the remote past that the interaction Hamiltonian HI 
becomes ineffective and can be neglected. 

The intermediate interaction picture referred to above is 
defined by separating out a factor exp( - iH Q (t - t; ») from 
the exact Schrodinger picture time evolution operator 
exp( - iH (t - t; »). Note that the interaction picture defined 
in this way is an incomplete interaction picture in that the 
factor separated out, exp( - iH Q (t - t; »), does not incorpo­
rate the free Hamiltonian of the gauge field. For this reason 
all dynamical variables referring to the gauge degrees offree­
dom are left invariant, and remain in the SchrOdinger pic­
ture. The effective interaction picture Hamiltonian is 
HOB (q,p) + HINT (q,p,'IIin,'Vin ). That this is the full Schro­
dinger picture Hamiltonian in the gauge fields makes it pos­
sible to treat the gauge boson degrees of freedom in an 
expression 

1'(2,1) = (0 - IT( 4>in (2)<I>in (1)exp [ -; f: '" dt(HoB + HINT) ])10 - ) «0 + 10 - ) )-1 

for a vacuum 1'-function in the usual way by use of the path integral technique. The resulting expression for the 1'-function is 

1'(2,1) = N /D, 

N = f [dAJ' ]det( -; a· fP)Q (0 - I T( 4>in (2)<I>in (1)exp(i f d 4
x.? EFF ))10 - )Q ' 

D = f [dAJ' ]det( - i a· fP)Q(O - IT(exp(; f d 4x.? EFF ))10 -)Q ' 

.? EFF = L ( - ~ FJ'vc FJ'vc - _1_(aJ' AJ'c)2 + jJ'c AJ'c) . 
c 4 2a 

(AI) 

The Heisenberg vacuum in the remote past is here assumed 
to factorize into an outer product of a vacuum for the gauge 
field and a vacuum for the quark field 10 - ) 
= 10 - )OB ® 10 - )Q. Only 10 - )Q survives in Eq. (A1). 

The identity 

jc = (g/m2)<I>in (p. (l + ;0') + (l + ;0') • p)Tc4>in (A2) 

allows us to express the 1'-function (A 1) entirely in terms of 
the in fields 4>in and <l>in' Feynman rules for the 1'-function 
may now be obtained by making a perturbation expansion 
and using the Dyson-Wick procedure, along the lines of Ref. 
14. Double gluon-quark vertices, or seagulls, characteristic 
of a theory of scalar particles arise in the same way as in the 
quantum electrodynamics treated earlier in Ref. 14. 

IWe use natural units defined by Ii = c = 1. Four vectors have an imagi­
nary time component, e.g.,x" = (r,it). Accordingly, the Lorentz metricis 
the simple 8"v' Derivative operators acting to the left signify minus differ­
entiation ofthe objects on the left, e.g., Cf;al'== - ~/axl" 
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The spectra of the supersymmetric 0 (N) nonlinear sigma models in 0 + 1 space-time dimension 
are computed exactly for any N, using group theoretical methods. The allowed representations 
are O(N) analogs ofthe Wigner d functions. 

I. INTRODUCTION 

Recently, it was found l that the supersymmetric 0(3) 
sigma model2 in 0 + 1 dimension with a Wess-Zumino 
term3 has an interesting spectrum: both the ground and first 
excited levels have unequal numbers of Bose and Fermi 
states. This is in contrast to what is normally found in the 
spectra of supersymmetric theories where the ground state 
alone is unpaired (if supersymmetry is not broken by the 
vacuum) and all other levels have equal numbers of Bose 
and Fermi states. This then raises the exciting possibility 
that the observed asymmetry between bosons and fermions 
need not have anything to do with the breaking of supersym­
metry. In order to explore this line ofthought, however, one 
needs more examples of theories where such atypical repre­
sentations of supersymmetry arise. 

It is tempting to first look for other examples in 0 + 1 
space-time dimensions since they often can be solved exact­
ly. Besides being easy to solve, (0 + 1 )-dimensional theories 
often can be of direct relevance to higher-dimensional field 
theories: if a field theory has soliton solutions then the dy­
namics of the collective coordinates of the solitons will be 
described by a (0 + 1 )-dimensional theory, the spectrum of 
which is in fact the spectrum of soliton states in the original 
field theory. However, the list of exactly soluble theories that 
have any resemblance to higher-dimensional field theories is 
surprisingly short. It is the purpose ofthis paper to remedy 
this situation somewhat by extending this list. We compute, 
using group theoretical methods, the spectrum of the super­
symmetricO(N) nonlinearO'-models (inO + 1 dimensions) 
for arbitrary N. We do this both for the case of N = 1 and the 
caseofN = !supersymmetry. TheO(3) O'model was solved 
in Ref. 4. Certain aspects of the O(N) model were studied in 
Ref. 5. In Ref. 4 the solutions were found to be the Wigner d­
functions that describe a symmetric top.s In computing the 
spectrum ofthe O(N) model we are led to extend this con­
cept of the d function to representations of the O(N) group. 
In this paper, we have not, however, tried to explicitly con­
struct these representatives as a set of functions defined on 
SN-I. 

II. DIRAC QUANTIZATION OF THE O(N) 
SUPERSYMMETRIC CT MODEL 

The O(N) supersymmetric 0' model is defined by he 
Lagrangian 

L = B(at n
a)2 + (i12)~a,p + i(if'1f')] (la) 

and the constraints 

nan a = 1, na1f' = 0 if' = ,pTf! = ,pT0'2 , 

where a = 1,2, ... ,N. (lb) 

Here na is an N-component vector and 1f' is a two-compo­
nent Majorana spinor and also an N vector. This defines the 
M = 1 supersymmetric theory and to get the M = ! super­
symmetry theory we set the lower component of the two­
spinor equal to zero. We now proceed to quantize this system 
using Dirac's procedure for constrained Hamiltonian sys­
tems generalized to include fermions. 6 We consider the 
M = 1 case. The M = ! will be taken up in the end. 

The Hamiltonian is given by 

H = (P 2/2) -1(#)2. (2) 

In addition to the two constraints given earlier, there is a 
secondary constraint n . P = 0 and an additional constraint 
coming from the Majorana property of the fermion: 
1f'" + (i12) 1f'a = 0, where 1f'a is the momentum conjugate 
to 1f'a. One can now construct Dirac brackets in thet stan­
dard way: 

{pa,pb}* =nbpa_napb+ (i/2)[1f',,pb] , (3) 

{1f'a,pb} * = _ na,pab , 

{1f'a, tfIP} = -i/jaP(/jab - nanb) 

(a = 1,2 is the "Dirac" index). 
Note that we have written the product 1f',pb as a commu­

tator. This automatically guarantees that there are no order­
ing ambiguities on quantizing. The commutation and anti­
commutation relations are obtained by multiplying the 
Dirac brackets by the factor "i." Using Eq. (3) one can ver­
ify that 

{Qa, QP} = /jaPH 

= /jap [p2 _ (#)2 + (N _ 1)2] 
2 4 4' (4) 

where Q a = ,pa • p is the supercharge operator. This differs 
from (2) by a constant reflecting the ordering ambiguities in 
the clasical expression for the Hamiltonian. One can further 
verify that 

H=¥2, (5) 

where pb = n[a pbl - (i12) [1f' ,,pb] are the generators of 
O(N). The ordinary O(N) nonlinear sigma model merely 
describes a rigid rotor in N dimensions and the fact that the 
Hamiltonian is equal to the quadratic Casimir ofO(N) is not 
surprising. What is perhaps nontrivial is that just as was 
found in the 0(3) model, this equality generalizes to the 
supersymmetric case as well for all the O(N) groups. The 
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main differences between the supersymmetric and nonsu­
persymmetric cases is that in the former there are certain 
constraints on what eigenvalues of 12 occur in the spectrum 
and their multiplicity. We first describe the spectrum of the 
O( 3) q model solved in Ref. (4) and we then generalize to 
O(N). 

III. SPECTRUM AND REPRESENTATIONS 

The constraints on eigenvalues of 12 are determined as 
follows: Consider the quantity 

n' J = !eabcnal bc = - (i14)~bcria"PJ/fl . 

This is the radial component of the total angular momen­
tum. Let us choose a basis where n = (0.0.1). Then 

n .J = 13 = - (i12)[ ¢'I. tf] . ( 6 ) 

If we define ¢' a = (¢'~ + itfa ) l.,fi. so that 
{¢'a. ¢'p} = {¢'!.~} = 0 and {¢'a. ¢';} = ~aP we get 
n ·1 = ~ [t/I. t/I*]. Now let us define the state 10> by 
¢' a 10) = 0 (a is the Dirac index) . We can then construct the 
three states ¢"rIO). ¢'rIO). and ¢"r¢'r10). One then finds 
that the states 10). ¢"rIO). ¢'rIO) •. and ¢"r¢'r10) have n ·1 
equal to + 1.0.0. and - 1. respectively. Clearly. then for the 
bosonic states 10) and ¢"r¢'r10) the eigenvalues of 12 are 
j(j + 1) andj> 1 since the value 0 is notallowed. whereas for 
the remaining two states all integer values ofj> 0 are allowed 
(Fig. 1). Thus there are two fermionic zero energy states. 
which shows that the index is - 2 and supersymmetry is 
unbroken in the corresponding higher-dimensional field the­
ories. It is also known 7 that the index is equal to the Euler 
characteristic of the manifold. which is 2 (see Ref. 8) for S 2. 

The wave function describing the states with n . I> 0 are 
generalizations of the usual spherical harmonics and are the 
Wigner d functions. Thus two quantum numbers are needed 
to specify a representation 12 and n . I. This feature has a 
generalization in the O(N) case. 

Let us turn to the O(N) q model. We shall consider in 
detail the case where N is odd and see that the results can 
easily be extrapolated to even N also. The generalization of 
Eq. (6). where n = (0.0 •...• 1). is 

(7) 

wherei.jrunfrom 1 to (n -1) and are tangential toSN-I. 
This forms an O(n - 1) "spin" subgroup of the total angu­
lar momentum I. We can find out what the constraints on 
allowed representations of S ij are by studying the eigenval­
ues of the Cartan subalgebra of S ij. which we take to be S 12. 

S 34 S2p-12p h N 21Th •... , , were =:p +. e operators 

2 
1 
o 

• • ... -
n-J 0 

I ... 
!1 

FIG. 1. The spectrum of the O( 3 ) 
supersymmetric umodel in 0 + I di­
mensions. The energy is given by 
V(j+ 1). 
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./,;3 + '.1.4 ./.lP - I 'J.lp 
rf}.1 = 'fa ''f'a , ..• ,f//:. = 'fa + l'fa 

.,fi .,fi 
are constructed and the state 10) defined as the "Fock vacu­
um" for these fermionic operators. The states ¢'!J¢'!K···IO) 
form the various sectors with different "fermion number." 
One can calculate the eigenvalues of the generators of the 
Cartan subalgebra, transform to the more convenient Che­
valley basis,9 and see what representations ofO(N - 1) are 
obtained. If h l ,h2, ••• ,hp denote the eigenvalues of 
S 12,s34 S2p-12p th . h Ch all b . , ... , en, m t e ev e aslS, representa-
tions are labeled by the sequence of numbers 
ha; =h; -h;+I, ... ,hap _. =hp_ I -hp, where hap =hp_ 1 

+ hp • a; corresponds to the roots in the Dynkin diagram 
for 0(2 p) given in Fig. 2. 

In Table I we have worked it out in detail for the O( 5) q 

model. In one of the columns, values of a U ( 1) charge that 
act on the Dirac index are indicated. This is helpful in assign­
ing states to representations. The representations turn out to 
be (1,3) + (3.1) + (1,1) + (1,1) [of 0(4)] for the Bose 
states and (2,2) + (2,2) for the Fermi states. In the 0(7) 
model the representations [of the O( 6) "spin" subgroup] 
turn out to be 1{) + 10 + 6 + 6 and 15 + 15 + 1 + 1 re­
spectively. The patte~ is -obvious-they are the n-~dex 
antisymmetric representations of 0(2p) with n ranging 
from 0 to 2 p, alternately even and odd n corresponding to 
Bose and Fermi states. Thus one finds that only those repre­
sentations of O(N) are allowed that transform as listed 
above under its O(n - 1) spin subgroup. 10 

Let us concentrate for a moment on the 0(5) model. 
One might try to find a representation of O( 5) that trans­
forms under an 0(4) spin subgroup as some subset of 
(3,1) + (1,3) + (1,1) + (1,1) for the Bose states. But by 
the same token this representation of 0(5) would also have 

. to transform under 0(4) as a subset of (2,2) + (2.2). since 
by supersymmetry the Fermi states have to transform under 
0(5) in exactly the same way as the Bose states. But this is 
clearly impossible since the two sets. have no representation 
in common. The resolution of this problem lies in the fact 
that the "orbital" part L ij of the O(N - 1) subgroup has 
been ignored. If we let n = (0,0 •...• 1) + (XI,x2, ... ,xN_lt0) 
for points infinitesimally away from the "north" pole, the x 
transforms as an N - 1 of O(N - 1) and the wave function 
¢,(x) transforms nontrivially under L ij. [Note that 
L ij¢'(x = 0) = 0 because, either ¢' does not depend on x, or 
if it does depend on x, ¢' must necessarily vanish at x = 0 for 
it to be well defined-this is analogous to the fact that on a 
two-sphere wave functions that have a nontrivial 4> depen­
dence vanish at the north pole.] Thus the wave function has 
the structure ~ax;xi···xkra mn ... , where i,j are indices that 
transform under Land m,n transform under S. We already 
know what representations ra of S are allowed. Thus we can 
conclude that only those representations ofO(N) that trans-

FIG. 2. DynkindiagramforO(2p). Thea, 
are the simple roots. 
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TABLE I. Transformation properties of the allowed 0(5) representations under the O( 4) spin subgroup. The U (1) charge is associated with the Dirac 
index. 

State hi h2 U(1) 

10) 1 0 
~+IO) 0 ±! 

1 0 
t/t!+~+ 10) 0 0 ±1 

0 0 0 
±1 =t=1 0 

t/t!+~+~+IO) -1 0 ±! 
0 -1 

tPf + If, + tPf + If,I + 10) -1 -1 0 

form under O(N - 1) as ~Qxilxi2 ... xi·rQ mlm2'" are allowed, In 
fact since SQb is a tensor under J we have [J,s 2] = O. This 
means that a given 0 (N) representation can contain precise­
ly one representation of spin-O (N - 1), i.e., all the rQ have 
to be the same. We can see why, under the spin subgroup 
O( 4) of 0 (5), the Bose and Fermi states can transform dif­
ferently and yet transform the same way under the full 0(4) 
subgroup. All that needs to be done is to introduce an extra 
factor of Xi in one of them. The origin of this extra orbital 
index is also clear - the supersymmetry charge Q = r!iPi 

has exactly this extra orbital index on P. 
There is also another criterion that has to be satisfied. 

As can be verified by explicit calculation, 

J 2=L2+S2. (8) 

The L . S term turns out to vanish, which reflects the fact 
that L . S has only the components L ij that lie entirely in the 
O(N - 1) subgroup and act on the tangent space of S N - 1 
and we have already seen that these operators acting on a 
wave function give zero. Thus we can conclude thatll 

J 2>S2. (9) 

From (8) we conclude that invariance under J implies invar­
iance under L and S separately. Thus a term of the form x1i 

cannot be part of an O(N) singlet. This is reasonable since 
the O(N) generalization ofx1i would be a term of the form 
nQt/I', which we know vanishes. One can now apply these 
rules to see what the ground state looks like in these theories. 
If J2 = 0, clearly S2 = 0 and therefore in the 0(5) model 
there can be two Bose states withP = 0 and no Fermi states. 
Thus the supersymmetry index is 2 and supersymmetry is 
unbroken in the corresponding field theories. The same 

FIG. 3. Young tableaux for representations of the form X(lI"'X
i
•

J r[J...1ml. 
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hal ha, No. of 0(4)Rep. 

states 

0 2 1 (3,1) ED (1,3) 
±1 1 4 (2,2) 

0 0 2 (1,1 ) 
0 0 2 (3,1) ED (1,3) 

±2 0 2 (3,1) ED (1,3) 
±1 -1 4 (2,2) 

0 -2 (3,1) ED (1,3) 

holds true for the 0(7) model and for all the 0(2p + 1) 
models. This is consistent with the fact that the supersym­
metry index is equal to the Euler characteristic for these 
models, which is equal to 2 for S2P. In the case ofO(2p), 
since by analogy the representations are n-index antisymme­
tric tensors with n ranging from 0 to 2 p - 1, it is clear that 
once again there are two states that haveS 2 = 0, but this time 
one of them is Bose (say the tensor with no index) and one is 
Fermi (say the one with 2p - 1 indices). Thus the super­
symmetry index is zero but the vacuum is still invariant un­
det supersymmetry in the corresponding higher-dimension­
al field theories. We also note that it is consistent with the 
fact that the Euler characteristic of S 2 P - 1 is zero. 

We now proceed to identify the higher representations 
of O(N) that are allowed. The O(N - 1) representations 
into which it has to decompose were of the form 

x(i xl Xk ... ) rQ [m,n, .. ·] • 

This clearly corresponds to the Young tableaux shown in 
Fig. 3. 

The only representations of O(N) that reduce to the 
above representations of O(N - 1) and nothing else are the 
ones shown in Fig. 4, for some p and q. Note that p + 1 < N 
for O(N). The value ofJ 2 for the representationip Fig. 4 is 12 
(q + 1) (q + N - I) + (p - 1) (N - p - 1). The value of 
S2 for the group O(N - 1) is meN - 1 - m). Thus as long 
as m<p<N /2, Eq. (9) is satisfied. Since m ranges from 0 to 
N - 1 as long as p<N /2 we have an allowed representation 
for any value of q. This then is a complete description of the 
spectrum of the O(N) q model. As an example, let us apply 
these considerations to the 0 ( 5) model. The representation 
of the 0(4) spin subgroup were (3,1) ED (1,3) 
ED (1,1) ED (l, 1) and (2,2) ED (2,2). These correspond to the 
Young tableaux shown in Fig. 5(a). The representations of 
0(5) that are allowed are shown in Fig. 5(b). One has to 
decide what the multiplicities are. At the ground level there 

FIG. 4. Young tableaux for the representations 
of O(N) that reduce to those shown in Fig. 3. 
Note that p = 1 <N. 
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(a) 

0,O,DJ, ... 

B EP EfD, ... 
(b) 

FIG. 5. (a) Representations of the O( 4) "spin" group in the Bose sector 
(3,1) + (1,3) + (1,1) + (1,1) and the Fermi sector (2,2) + (2,2). (b) 
Representations of 0(5) that reduce to those in (a). 

are two states with J 2 = 0 corresponding to the two singlets 
in Fig. 5(a). The next representation is 5, which breaks up 
into a 4 [ = (2,2)] + 1. The I corresponds to the singlet in 
Fig. 5 {a). The 4 corresponds to adding an orbital part to this 
singlet, i.e., multiplied by Xi. Since there are two such singlets 
there are two 5's. On the Fermi side the two 4's that are 
required come directly from the 4's of spin. The two singlets 
are obtained by contracting the single index with that of Xi. 

The 5 is a single index tensor. We can add any number of 
sYnuDetrized indices to this and get higher representations of 
0(5) as shown in Fig. 5(b). These would all be allowed 
since they just correspond, in the 0 ( 4) notation, to tacking 
on extra factors of xixi··· . The next series of representations 
starts with the two index antisymmetric tensors A ij - 10 of 
0(5). This breaks up into a 6 + 4 
[= (3,1) + (1,3) + (2,2)]. In the Bose sector the 61s ai'= 
ready present and the 4 can be obtained by contracting-one of 
the indices with an x~ In the Fermi sector the ~ is already 
present. The 6 can be obtained by multiplying by Xi and anti­
symmetrizing. The fact that there are two 4's in the Fermi 
sector, but only one 6 in the Bose sector does not cause any 
problem. There is oilIy one 10 and it contains a particular 
linear combination of the 4's. The supersymmetry charge 
that takes the Bose state urto the Fermi state is written as 
Q = ,p; + i2 Pi' Noting that ~ has a U ( 1 ) charge (that acts on 
Dirac indices) equal to zero, we see that Q transforms it into 
the linear combination of the 4's that has the quantum 
numbers of,p; + VI;. This U ( 1) ~harge is preserved by J, so 

, , 
1Q 
~ 
1 

SPIN 1 
U(I) +1 
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1 § 
-1 0 

-
FIG. 6. The spectrum of the 
0(5) supersymmetric u model 
in 0 + I dimension. The series 
are labeled by the dimension of 
the "spin" representation. The 
Dirac U ( I ) charge is also shown. 
The y axis has the dimension of 
the 0(5) representation, which 
fixes the energy of the state. 
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[~] 
[4] - -[3] - -

N=2p+1 [2] - -[ 1] - -
[0] -

(a) [0] [2] [4]--- [P]or!P-l] [1] [3] ---- [p-l] JpJ 
[2p] [2p-2] [p+l] [2p-lj[2p-3]--- [p+1] 

[pI 

I 

N=2p 
, 
I 

[2] 
[1] 
[0] 

(b) 
[0] [1] [2]--- [p-l] [OHI] [2J --- [p-l} 

FIG. 7. Spectrum of the O(N) supersymmetricumodelin0 + I dimension. 
Only the lowest members of each spin series is shown. Here [r J denotes the 
n index antisymmetric representation of O(N - I) on the x axis and of 
O(N) on they axis. In (a) the duality [nJ- [N - n - IJleads to the ob­
served doubling of states. In (b) this has the eft'ect that all values of n from 0 
to p - 1 are allowed both for the Fermi and Bose series. 

the two 4's are not mixed by J, they merely transform simul­
taneously under J. This series that starts with a 10 can also be 
extended by adding any number of symmetrized indices cor­
responding to higher orbital excitations. Thus the spectrum 
is as shown in Fig. 6. These ideas can be easily followed 
through for any N and the result is given in Fig. 7. 

We now tum to the M = ! supersymmetric sigma mod­
els. The construction that led to Table I can be repeated and 
we get the contents of Table II, the only difference being that 
the Dirac index is absent. One finds for odd N that both the 
Bose and Fermi states belong to the two spinor representa­
tions 1: I and 1:2 of 0 (N - I). The dimension of these repre­
sentations is 2 (N - 3 )/2 and accommodates all the states. 
Clearly the spinor representation of O(N) of dimension 
2(N - \)/2 contains these two and satisfies all the other con­
straints. One can also add any number of symmetrized vec­
tor indices to get the higher orbital excitations. Further, 
since there are no singlets of O(N - 1), there is no zero 
energy state. The energy is once again given by the quadratic 
Casimir for which one can find expressions in the litera­
ture. IO

,13 We do not reproduce them here since they are not 
particularly instructive. We have not worked out the case 
with N even but we expect by analogy to get the spinor repre­
sentation. 

A word on the analogy with the Wigner d functions. The 
key ingredient there was that r . J, a position-dependent, ra­
dial, 0 (2) subgroup of 0 ( 3 ) , had nonzero eigenvalues. Here 
it is sob or eObcd"'noJbc, a "radial" O(N - 1) subgroup of 
O(N) that has nonzero eigenvalues. Thus Wigner's d func­
tion is characterized by J 2 and n .J, in our case it is J 2 and S 2. 

The analog of relation (9) there was J 2;;;. (n • J) 2 (see Ref. 
13 ). It must also be pointed out that in our case only specific 
(i.e., the antisymmetric or the spinor) representations of S 
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TABLE II. Transformation properties of the allowed O(N) representations under the O(N - 1) spin subgroup for the case of the M = ! supersyrnmetry. 

State hi h2 hi hN_ I hN 

10) !". 
rfJ+ 10) -! 
rfJ + ¢r' + 10) 

are allowed. A further generalization of the concept of 
Wigner's d function would presumably allow other repre­
sentations of S also. 

IV. CONCLUSION 

In this paper we have computed the exact spectrum of 
the supersymmetric 0 (N) q models in 0 + 1 dimension. It is 
tempting to conjecture that similar techniques can be used to 
solve the supersymmetric CP N - 1 models 14 also. 
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The Schwinger-DeWitt proper-time method (WKB expansion) is applied to calculate the 
anomaly in odd-dimensional gauge theories. The parity violating part of effective action for 
gauge theory in odd dimensions with massless fermion is calculated explicitly and efficiently by 
this method. It is shown to be precisely the local Chern-Simons term. 

I. INTRODUCTION 

The Schwinger-DeWitt proper-time method I (WKB 
expansion) is one of the efficient and elegant techniques to 
study. chiral anomalies2 in even dimension, stress-tensor 
trace anomalies,3 renormalization of the effective action4 in 
flat or curved space-time. Meanwhile anomalies in odd di­
mensions have recently attracted much attention just as 
anomalies in even-dimensional gauge theories did previous­
ly. S We apply the Schwinger-DeWitt proper-time method to 
evaluate the anomaly in an odd-dimensional gauge theory. 
(By use of the original Schwinger proper-time method, a 
calculation for a homogeneous electromagnetic field in three 
dimensions has been carried out by Redlich.6) Anomalies in 
odd-dimensional gauge theories are intimately related to 
anomalies in even-dimensional gauge theories. 

Let us compare two anomalies briefly. The chiral U( 1 ) A 

anomaly in 2n dimensions is expressed by a topological in­
variant known as the nth Chern characteristic 7 

02n [A ] = gtr F n, (1) 

where F is a two-form given bys 

F= dA +A 2 = !F,."Ta dx" dx" (2) 

and gtr is the trace over group indices. The anomaly in an 
odd-dimensional gauge theory is the parity violating part of 
an induced effective action that spontaneously breaks down 
the symmetry of classical theory, that is, parity. In (2n - 1)­
dimensional gauge theory, it is given by a topological invar­
iant, the so-called secondary characteristic class9 

0)2n_1 [A] = n f dt [A (t dA + t 2A 2)n-I]. (3) 

The intimate relationship between these two topological in­
variants is well-expressed mathematically as 

!l2n[A]=d0)2n_I[A]. (4) 

In fact, the fractional fermion numberlO induced 
through the parity violating part of low-energy effective ac-
tion is obtained by use of Euclidean chiral anomaly equation 
in one lower dimension. This point was discussed more ex­
tensively for gauge anomalies and gravitational anomaliesll 

by AIvarez-Gaume et al. 
One more interesting point is that the radiative correc­

tions from higher-order loops to anomaly in (2 + 1) -dimen­
sional Abelian gauge theory are absent as no corrections 
from higher-order loops to triangUlar anomaly in (3 + 1)-

dimensional Abelian gauge theory arise. 12 With a vanishing 
tree level topological mass for an Abelian gauge field, no 
correction; arises at two loops. 13 For the more general case, 
even if the Lagrangian has a nonvanishing bare topological 
mass term,14 two loops do not contribute to the topological 
mass for the Abelian gauge field. It is also proved that the 
coefficient of topological mass term at one loop order is exact 
up to all higher orders IS for (2 + 1 )-dimensional Abelian 
gauge theory by use of the path integral formalism and by an 
analysis of Feynman diagrams. 16 

The parity anomaly in (2 + 1) -dimensional quantum 
electrodynamics is especially important, since it may be rel­
evant to the fractionally quantized Hall effects. 17 

In the following sections, we evaluate the parity violat­
ing part of the effective action for the gauge field (the parity 
odd part of Fermion determinant for an arbitrary back­
ground gauge field) explicitly and efficiently by the 
Schwinger-DeWitt proper-time method. 

II. THE SCHWINGER-DEWITT PROPER· TIME METHOD 
FOR ODD-DIMENSIONAL GAUGE THEORY 

We begin by briefly discussing applications of the 
Schwinger-DeWitt proper-time method to even-dimension­
al gauge theories. This method produces a useful evaluation 
of the fermion determinant, which is the contribution to the 
effective action for the gauge field, induced by the fermion 
loops. Thus, it yields the simple calculation of the chiral 
anomaly in an even-dimensional gauge theory. The fermion 
determinant or the effective action is 

J Leff = - itn Det(D + m). (5) 

We may compactify the Euclidean space-time by assuming 
that the gauge field vanishes sufficiently last at infinity. (The 
anomaly in an odd-dimensional manifold with a boundary 
will be discussed in a separate note. IS) Thanks to the exis­
tence of r in even dimensions, it can be cast in the following 
form: 

J Leff = - ~ In Det(D + m)(D - m) 

= - ~ Trln( D 2 + ~ 0" F - m2) , (6) 

where Tr means trace over all indices including spinor in­
dices, group indices, and space-time coordinates. 
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Rewriting it in the proper-time integral representation 

JL 
- i 50 00 

d'T T -T(H'+m') 
ett -- - re 

2 ° 'T ' 
(7) 

then we can define a Hamiltonain H = - D2 - (e/2)q· P 
and a Hilbert space. Now what we have to do is to evaluate a 
heat kernel, which is defined by (X'TIY) = (xl e - .,.H IY). The 
heat kernel satisfies a Schrooinger equation 

a 
- (XT)y) = - H (X'Tly) aT (8) 

and has an adiabatic expansion (WKB expansion) in the 
coincidence limit: 

Here n is dimension of space-time. The coefficients aj (x) 
can be obtained by the use of recursion relations that can be 
given by the substitution ofEq. (9) intoEq. (8) .. 

Returning to odd-dimensional gauge theories, we im­
mediately realize that this method cannot be applied 
straightforwardly to the evaluation of the fermion determi­
nant in odd dimensions. In odd dimensions, there is no r, 
hence the form of determinant cannot be cast in the conven­
ient one (6). Instead, we decompose the effective action into 
the parity conserving part and the parity violating part: 

J Lett = - ~ Tr[ln(D + m) + In(D - m)] 

- ~ Tr[ln(J} + m) -In(D - m)] 
2 

= rc + rp (10) 

(in odd dimensions, the fermion mass term is parity odd). 
The Schwinger-DeWitt proper-time method can be applied 
straightforwardly to the parity even part. The parity odd 
part needs care. The strategy is to take the variation with 
respect to the gauge field, that is, the induced current from 
the parity odd part of the effective action: 

Brp = _~tr[_I ___ I_]r TQ 
BA~ 2 J}+m D-m p. 

. t [ 1 ] =lm r D2+ (e/2)u.P-m2 rp.TQ, (11) 

where tr is trace over spinor and group indices. If we rewrite 
also (11) in the proper-time integral representation, 

Br 50
00 

--p = - im tr dre- T (H+m
2)r TQ 

BA~ ° p. , 

H= _D2_ (e/2)u.P. 
(12) 

Thus once the heat kernel (9) is calculated, the evaluation of 
the induced current from the parity odd effective action is a 
simpler matter. The parity odd part of the effective action 
can be obtained by an integral of the induced current over 
gauge field. 

In the following section, we will calculate the parity odd 
part of the effective action explicitly by the Schwinger­
DeWitt proper-time method discussed in this section. 
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III. ANOMALY IN ODD DIMENSIONS 

In some theories, the symmetries of classical theories are 
broken spontaneously in their quantum theories. In general, 
we will call these phenomena anomalies. In an odd-dimen­
sional gauge theory, one of the anomalies is the spontaneous 
breakdown of the parity through the contribution of quan­
tum fermion loops to the effective action for the gauge field. 

The classical action for a massless fermion in odd di­
mensions is invariant under parity transformation. Under 
parity transformation, 

x-x = (xo, -XI)' (Ao.Al)(x)-(Ao, -A,)(x), 

1/J(x)-i'f1/J(x), J (~D1/J)(x)-J (~D1/J)(x). (13) 

Thus parity is a good symmetry at the classical level. But the 
quantum theory is not yet defined until the ultraviolet and 
infrared divergences have been regulated. These regulators 
may break the classical parity symmetry. Infrared diver­
gence may be associated with the zero modes of the Dirac 
operator, if the fermion mass is vanishing, hence special care 
is needed for the infrared divergence problem in odd-dimen­
sional gauge theories. 19 We will not discuss here the infrared 
divergence problem, which is the other side of the long story, 
and will concentrate only on the regularization for ultravio­
let divergence. We will choose the Pauli-Villar regulator for 
ultraviolet divergence and examine its consequence, that is, 
anomaly. 

The induced current from the parity odd part of the 
effective action regularized by the Pauli-Villar method is 

--= -iMtr Q 
8rp [ 1 ] 
8A~ D2 + (e/2)q.P-M2 rp.T, 

(14) 

where M is an arbitrarily large mass for the regulator. 
As we mentioned before, in the coincidence limit, the 

heat kernel has an adiabatic expansion (9) (WKB expan­
sion). By making use ofEq. (9) and integrating overT, we 
get a formal series expanded in 11M: 

Brp iM 1 
8A ~ = ~ (M2}J- n+ 112 (41r)n+ 112 

(15) 

Thus as M-- ($), the coefficients of aj (n + 1 <.. j) do vanish. 
We just have the first finite number of terms. Now let us take 
a close look at aJ (x) (0<.. j<..n), which may yield a divergent 
term in the effective action. The functions aj(x) (O<..j<..n) 
may be obtained by using recursion relations that can be 
given by substitution of Eq. (9) into Eq. (8). But we will 
utilize a useful alternative form of the heat kernel by Nepo­
mechi20

: 

lim (xle-.,.H)y) = e- k ' I J d 2n
+

l
k 

'HY (41rr) " + 1/2 1t' + 112 

By comparing Eq. (16) and Eq. (9), we can read aj(x), 
Using a simple gamma algebra in 2n + 1 dimensions, 
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tr uI',V, ... ul',v,YI' = 0 (for i<n - 1), (17) 
t ~+1 r uI',V, ... ul'nvnYI' = 1 El',v, ... l'nVnJJ.' 

we can see that aj(x) (forj<n - 1) does not contribute to 
the right-hand side ofEq. (15) and only one term in an (x) 
makes a nonvanishing contribution. We may get the precise 
evaluation of the induced current from the parity violating 
part, which is free of ultraviolet divergence, 

~Yp = _.l. (_1_· )n.l. M gtr Fn dxl' Ta, (18) 
~A ; 2 211" n! 1M I 

where Yp is a (2n + 1 )-form defined by SYP = rp" This is 
exactly the variation of Chern-Simons term in general odd 
dimensions with respect to gauge field 

~{t)2n + 1 = (n + 1)gtr Fn dxl' Ta. (19) 
~A; 

A simple integral over gauge field yields the parity violating 
part of the effective action, which is shown to be exactly the 
local Chern-Simons term up to a constant. 

We will close this note with a comment on gauge theor­
ies with massive fermions. The variation of the parity odd 
part of the effective action with respect to the gauge field or 
the induced current has two terms 

--p =im tr T a <5r [ 1 ] 
<5A~ D2+ (eI2)u.F-m2 YI' 

-I tr . ·M [ 1 ] T a 

D 2 +(eI2)u·F-M2 YI' 
(20) 

As we have shown, the first term of (20) also can be expand­
ed formally in 11m for a finite mass m. The leading term is 
the variation of a topological invariant, the nth Chern char­
acteristic, with respect to th.e gauge field. Hence the low­
energy effective action is (up to a constant) 

rp = ~ (n ~ 1)! (2~r C:I- 1:1) f {t)2n+ dA]. 
(21) 

This agrees with the result in the Ref. 11 where the parity 
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violating part of the effective action defined on a manifold 
SIX vl/2n is evaluated by relating it with the even-dimension­
al gauge anomaly. 

ACKNOWLEDGMENT 

I would like to thank Professor D. G. Boulware for the 
helpful comment. 

I J. Schwinger, Phys. Rev. 82, 664 (1951); B. S. De Witt, Dynamical Theory 
of Groups and Fields (Gordon and Breach, New York, 1965); Phys. Rep. 
19, 295 (1975). 

2C. Lee, Nucl. Phys. B 202,336 (1982). 
3L. S. Brown, Phys. Rev. D 15,1469 (1977); L. S. BrownandJ. P. Cassidy, 
ibid. 15, 2810 ( 1977); D. M. Capper and M. J. Duff, Nuovo Cimento A 23, 
173 (1973); Phys. Lett. A 53,361 (1975). 

4N. D. Birre1 and P. C.W. Davis, Quantum Fields in Curved Space (Cam­
bridge U. P., Cambridge, 1982); B. S. DeWitt, in Quantum GralJity II, 
edited by C. Isham, R. Penrose, and D. Sciama (Oxford U. P., New York, 
1981); D. G. Boulware, Phys. Rev. D23, 389 (1981); L. Parker, in Recent 
Developments in GralJitation; Carg'ese, 1978, edited by M. Levy and S. 
Oeser (Plenum, New York, 1979). 

sL. Alvarez-Gaume and E. Witten, Nucl. Phys. B 234, 269 (1984); L. AI­
varez-Gaume and P. Ginsparg, ibid. 243,449 (1984). 

6A. N. Redlich,Phys: Rev. D 29,2366 (1984). 
7B. Zumino, Y. S. Wu, and A. Zee, Nucl. Phys. B 239,427 (1984). 
8 A brief review for differential form can be found in the Appendix of Ref. 7. 
"Y. S. Wu, Ann. Phys. (NY) 156, 194 (1984). 
lOA. Niemi and G. Semenoff, Phys. Rev. Lett. 51, 2077 (1983). 
IlL. Alvarez-Gaume, S. Della Pietras, and G. Moore, Harvard University 

preprint HUTP-84/A028, 1984. 
12S. Adler and W. A. Bardeen, Phys. Rev. 182, 1517 (1969); seealsoA. Zee, 

Phys. Rev. Lett. 29, 1198 (1972). 
l3y. Kao and M. Suzuki, Phys. Rev. D 31,2167 (1985). 
14M. Bernstein and T. J. Lee, Phys. Rev. D 32,1020 (1985). 
1ST. J. Lee, Phys. Lett. B 171, 247 (1986). 
16S. Coleman and B. Hill, Phys. Lett. B 159, 184 (1985). 
17R. Jackiw, Phys. Rev. D 29,2375 (1984); K. Ishikawa, Phys. Rev. Lett. 

53,1615 (1984); Phys. Rev. D 31,1432 (1985). 
1ST. J. Lee (in preparation). 
'''R.. Jackiwand S. Templeton, Phys. Rev. D 23, 2291 (1981); T. Appelquist 

and R. D. Pisarski, ibid. 23, 2305 (1981); M. de Roo and K. Stam, Nucl. 
Phys. B 246,335 (1984). 

2°R. Nepomechi, Phys. Rev. D 31,3291 (1985). 

Taejin Lee 2436 



                                                                                                                                    

Mathematical aspects of quantum fluids. II. Nonrotatlng 4He and Clebsch 
representations of symplectic two-cocycles 

B. A. Kupershmidt 
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388 and Center for Nonlinear Studies, 
Los Alamos National Laboratory, Los Alamos. New Mexico 87545 

(Received 30 July 1985; accepted for pUblication 30 April 1986) 

For nonrotating and rotating 4He, the formulas for the Poisson brackets and their canonical 
representations are shown to be particular cases of general Hamiltonian maps associated to 
symplectic two-cocycles on semidirect product Lie algebras of the type gQ< ( W (B V * (B V). 

I. INTRODUCTION 

Superftuid helium has a very complex mathematical 
structure even on the macroscopic level of description. The 
ultimate reason for this complexity, at least for 4He, can be 
traced to the fact that superftuid helium is a two-fluid sys­
tem; in addition to that, for 3He, new difficulties are caused 
by the presence of orbital angular momentum and various 
spins, all so(3) valued. The ways this complexity manifests 
itself vary greatly for four basic quantum fluids for which a 
tolerable mathematical description is known at the present 
time (see Refs. 1 and 2): nonrotating 4He; rotating 4He; 
spinless anisotropic 3He--A; and anisotropic 3He--A with 
spin. The goal of this series of papers of which the present 
one is the second, is to interpret Lie algebraically diverse 
mathematical facts observed in the description of these 
quantum fluids. 

The subject I treat here is Clebsch representations for 
systems whose Hamiltonian description involves a symplectic 
two-cocycle. To be more precise, reca1l2 the Poisson bracket 
formula for nonrotating 4He: 

{H,F}- { 8F [(M/ak +a/Mk ) (8H) 
8Mk 8M/ 

+ (8F 8H _ 8F 8H) . 
8a 8p O'p 8a 

(1.1b) 

The notation here is a/ = a lax/, where (xt> ... ,x,,) are co­
ordinates in R" (n = 3 in physics); ( . ),/ = a( . )lax/, 1 
<k,1 <n, and the sum is taken over repeated indices; 
M = (MI, ... ,M,,) is the total momentum density (of the 
normal flow) ; P is the mass density; 0' is the entropy density; 
a is the phase of the order parameter which defines the curl­
free superftuid velocity v' as v' = Va; 8H 18 ( .) denotes the 
variational derivative of H with ,respect to ( . ); and -
means equality modulo total derivatives (or "divergences"). 
The part (1.1 a) of the Poisson bracket (1.1) is the natural 
bracket associated to the dual space of the semidirect pro­
duct Lie algebra 

g(4He"r) = D" Q< [AO (B A" (B A°], 

with the commutator 

[(X;/;p;a),(X;/;P;o) ] 

= ([X'x ];x( 1) - 1'( 1) ;x(li) 
-X(p);X(o) -X(a»), 

( 1.2) 

(1.3 ) 

where D" is the Lie algebra of vector fields on R"; A k 

= Ak(R") is the C'" (R" )-module of differential k-forms 
on R"; X,XeD";/,a,l,oeAo;p,peA"; the (Lie derivative) 
action of D" on A k is denoted X( . ) for X eD" and ( . )eA k; 

and the dual coordinates on (g(4He"r»)* areMk to akeD",p 
to leAo, a to dx I /\ ... /\dx"eA", and 0' to leAo. The part 
( 1.1 b) of the Poisson bracket (1.1) corresponds to the fol­
lowing two-cocycle on the Lie algebra 9 (4He"r) (1.2): 

w(X;/;p;a),(X;/;P;o») = - iP + .0]. (1.4) 

The nature of the two-cocycle (1.4) on the Lie algebra 
( 1.2) has been explained in the first paper of this series (see 
Ref. 3, Theorem 3.1 and Remark 3.2): If 9 is a Lie algebra 
over a function ring K, Vi> i = 1,2,3, are vector spaces over 
K, 8: VI X V2-+K is a bilinear differential operator, 1T;: 
g-+Diff (V;), i = 1,2, are 8-adjoint representations ofg, i.e" 

8 (1TI (X)(V I),V2) + 8 (VI,1T2(X)(V2»)-0, 

VXeg, Vv;eV;, then on the semidirect product Lie algebra 
gCx( VI (B V2 (B V3 ) the following expression is a (general­
ized) symplectic two-cocycle 

w( (X;V I;V2;V3 ),(X';v; ;v;;vi ) = 8(v; ,V2 ) - 8(vI,v; »). 
(I shall be more precise in the main body of the paper.) 
Taking g=D", VI =V3 =Ao, V2 = A", and 
8(VI,V2) = VIV2' one recovers formulas (1.2)-( 1.4). 

Formula ( 1.1) was obtained in Ref. 2 by a direct math­
ematical computation of the following type: Consider a sym­
plectic space IfI wit~ canonically conjugate pairs of variables 
(p;a), (0",/3), (fk;f<), k = 1, ... ,m. Then the map 

M; =pa,i + 0'.0,; + IJk0, l.;;;i.;;;n, 
u 

p=p, a=a, 0'=0', (1.5) 

is Hamiltonian between the symplectic structure of the space 
IfI and the Hamiltonian structure ( 1.1 ). [If we were working 
in a finite-dimensional situation, and had the number 
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m > (n - 1) /2, we would have been able to talk about the 
"reduction" of the symplectic structure on the "submanifold 
( 1.5) ."] Hamiltonian maps from a symplectic space into the 
dual of a Lie algebra, as well as their generalizations into the 
functional case, are called Clebsch representations. A general 
theory of such maps was developed in Ref. 4, Chap. VIII, §4. 
However, that theory turns out to be not general enough 
since the maps of the type (1. 5), and the symplectic two­
cocyc1es of the type (1.4), are not covered by it. It is, then, 
the purpose of this paper to develop a suitable generalization of 
the theory of Clebsch representations in order to cover the case 
of nonrotating 4He. 

The main result, Theorem 3.2 below, can be formulated 
especially simply in the finite-dimensional situation (i.e., 
when everything is considered over a field instead of over a 
function ring). Let g be a Lie algebra and 17: g-+End( V), 1f: 
g-+End( W) be its representations. Then g also acts, by the 
dual representations, on V* and W *. The usual Clebsch rep­
resentation 

R: VE& V* E& WE& W*-+(g~( VE& W»)* 

is given by the formula [formula VIII (4.4) in Ref. 4 ] 

(R(vE&v* E&WE& w*),l~(v' E&W'» 

= (v*,v' - IT(l)(V)) + (w*,w' -1f(l)(w». (1.6) 

The natural Hamiltonian structure associated to the Lie al­
gebra g~( VE& V* E& W), together with the symplectic two­
cocycle on the V E& v* part of it, can be obtained via the 
following more general Clebsch map]i, from the same sym­
plectic space VE& V* E& WE& W*: 

Ii *(l~(v' E& v*' E& w'»)(v E& v* E& W E& w*) 

= (v*,v' -IT(l)(V)) + (w*,w' -1f(l)(w» 

- (v*',v), ( 1.7) 

where l~ (v' E& v*' E& w') is considered as a typica1linear func­
tion on the space (g~ ( V E& V * E& W»)*. Moreover, the injec­
tion 

n: lCx(v' E&w')~l~(v' E&OE&W') 

can be easily seen to be a Hamiltonian map. Therefore, one 
immediately recovers the familiar Clebsch map R (1.6) 
from the more general formula (1. 7) via the relation 
R * = Ii *n. This will be made precise in Sec III. 

The plan of the presentation is as follows. In the next 
section, I summarize basic facts of the Hamiltonian formal­
ism, including transformation formula (2.9) for the vari­
ational derivatives, criterium (2.16) for a map to be Hamil­
tonian, and one-to-one correspondence between affine 
Hamiltonian operators and generalized two-cocycles on dif­
ferential-difference Lie algebras. In Sec. III, the main result 
ofthis paper (Theorem 3.2) is proved, providing a Clebsch 
representation for the symplectic two-cocycle on a semidir­
ect product Lie algebra of the type g ~ ( W E& V * E& V). In the 
last section (Sec. IV), this Theorem is applied to two types of 
4He: the nonrotating 4He, described by formulas (1.1) and 
(1.5); and the rotating 4He, described by formulas (4.6), 
(4.9), and (4.10). 

The reader accustomed to associating two-cocycles on a 
Lie algebra with central extensions of this Lie algebra should 
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take care to note that the two-cocycles appearing in the de­
scription of quantum fluids and with which we work in this 
paper [formula (2.23) below] are generalized ones and have 
nothing to do with central extensions or representation the­
ory. 

II. HAMILTONIAN STRUCTURES AND HAMILTONIAN 
MAPS 

In this section the basic formulas from the calculus of 
variations and the Hamiltonian formalism are recalled. De­
tails may be found in Refs. 3 and 4. 

LetKbe a commutative algebra. Letal, ... ,a" :K-+Kben 
commuting derivations. Let G be a discrete group acting by 
automorphisms on K, and suppose that the actions of G and 
a's commute. Such a K is called a differential-difference 
ring. (In the absence of G, K can be thought of as the ring of 
smooth functions on R"; in the absence of a's, K can be 
thought of as the ring Qffunctions on G.) LetIbe a countable 
set. Set C = K [q:glv)], ieI, geG, ve.Z"+ (polynomials in the 
variables q:glv) with coefficients in K), and extend G and the 
a's to act on C by the rule 

h(q?lv» =qV'glv), al'(qjglv» = q:gll' +v), 

heG, JLeZ"+, (2.1) 

where ( ± a)1' = ( ± a l )1'1 ••• ( ± an )1'. for JL = (JLl, ... ,JLn ) 

eZ"+ ' and h ( . ) is the image of ( . ) under the automor­
phism h, heG. 

Let Nbe a natural number or 00, T a differential-differ­
ence ring. TN consists of column vectors with only finite 
number of nonzero components. An operator E: TN -+ TN 
is a map of the form 

finite sums; a bilinear operator T N, X T N2-+ T N" is defined 
analogously. An algebra structure on TN is a bilinear opera­
tor T N X T N -+ T N. The associative ring of operators T N 
-+ T N, and the corresponding Lie algebra, are both denoted 
Diff( TN). Trivial elements in T are defined as elements 
from 

II 

1m..@' = 2: Im<,~-e) + 2: Imas , 
geG s= 1 

where e is the unit element of G; we write a - b if (a - b) is 
trivial. 

A derivation X of Cover K is called evolutionary if it 
commutes with the actions of G and a's, so that 

X= 2:gaV(X/) aq~IV)' X/:=X(q/), q/:=q:e1o). 

(2.3) 

The set of all evolution derivations is a Lie algebra denoted 
Dev(C). 

Set N = II I. The Euler-Lagrange map 8 = 8/5q: 
C-+C N, defined by the formula 

( 8H) = 8H = "" A-l( _ a)V (~) (2.4) 
5q j 8qj ~ g 8q:glv) , 
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annihilates 1m ~ in C: 

Ker~=lm~ +K. (2.5) 

Here ~H f~qi is called the variational derivative of H with 
respect tOqi' For Xe/Yv (G), HeC, 

X(H) -X' ~H (formula for the first variation ), 
{)q 

where t stands for transpose, and 

(X)i =Xi · 

(2.6) 

(2.7) 

The variational map ~ has the following transformation 
properties. Let CI = K [p?lv)] ,j61,geG, veZ;"+ ,be another 
differential-difference ring. A (differential-difference) ho­
momorphism ~: C_CI is a homomorphism over K, which 
commutes with the actions of G and the a's: 

(2.8) 

Let HeC. The variational derivatives of H and ~(H) are 
related by the formula 

~~~~H) = D( «ii) t~ ( ~~) , (2.9) 

where 
- N -
~eC I> (~)i = ~(qi)' (2.10) 

D( «ii) is the Frechet derivative of «ii, 
- ~. 

D(<<I»ii =Dp.(~i) = ~ __ I'_gaV, 
, J ~ ap;SV) (2.11 ) 

and t stands for adjoint: 

- t - t A_I v ~i 
(D(<<I» ) .. = [D(~) .. ] = ~ g (-a) --. 

IJ J' ~ ap~glv) 

(2.12) 

We now move on to the HamiltoniaIi formalism. A map 
r: C-U" (C), H~X H' is called Hamiltonian if there exists 
an operator B: CN _CN such that 

- (~H) XH =B {)q , (2.13) 

{H,F}- - {F,n} (skew symmetry), (2.14) 

where the Poisson bracket {H,F} is defined as X H (F); 

X{H,F} = [XH,xF] ' (2.15) 

or equivalently, 

{H,{F,S}} + c.p.-O, (2.15') 

for any H,F ,seC' = K ' [ q?lv) ] , with arbitrary (differential­
difference) extension K' :>K; here c.p. stands for cyclic per­
mutation. The property (2.14) is equivalent to B being skew 
symmetric (Bt = - B), while (2.15) can be reduced to a 
set of quadratic equations on the matrix elements of B. 

If r l : CI_Dev(CI), Ft---+XF is a Hamiltonian structure 
in the ring CI, then the map ~ is called Hamiltonian (also 
"canonical") if, for any HeC, the evolution derivations X H 

in C and X<J>(H) in CI are ~ compatible: ~X H = X<J>(H) «1>. If 
BI is such that XF = XF(p) = BI (~F fliP), then, using 
(2.9), one can show that ~ is Hamiltonian if and only if 
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(2.16) 

A Lie algebra structure on K N is an operator K N X K N 
_K N, [ , ]: X X Yt---+ [X, y], satisfying the following condi­
tions: 

(i) [X,y] = - [X,y] (skew symmetry), 

(ii) [X,[ Y,Z]] + c.p. = 0 (Jacobi identity), (2.17) 

(iii) the properties (2.17) (i) and (ii) remain true un-
der any (differential-ditference) extension 
K':>K. 

A bilinear form onKNisan operator KNXKN_K. To 
each bilinear form Ct) one uniquely associates an operator b", : 
K N_K N acting by the rule 

Ct)(X,y) -X'b", (y), (2.18) 

so that if 

then ("integrating by parts") 

(b"')ij = Lg- I
( -a)I'Ct)i,g,I'li,h,Jza v

• (2.19) 

The form Ct) is called symmetric (resp. skew symmetric) if 
Ct)(X,y) -Ct)( y,x) [resp. Ct)(X, Y) - - Ct)(X,y)]. The form 
Ct) is symmetric (resp. skew symmetric) if and only if the 
corresponding operator b", is symmetric, (b '" ) t = b OJ [resp. 
b", is skew symmetric, (b '" ) t = - b", ]. Recall that for an 
operator E: K N _K M, the adjoint operator E t: K M _K N is 
uniquely defined by the equation 

v'E(u) - [Et(v) ]'u' VueK N
, VveK M

, (2.20) 

so that 

(2.21) 

and 

(2.22) 

A skew-symmetric form Ct) on a Lie algebra g = K N is 
called a (generalized) two-cocycle on g if 

Ct)(X,[Y,Z]) + c.p.-O, VX,Y,Zeg. (2.23) 

An operator ag a v: C-C is called q independent [resp. 
linear (inq)] if a e K (resp. if a = L2i,h".q~h 11'), a ... e K). An 
operator is affine if it is a sum of a q-independent and a q­
linear operator. The same terminology applies to sums of 
operators, and to matrix operators. 

Let B = B I + b be an affine operator: C N _C N, with BI 
being q linear and b being q independent. We make K N into a 
( differential-difference) algebra setting 

Conversely, given an algebra structure on K N
, (2.24) de­

fines a q-linear operator B I. The relation between affine 
Hamiltonian operators and two-cocycles on Lie algebras is 
one-to-one: given a Lie algebra g. and a two-cocycle Ct) on it, 
we setB = BI + b",. withB I defined by (2.24). Conversely, 
given an affine Hamiltonian matrix B = B I + b. the same 
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formula (2.24) defines a Lie algebra structure on K N while 
(2.18) defines a two-cocycle liJ via b", = b. 

III. CLEBSCH REPRESENTATIONS FOR SYMPLECTIC 
TWO-COCYCLES 

Let g =KNbe a Lie algebra; W=K M
" V=K M2; Ip: 

g-Diff( W), 2p: g_Diff( V) be two representations of g. 
Representation 3p(X) = -p2(X)t,Xeg,ofgon V*: =K M

2 

is called the dual representation of g on V * (see Ref. 3, Prop­
osition 3.3). Let g = g<2« Wal V* al V) be the semidirect 
product of g with Wal V * al V, and let BI be the natural Ha­
miltonial matrix associated by (2.24) with the Lie algebra g, 

(3.1 ) 

in the ring 

(3.2) 

which plays the role of the functions on the "dual space to g," 
where 

and X· ( );: = ~ (X) ( ). We let liJ be the symplectic two­
cocycle on g, with 

o 0 

b = 0 0 
'" 0 0 

o 
o 
o 

o 0 -I 

(3.3) 

and let the corresponding affine Hamiltonian structure B in 
C be defined as 

(3.4) 

The role of "functions on W al W * al Val V *" is played by the 
ring 

C - K [a(glv) b (glv) m (glv) _I,(glv)] 
1 - i' i 'T j ''f'j , 

(3.5) 

the symplectic Hamiltonian matrix in C I is 

2440 J. Math. Phys., Vol. 27, No.9, September 1986 

0 1 

-I 0 
0 

B 1 = 
0 1 

(3.6) 

0 
-I 

To describe the desired Clebsch map cI>: C_CI> we need 
some preparation. 

Lemma 3.1.' Letp: g-Diff( n be a representation, with 

P(X) = ~pk;g.vlh.uX(hlu)&av pk···eK. afJ ~ afJ k 0' , ... (3.7) 

Define the map '\I: TXT -g, U X v l---+-u'\Iv, by 

(U'\Ivh = L h -I( - a)u(p':;J.vlh.uvau~glv». (3.8) 

Then 

v~(X)(u) _Xt(u'\Iv), u,veT, Xeg. (3.9) 

Proof: We have, by (3.7), 

We use this lemma for the cases p = Ip, T = W and 
p = 2p, T = V to define 

cl>l = (a'\lbh, 

cl>i = (lP'\It/J h . 

(3.10) 

(3.11) 

Theorem 3.2: Define the following homomorphism cI>: 
C-C1: 

cI>(qk) = cl>l + cl>i, cI>(c;) = b;, 

cI>(Yj) = lPj' cI>(Aj ) = t/Jj. 
(3.12) 

Then the map cI> is Hamiltonian with respect to the Hamilto­
nian structures (3.4) in C and (3.6) in C 1• 

Remark: The cocycleless Clebsch representation given 
in Ref. 4 can be obtained as a special case of Theorem 3.2, 
when V, V*, Y, A, lP' and t/J are all absent. 

Proof: We have to check out the equality (2.16). Since, 
by (3.12), 

cI>(qk) 
Dcl>l DcI>l DcI>i 

Da. Db. DlP, Dt/J, 

D(Cl) = 
cI>(c; ) 0 6~ 0 0 

I 

cI>(Yj) 0 0 6~ 
J 

0 

cI>(Aj) 0 0 0 6~ 
J 

(3.13) 

for the right-hand side of (2.16) we obtain 
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<I>(cr ) <I>(rs) <I> (As ) 

.Dct>l .Dct>~ .Dct>~ --- --
DOr lAPs Dcps 

_ (.Dct>:)t 
Do; 

0 0 0 
(3.14) 

0 0 ~~ 
J 

_ (.Dct>:)t 
Dcpj 

o -~j o 

where 

[ .Dct>l (D<I>:)t D<I>l (.Dct>:)t] [D<I>~ (.Dct>:)t D<I>~ (.Dct>:)t] 
'T/kl = L -- -- - -- -- + L -- -- - -- -- . 

Do. Db. Db. Dos Dcpr Dt/lr lAPr Dcpr 
(3.15 ) 

We see at once that the lower-right comer ofthe matrix (3.14) represents its q-independent part, and it equals exactly the 
matrix b", = <I> (b", ) in (3.3). We, thus, can disregard this constant block, and compare the rest of the matrix (3.14), which we 
denote by B, to the matrix <I>(B1

). To show that B = <I>(B1
), it is enough to show that the following relation is satisfied: 

(f:) B(D -(D~(B') (D' VX,Yeg, Vu"v, e W, Vupv,e V, Vu~v,e P. (3.16) 

Since both Band <I>(BI) are skew symmetric, we can rewrite (3.16), with the help of (3.1) and (3.12), in the form 

L U 3j (:; r (Yk )- - LCPj(Y.u3 )j, 

L u~ (.Dct>~ )t (Yk ) - L t/lj (y. u2 )}' 
Dq;j 

and we can discard (3.20) since it has the same structure as (3.18). 
To prove (3.17)-(3.19), we use the following formulas: 

(
.Dct>1 )t 

(X· 0); = L __ k (Xk ), oeW, 
Db; 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21 ) 

(3.22) 

(3.23) 

(3.24) 

which can be proved as follows. Formulas (3.21) and (3.22) are direct consequences of (3.8) and (3.10). Now, from (3.7), 
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= L (J)cf>1 )\Xk) [by (3.22)], 
Db; 

which is (3.23). Finally, by (3.7), 

( 
J)cf>1 )t 

= LVi __ k (Xk ) [by (3.21)], 
Da; 

which is (3.24). 
Now, (3.18) is, up to notation, (3.24). On the other hand, rewriting (3.23) in the form 

( 
J)cf>~ )t 

(Y'qJ)j = L Dtfj (Yk ), 

and multiplying by u3j from the left, we obtain 

L u3j (J)cf>~ )t (Yk ) = u~ (y. qJ) __ qJ '( y. u
3
)[since 3p ( Y) = _ 2p( Y)t] 

D'A 
and this is (3.19). 

It remains to prove (3.17), which is equivalent to 

2: X
k [:.1 C::Y - ~: (::Y](y/)- 2: ~HX,Yh, (3.25) 

which can be seen as follows: 

L ~UX,Yh = L (a\7b)dX,Yh [by (3.10)] 

-b'([X,Y] ·a) [by (3.9)] 

= b' [X. (y. a) - y. (X· a)] [since Ip is a representation] 

and this is exactly the left-hand side of (3.25). 
Corollary 3.3: In the absence of W, we obtain a HamiIto­

nianmap 

~: K [q~glv),r]Klv),A. ]Klv) ]-K [rjgIV),A. ]Klv)] , 

given by the formula ~(qk) = (r\7Ah, relating the sym­
plectic space V· $ V with the symplectic two-cocycle on 
gCx( V· $ V). 

It would be interesting to find an analog of Theorem 3.2 
for semidirect products of the type g&(W $ VI $ V2 ), when 
VI =1= V!, and with generalized symplectic two-cocycle 

W(VI;V2);(V; ;v~») = O(v; ,V2) - O(VI'V~) 

for O-adjoint representations of g on VI and V2• An example 
of this sort is G = {e}, n = 1, g = D I , W = {O}, 
VI = V2 =K, o=a, so that b", = (~g), and V'p(X) 
= v2p (X) = xa. Then the map 

~: K [q(m),u(m),v(m)]_K [u(m),v(m)], 

~(q) = UV, ~(u) = u, ~(v) = V, (3.26) 
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[by (3.23)] 

• 
is Hamiltonian between the Hamiltonian structures in C and 
CI with the corresponding Hamiltonian matrices 

B = (qa:u aq u:. ,:\, BI = ~ <1\. (3.27) 
au O~) oj 

This can be seen at once by verifying formula (2.16). 
On the other hand, the example below shows that for 

arbitrary O-adjoint representations a Hamiltonian map 
should not be, in general, expected to exist. 

Example: Again, G = {e}, n = 1, g = Dt , Vt = K, 
V2 =K2, with v~(X) =xa, 

v2p(X) = Xal + a(X) (~ ~), 
o (Vl;(V2t;V22 ») = Vt[a(V21) + V22] , 

so that 

B, ~ b. ~ (~ 1 ~ ~) 
B. A. Kupershmidt 
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It is easy to check out that there exists no Hamiltonian map 
of the form ~(u) = U, ~(v) = v, ~(w) = W, ~(q) = ''', 
which would satisfy (2.16) with 

B- (qa:u

aq 

u: ~ wa~aw) (3.29) 
- av a 0 0 ' 

aw-wa -1 0 0 
corresponding to the two-cocycle (3.28) on the Lie algebra 
g<2« VI e V2 ). 

We conclude this section with the following helpful ob­
servation. 

Proposition 3.4: Let ~: C_CI be the Hamiltonian map 
(3.12) of Theorem 3.2. Denote by 

~y: Cy = K [q~sjV) ,c[sjV),A. jBjV) ]-C, 

..... . C -K [q{sjV) c{sjv) r{SjV)]_C 
"¥Y·· v· - k' i 'j , 

the natural inclusions, where C y and C y. serve the Lie alge­
bras g<2< ( We V) and g<2< ( We V·), respectively. Then the 
compositions ~~y: Cy-CI and ~~y.: Cyo-CI are Ham­
iltonian maps. 

Proof: It is enough to show that ~y and ~y. are Hamil­
tonian, which is evident from the formula (2.16): the contri­
bution of the symplectic two-cocycle part (3.3) of the Ham­
iltonian matrix B in C vanishes, while on the remaining 
Hamiltonian matrices the map ~y (resp. ~y. ) is generated 
by the Lie algebra monomorphism 

g<2< ( We V)-g<2< ( We V· e V) 

[resp. g<2« We V)-g<2« We V· e V)]. • 
IV. APPLICATIONS TO 4He 

I first show that for the case of the nonrotating 4He, the 
Poisson bracket (1.1) and the Hamiltonian map (1.5), are 
particular instances of Theorem 3.2. 

Let us take g=Dn , W= (AO)m+l, V=·Ao. Then 
V· = An by Proposition 3.5 in Ref. 3. The action of Dn on 
A°isgivenbyp(X)(u) = llkU,k forX = l:Xkak. By (3.9), 

vp(X) (u) = L VkXkU.k = X t (U'\7V) , 

so that 

(u'\7vh = VU,k' 

Therefore, by (3.10) and (3.11), 
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m+1 
~l = L b/ai,k, ~~ = W,k' 

i=1 

and the map ~ in (3.12) becomes 

~(qk) = L bia/,k + W,k' 

~(cl)=bi> ~(r)=tp, ~(A.)=t/J. 

The Hamiltonian matrix 
g = g<2« We V· e V), equals 

(

qlak + alqk 

alCI 

r,l 

alA. 

-r,k 

o 
o 
-1 

(4.1) 

for 

(4.2) 

so that ~ applied to (4.2) is the matrix (3.7). We see that 
there is an "invariant submanifold" {C2 = O, ... ,cm + I = O} 
for (4.2). In other words, set W = WI e W2 = AO e (AO)m. 
Then the inclusion WI-W, WI-(WI eO) generates a Lie 
algebra homomorphism 

g<2« WI e V· e V)-g<2« We V· e V). 

The corresponding Hamiltonian map (also an inclusion) 

~': C' = K [q~SjV) ,c\sjV) ,tp (sjv) ,t/J(sjV)] 

_C = K [q~SjV) ,c}sjV) ,tp (sjv) ,t/J(sjV)] , 

composed with the Hamiltonian map (4.1), ~: C-Cl> pro­
vides a Hamiltonian map~" = ~~': C'_CI , of the form 

~"(qk) = L biai,k + W,k' 

~"(CI) = b l , ~"(r) =tp, ~"(A.) = t/J. (4.3) 

The Hamiltonian matrix in C' is the same as (4.2), with only 
one CI instead of CI""'Cm + I present. This matrix is exactly 
the one producing the Poisson bracket (1.1), when the fol­
lowing identifications are made: 

Mk =qk' p=A., a=r, q=c l , (4.4) 

while the map (1.5) isjust (4.3) (morepreciseiy, dual to it), 
with the additional identification 

p = t/J, a = tp, q = bl , {3 = aI' 
(4.5) 

We now turn to the rotating 4He (see Ref. 5). The Pois­
son bracket in this case [formula ( 14) in Ref. 2)] is 

(4.6a) 

(4.6b) 

(4.6c) 
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where new notations, in addition to the nonrotating 4He 
case, are P is the relative normal momentum density, and A 
is the vorticial part of the superfluid velocity r, which, for 
rotating 4He, is not curlfree anymore: r = Va - A. 

The bracket (4.6) splits off in two separate brackets: 
[ (4.6a,b) and (4.6c)]. The bracket (4.6c) is the natural 
bracket on the semidirect product Lie algebra 

lh=DnCxAo. (4.7) 

The bracket ( 4. 6a) and ( 4. 6b ) is of the form 
B = Bl (91) + b, whereBI (91)' given by (4.6a), is naturally 
associated with the semidirect product Lie algebra 

91=DnCx(An-I ES AoESAn), (4.8) 

while b, given by ( 4.6b), is the symplectic two-cocycle on the 
A ° ES An part of91' [Notice the transposition of Anand A ° in 
(4.8) in contrastto the nonrotating 4He case ( 1.2), which is 
responsible for nonrotating (1.1 b) and rotating two-cocy­
cles (4.6b) having opposite signs.] 

The bracket (4.6) was obtained in Ref. 2 by a direct 
mathematical computation of the following sort (in the pres­
ent notation): The map <1>, given by the formulas, 

<I>(Pk ) = - U/3,k - /r,k' <I>(u) = u, (4.9) 

(4.10) 

is Hamiltonian between (4.6) and the symplectic Poisson 
bracket in space with canonical pairs of variables (U',/J) , 

(j;r), (p;a), and (dk.A k ). Let us see that this fact is a 
particular instance of Theorem 3.2. First, the maps (4.9) 
and (4.10) split off, with (4.9) associated with the bracket 
( 4.6c), and this part is covered by Proposition 3.4 applied to 
the cocycleless case D n Q< A ° (see the remark in Sec. III) of 
Theorem 3.2, followed by ignoring the variable/in the same 
fashion as the variables C2""'Cm + 1 were purged from the 
matrix (4.2). Formula (4.10) can be gotten from the follow­
ing computations. For W = An - 1, the action of 
X = "IXkak on OJ = Lilj (aj J dnx), where dnx = dx 1 /\ ... 

/\dxn' is 

(4.11 ) 

Hence, by (3.9), 
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so that 

(u\1vh = L [ - Vj,kUj + (VkUj),;]' (4.12) 

Thus, by (3.10), 

<1>1 = (a\1bh = L [ - bj,kai + (bkai),d· (4.13) 

Also, for V = An, 

and hence, by (3.9), 

VtX(U) = L v(XkU),k - - LXkUV,k, 

so that 

(u\1vh = - UV,k' 

Thus, 

<I>~ = (rp\11/lh = -rp1/l,k' (4.14 ) 

Comparing now (3.12) with (4.10), we see that they coin­
cide, provided we make the identifications 

Mk =qk' rp=y=p, 1/l=).,=a, (4.15) 

ak =dk, bk =Ck =Ak· 

The sign in (4.6b) is exactly that of the symplectic two­
cocycle part in (3.14). 
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Erratum: Comment on an aspect of a paper by G. Thompson [J. Math. Phys. 27, 
153 (1986)] 

P. G. L. Leach 
Department of Applied Mathematics, The University of the Witwatersrand, 1 Jan Smuts Avenue, 
Johannesburg, South Africa 2001 

(Received 17 April 1986; accepted for publication 23 May 1986) 

A mistake in the solution of an equation in the paper 
"Comment on an aspect of a paper by G. Thompson"l is 
rectified. 

The correct solution to Eq. (2.11) in Ref. 1 is 

V(1],t) =K(1])e- 2' + L(1])e- 3b + M(t) , (1) 

and (2.20) is now 

(a + b 'e-')(K'e- 2b + L 'e- 3,) 

+ be - b ( - 2Ke - 2b - 3Le - 3b + M') = 0 , (2) 

where 

K' = ja', L ' = j (b " + b) . (3) 

The analysis of (2) separates into two cases, b =0 and b=l=O. 
Case I: b ==0. From (2) and (3) we have 

L ' = 0, aK' = 0, aa' = 0 , 

whence 

(4) 

L = L o, K = Ko, A = Ao . (5) 

Hence for the Hamiltonian 

H =!e-2'1(p~ +p~) +Loe- 2b + Koe- 3' +M(t) 

=!e-2'(p~ +p~) +vR (t), (6) 

we obtain the first integral 
• 

I=p~ + AoP'1 . (7) 

The potential is just of the form VCr), where r is the radial 
variable and the first integral is not truly cubic, but is a cubic 
function ofa first integral linear in the momentump'1' the 
conserved angular momentum. 

Case II: b=l=O. Rewriting (2) as 

M'(t) = - ~-b + (2K _ aL' _ b 'K)e-2b 
b b b 

+ (3L - b ~ , )e -3, , (8) 

it is evident that the partial derivative of the right-hand side 
with respect to 1] is zero for each of the coefficients of the 
three linearly independent functions of t. Thus, taking (3) 
into account, 

(a a'/b)' = 0, 

2a' - [(a/b)(b" + b) + b 'a'/b]' = 0, 

3(b" +b) - [(b'/b)(b" +b)],=O. 

Integrating (9), 

aa'/b =N, 

where N is a constant which may be zero. 

(9) 

(10) 

(11) 

(12) 

We dispose of the case N #0. Three successive quadra­
tures of ( 10) yield 

(13) 

in which B, C, and D are arbitrary constants. From (12) 

b = (lIN)(la4 +Ba3 + Ca +D)I/2. (14) 

However, b does not satisfy ( 11 ) and so we conclude that the 
assumption N #0 is invalid and that a = 0 or a' = O. 

Case II (i): a'=O. From (10) 

b"+b=Cb, (15) 

where C is some constant. Substituting ( 15) into (11), 

C(b" - 3b) = 0, (16) 

we see that either C = 0 or 4 and we obtain the two possible 
sets of solutions: 

b(1]) = BI sin 1] + B2 cos 1], 

corresponding to C = 0; and 

a(1])=Ao, (K1])=Ko , 

(17) 

b( 1]) = BI sinh 1]J3 + B2 cosh 1]J3 , (18) 

L( 1]) = (4/3J3) (B I cosh 1]J3 + B2 sinh 1]J3) + L o , 

corresponding to C = 4. In the first case the potential is zero, 
i.e., we have the free particle and the first integral 

I = p~ + {Ao + (B I cos 1] - B2 sin 1])e- b}P'1 

(19) 

is not a first integral that is truly cubic inp'1 sincep'1 is itself a 
first integral. 

Turning to the second case the potential is 

V( 1], t) = jAoe - 2b 

+ (4/3J3) (BI cosh 1]J3 + B2 sinh 1]J3)e - 3, 

(20) 

and the first integral is 

I =p~ + {Ao + J3(B I cosh 1]J3 + B2 sinh 1]J3)e- b}P'1 

+ (BI sinh 1]J3 + B2 cosh 1]J3)e - 'p, . (21) 

In this case we have, for B I and B2 not both zero, a first 
integral that is truly cubic in momenta. 

Case II (ii): a=O. Equations (9)-(11) now reduce to 
(11) only. Apart from the solutions for b( 1]) given in (17) 
and (18) we have not been able to obtain a general solution 
for (11). The only explicit results we can report are (19)­
( 21) with Ao set at zero. 
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In the analysis of the problem of the existence of a first 
integral of the form 

I = P~ + A (1/,t)p~ + B( 1/,t)PTfp, + C( 1/,t)p~ + D( 1/,t) , 
(22) 

a similar mistake was made and the solution of (3.2) in Ref. 
I should read 

V(1/,t) =K(1/)e-ll: +L(1/)e- 3
' +M(7])e- 4

, +N(t). 
(23) 

Applying the Poisson bracket condition on I we find that 

C= c(7])e- 2', B = b(7])e-' + c'e- 2" 

A = a(7]) + b 'e-' + (~" + c)e- 2" 

M'=lc', L'=lb , 

K' = 1(~"' + c'), b" = 0, a' = 0, 

and the function D( 7],t) is determined by 

aD = 2A(K' + L 'e-' + M'e- 2,) 
aq 

- B(2K + 3Le-' + 4Me- 2, - N'~') , 

aD =B(K'+L'e-'+M'e- 2,) 
at 

(24) 

(25) 

(26) 

Writing W = N' exp(2t), the consistency requirement on 
(25) and (26) is 

W'(be-' + c'e- 2,) - W(be-' + 4c'e-ll:) 

+ 2{ - b 'e-' - (c" + 2c)e- 2'} 

X{K' +L 'e-' +M'e- 2,} 

+ 2{a + b 'e-' + (!c" + c)e- 2,} 
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x{ -L 'e-' - 2M'e- 2
,} 

+ (be-' + 4c'e- 2')(2K + 3Le-' + 4Me- 2,) 

+ (be-' + c'e- 2')(3Le-' + 8Me- 2,) 

- (b 'e-' + c"e-ll:)(K' +L 'e-' +M'e- 2,) 

- (be-' + c'e- 2')(K" + L "e-' + M"e- 2,) 

+ 2ce- 2'(2K' + 3L 'e-' + 4M'e- 2,) = O. (27) 

For (27) to be a differential equation for W, it is necessary 
for b:;60 and c':;60 and for its nonhomogenous term when 
divided by the coefficient of W' or W to be 7]-free. In both 
cases a contradiction occurs in that the result is b = 0 = c'. 
Hence Wand so N is an arbitrary function of t. 

Substituting in (25) and (26) we find 

D(7],t) = 2CoKoe- 2' + 2CoLoe-' + 2CoN(t) (28) 

and that 

I=p~ +Aop~ +2CoH 

is a first integral for the Hamiltonian 

H = !e-2'(p~ + p~) + Koe- 2' 

+Loe- 3
, +Moe-~ +N(t) 

=!e-2'(p~ +p~) +J1i"(t). 

(29) 

(30) 

As PTf is itself a first integral I is not truly a first integral 
quartic in the momenta. 
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